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ABSTRACT
In this paper, a boundary spectral element method (BSEM) for
solving the problem of three-dimensional wave propagation
is introduced. In the new formulation, elastodynamics of
structures is computed by the Laplace transformed boundary
element method (BEM), and boundaries of structures are
discretised into high-order isoparametric spectral elements.
Three types of spectral elements – Lobatto, Gauss–Legendre
and Chebyshev elements – have been implemented. With a
significantly higher computational efficiency than the con-
ventional BEM, the BSEM provides a competitive alternative
for modelling high-frequency wave propagation in engineer-
ing applications.
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Introduction

Wave propagation in three-dimensional structures has been studied exten-
sively. While analytic solutions (Eringen & Suhubi, 2013) are widely available
for structures with simple geometries, numerical tools, such as the finite
element method (FEM) (Zienkiewicz & Taylor, 2000) and the boundary
element method (BEM) (Aliabadi, 2002), were developed many decades ago
formodelling structures that involve complexities. Comparing to the FEM, the
BEM only requires the discretisation of the boundaries of structures, and
consequently all variables in the BEM are computed on the boundaries only.
This leads to a considerable reduction in the complexity of meshing, especially
for structures with irregular shapes, and also smaller systems of equations and
a lower demand on computational resources. Lately, advanced algorithms for
representing and solving the systems of equations in the BEM have further
improved the computational efficiency of the method (Benedetti, Aliabadi, &
Davi, 2008; Benedetti & Aliabadi, 2010; Mallardo & Aliabadi, 2012; Shen &
Liu, 2007).
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In recent years, structural health monitoring (SHM) has become a
favourable approach for ensuring the safety of engineering structures in
service. Most damage detection techniques make use of smart structures in
which high-frequency ultrasonic waves are excited and propagate
(Giurgiutiu, 2005; Ihn & Chang, 2004; Sharif-Khodaei & Aliabadi, 2014).
Also, impact events can be effectively monitored through analysing the
high-frequency elastic waves that are induced by the impacts (Haywood,
Coverley, Staszewski, & Worden, 2004; Mallardo, Aliabadi, & Khodaei,
2013; Mallardo, Sharif-Khodaei, & Aliabadi, 2016; Worden & Staszewski,
2000). So far, the FEM has been the most commonly used tool for
simulating wave-based SHM applications. The spectral element method
(SEM), which was first introduced by Patera (1984) for modelling fluid
flows, has also gained much interest in this area (Ha & Chang, 2010; Kim,
Ha, & Chang, 2008; Peng, Meng, & Li, 2009; Żak, 2009). The SEM has been
particularly favoured for solving high-frequency wave propagation in
large-scale structures. In addition to SHM, it has also been well exploited
in seismology (Komatitsch, Barnes, & Tromp, 2000; Komatitsch & Tromp,
1999, 2002; Komatitsch & Vilotte, 1998). Comparing to low-order finite
elements, spectral elements exhibit much faster mesh convergence. Also,
they are numerically more accurate and stable than conventional high-
order elements with equally spaced nodes (Gottlieb & Orszag, 1983).

On the other hand, Zou et al. (Zou & Aliabadi, 2015; Zou, Benedetti, &
Aliabadi, 2014) developed the first boundary element formulations which
are capable of modelling the full functionality of piezoelectric smart
structures in ultrasonic wave-based damage detection applications.
Although their methods require less computational resources and
demonstrate a higher numerical stability than the conventional FEM,
they still struggle in resolving high-frequency wave propagation in
large-scale structures. In the field of BEM, the first applications of
spectral elements appeared in 1990s and are in the scope of fluid
mechanics (Muldowney & Higdon, 1995; Occhialini, Muldowney, &
Higdon, 1992). To the best of the authors’ knowledge, these elements
have not been implemented in the BEM for modelling elastodynamic
wave propagation.

In this paper, the first boundary spectral element method (BSEM) for
solving the problem of wave propagation in three-dimensional structures is
presented. The Laplace transformed three-dimensional BEM is employed
to compute the elastodynamic responses of structures, and high-order
spectral elements are implemented to carry out boundary discretisation.
Parametric studies and numerical experiments have been conducted to
assess the performances of the various types of spectral elements and to
validate the new formulation. By achieving a high computational efficiency
and owing to some of attractive features of the BEM, the BSEM will
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become a competitive numerical tool for modelling high-frequency wave
propagation in modern engineering applications.

Boundary spectral element method

Boundary integral equation (BIE) in Laplace domain

In the absence of body forces, the Navier–Cauchy equation, which governs
the dynamics of an isotropic elastic body, is given by (Aliabadi, 2002, p. 196)

c22ui;kk X; tð Þ þ c21 � c22
� �

uk; ki X; tð Þ ¼ €ui X; tð Þ; X 2 Ω½ � (1)

where c1 and c2 are the velocities of the longitudinal and the shear waves,
and u is the displacement at a point X in the domain Ω of the body. The
Laplace transform of Equation (1) can be written as (Aliabadi, 2002, p. 201)

c22ui;kk X; sð Þ þ c21 � c22
� �

uk;ki X; sð Þ ¼ s2ui X; sð Þ; X 2 Ω½ � (2)

By using Somigliana identity, the displacement at a point X0 in the domain
of the body can be related to the displacements and the tractions along the
boundary Γ such that (Aliabadi, 2002, p. 201)

ui X
0; sð Þ ¼

ð
Γ
Uij X

0; x; sð Þtj x; sð ÞdΓ

�
ð
Γ
Tij X

0; x; sð Þuj x; sð ÞdΓ; X0 2 Ω; x 2 Γ½ � (3)

where X0 and x are known as the source and the field point, and Uij and Tij

are the Laplace transformed fundamental solutions of elastodynamic dis-
placement and traction (see Appendix A) (Wen, Aliabadi, & Rooke, 1998).
By moving the source point to the boundary (i.e. imposing the limit
X0 ! x0), the displacement BIE can be obtained as (Aliabadi, 2002, p. 202)

cij x
0ð Þui x0; sð Þ þ

ð
Γ
Tij x

0; x; sð Þuj x; sð ÞdΓ ¼
ð
Γ
Uij x

0; x; sð Þtj x; sð ÞdΓ; x0 2 Γ½ �
(4)

where the value of cij depends on the location of the source point.

Boundary discretisation

In order to evaluate the displacement BIE, the boundary of the body is
discretised into elements. Isoparametric spectral elements, which employ
high-order interpolating polynomials as their shape functions, are used for
both geometry representation and the approximation of boundary displace-
ments and tractions.
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Three types of spectral elements (examples of which are shown in
Figure 1) have been implemented in this work. These elements, which differ
in node locations and shape functions, can be categorised into Lagrange
polynomial-based and Chebyshev polynomial-based approximations. The
general expressions for the interpolation of the geometry and the displace-
ment and the traction field within each of these elements can be written as

x �; ηð Þ ¼
XnC
m¼1

XnC
n¼1

Nm �ð ÞNn ηð Þx �m; ηn
� �

u �; ηð Þ ¼
XnC
m¼1

XnC
n¼1

Nm �ð ÞNn ηð Þu �m; ηn
� �

t �; ηð Þ ¼
XnC
m¼1

XnC
n¼1

Nm �ð ÞNn ηð Þt �m; ηn
� �

(5)

where nC is the number of nodes in each direction, N represents the shape
functions, and � and η are the intrinsic coordinates of the nodes.

Lagrange polynomial-based approximation

Among the three types of spectral elements, Lobatto (Kim et al., 2008) and
Gauss–Legendre elements (Muldowney & Higdon, 1995) make use of the
Lagrange polynomial-based approximation. The locations of the nodes of
these elements are defined by the Lobatto and the Gauss–Legendre quadrature
points, respectively. The shape functions, which employ the (nC − 1)th order
Lagrange polynomials, are given by

Nm �ð Þ ¼
YnC�1

l¼1 l�mð Þ

� � �l
�m � �l

(a) (b) (c)

Figure 1. 25-Node configuration of (a) Lobatto, (b) Gauss–Legendre and (c) Chebyshev elements.
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Nn ηð Þ ¼
YnC�1

l¼1 l�nð Þ

η� ηl
ηn � ηl

(6)

where �m and ηn are the coordinates of the node under consideration, and
�l and ηl represent the coordinates of the rest of the nodes in the same
element.

Although the shape functions of Lobatto and Gauss–Legendre elements
utilise the same type of interpolating polynomials, their exact expressions
are different due to the disagreement in node locations. Also, it is worth
mentioning that Gauss–Legendre elements are essentially discontinuous
elements.

Chebyshev polynomial-based approximation

In Chebyshev elements (Dauksher & Emery, 1997), the locations of nodes
in the local coordinate system are defined by

�m ¼ � cos
π m� 1ð Þ
nC � 1

� �

ηn ¼ � cos
π n� 1ð Þ
nC � 1

� �

m; n ¼ 1; 2; . . . ; nC½ � (7)

The shape functions are written as

Nm �ð Þ ¼ 2
nC � 1

XnC�1

l¼0

1
smsl

Tl �mð ÞTl �ð Þ

Nn ηð Þ ¼ 2
nC � 1

XnC�1

l¼0

1
snsl

Tl ηn
� �

Tl ηð Þ

sm; sn ¼ 1; 1<m; n< nC
2; m; n ¼ 1; nC

�
; sl ¼ 1; 0< l< nC � 1

2; l ¼ 0; nC � 1

�� �
(8)

where Tl represents the Chebyshev polynomials of the first kind which, in
this case, are given by

Tl ηð Þ ¼ cos lcos�1 ηð Þ� �
(9)
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Discretised BIE

Once the boundary of the body has been discretised into spectral elements,
the displacement BIE can be expressed in a discretised form such that

Cij x
0ð Þuj x0; sð Þ þ

XNe

l¼1

XnC
m¼1

XnC
n¼1

Plmn
ij x0; sð Þulmn

j x; sð Þ

¼
XNe

l¼1

XnC
m¼1

XnC
n¼1

Qlmn
ij x0; sð Þtlmn

j x; sð Þ (10)

where Ne is the number of spectral elements used for boundary dis-
cretisation. In Equation (10), the terms in Cij can be obtained from the

consideration of rigid body motion (Aliabadi, 2002, p. 51), and Plmn
ij and

Qlmn
ij , which represent the integrals of the fundamental solutions, are

given by

Plmn
ij x0; sð Þ ¼

ð1
�1

ð1
�1

Tij x
0; x �; ηð Þ; s½ �Nm �ð ÞNn ηð ÞJl �; ηð Þd�dη

Qlmn
ij x0; sð Þ ¼

ð1
�1

ð1
�1

Uij x
0; x �; ηð Þ; s½ �Nm �ð ÞNn ηð ÞJl �; ηð Þd�dη (11)

where J is the Jacobian of the transformation from the global coordinate
system to the intrinsic one.

Treatment of singularities

Both fundamental solutions Uij and Tij can be rewritten in two parts as
(Dominguez, 1993)

Uij x
0; x; sð Þ ¼ Us

ij x
0; xð Þ þ Ud

ij x
0; x; sð Þ

Tij x
0; x; sð Þ ¼ Ts

ij x
0; xð Þ þ Td

ij x
0; x; sð Þ (12)

where Us
ij and Ts

ij are the fundamental solutions of three-dimensional
elastostatics, and Ud

ij and Td
ij represent dynamic contributions. In a single

collocation step, if the source point is some distance away from the field
element, all of the functions in Equation (12) will behave smoothly and the
integrals of these functions can be evaluated directly using the standard
Gauss–Legendre quadrature rule. However, if the source point happens to
be one of the nodes of the field element, Us

ij and Ts
ij will exhibit weak

O 1=rð Þ and strong O 1=r2ð Þ singularity, respectively (Dominguez, 1993).
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Weakly singular integrals in three-dimensional boundary element for-
mulations can be treated directly by the transformation of variable tech-
nique (Aliabadi, Hall, & Hibbs, 1987; Lachat & Watson, 1976). The
treatment of strongly singular integrals, on the other hand, makes use of
both the transformation of variable technique for improving the accuracy
of off-diagonal terms, and the consideration of rigid body motion for
evaluating diagonal entries (Aliabadi, 2002, p. 51).

The transformation of variable technique relies on dividing a quadrilateral
element into a number of triangular ones. The number of triangular ele-
ments to be divided into depends on the location of the source point, i.e. the
location of singularity. Figure 2 shows the scheme for element sub-division.
It is worth mentioning that for a Gauss–Legendre element, sub-divisions are
always of four triangular elements since all of its nodes are interior.

Readers, who are interested in the details of the element subdivision-
based transformation of variable technique as well as other methods of
treating singular integrals, are recommended to consult Chapter 11 of the
book by Aliabadi (2002).

Linear system of equations

Once Plmn
ij and Qlmn

ij have been evaluated, Equation (10) can be rewritten in
a matrix form as

H sð Þu sð Þ ¼ G sð Þt sð Þ (13)

By separating known boundary conditions from unknown nodal values,
Equation (13) can be rearranged into a linear system of equations such that

A sð Þx sð Þ ¼ y sð Þ (14)

(a) (b) (c)

Figure 2. Scheme for element subdivision when singularity is at (a) a corner node, (b) an edge
node and (c) an interior node.
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Inverse Laplace transform

For an elastodynamic analysis in the Laplace domain, the displacement BIE is
to be evaluated and solved for a number of Laplace terms which are given by

s ¼ aþ 2kπi
T

; k ¼ 0; 1; 2; . . .½ � (15)

where T is the time period of interest. The response in time domain can
then be obtained through Durbin’s method for inverse Laplace transform
(Durbin, 1974). According to Zhao (2004), Durbin’s method performs the
best when a ¼ 5=T. Also, the number of Laplace terms to be used for an
analysis depends on the energy spectrum of the expected response in the
Laplace domain (Zou et al., 2014).

Parametric studies

Parametric studies have been conducted to examine the performances of
the three types of spectral elements introduced in this paper. Benchmark
results were obtained using the conventional 8-node serendipity elements.
In addition to mesh convergence, convergence of numerical integration
had also been found to be critical to the BEM (Rigby, 1995). In this work,
the 16-, the 25- and the 36-node configurations of the three types of
spectral elements have been investigated.

The parametric studies were performed using the specimen shown in
Figure 3. The specimen is fixed in z-direction at its bottom surface, and is
subjected to a uniform sinusoidal traction, with a frequency of 100 kHz

Figure 3. Schematic diagram of the specimen for the parametric studies.
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and an amplitude of 1 GPa, in z-direction at its top surface. The specimen
has a density of 2700 kg/m3, a Young’s modulus of 70 GPa and a Poisson’s
ratio of 0. For simplicity in the presentation of results, the lengths of the
specimen in all three dimensions are chosen to be two wavelengths of the
longitudinal wave mode, i.e. 2λL (λL = 0.0509175 m).

Figure 4 shows the Laplace domain energy spectrum of the above-men-
tioned sinusoidal traction when the time period of interest is 10−4 s. The
response of a structure that is subjected to such a traction will contain the
same frequency components. In order to arrive at a considerably accurate
solution in time domain, the number of Laplace terms to be used for
carrying out an analysis in the Laplace domain needs to be able to include
a sufficient amount of Laplace energy (Zou et al., 2014). According to
Figure 4, a minimum of 21 Laplace terms are required for the current
example. The Laplace terms are, therefore, given by

s ¼ 5þ 2kπi
10�4 ; k ¼ 0; 1; 2; . . . ; 20½ � (16)

Convergence study on numerical integration

Rigby (1995) presented a thorough investigation of the convergence of
numerical integration for the three-dimensional elastostatic formulation. He
concluded that for regular integrals, the numbers of integration points
required for achieving convergence are solely dependent on the aspect ratios
of elements, and for singular integrals that are treated by the transformation of

Figure 4. Laplace domain energy spectrum of the sinusoidal traction with a frequency of
100 kHz and an amplitude of 1 GPa.
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variable technique, the angles within sub-divided triangular elements also play
an important role.

In this work, the convergence of numerical integration for the dynamic
functions Ud

ij and Td
ij has been examined. It was found that the convergence

is solely related to element sizes. This is due to the fact that the dynamic
functions are highly oscillatory, and therefore elements of different sizes
will capture different numbers of oscillation periods. Since the oscillation
frequencies of the dynamic functions increase with the imaginary parts of
Laplace term, it is always the Laplace term with the largest imaginary part
that is to be considered in a convergence study on numerical integration.
In the current example, this refers to the Laplace terms with k ¼ 20.

The convergences of the values of the following integrals are assessed.

Plmns
ij ¼

ð1
�1

ð1
�1

Ts
ij x

0; x �; ηð Þ; s½ �Nm �ð ÞNn ηð ÞJl �; ηð Þd�dη

Qlmns
ij ¼

ð1
�1

ð1
�1

Us
ij x

0; x �; ηð Þ; s½ �Nm �ð ÞNn ηð ÞJl �; ηð Þd�dη

Plmnd
ij ¼

ð1
�1

ð1
�1

Td
ij x

0; x �; ηð Þ; s½ �Nm �ð ÞNn ηð ÞJl �; ηð Þd�dη

Qlmnd
ij ¼

ð1
�1

ð1
�1

Ud
ij x

0; x �; ηð Þ; s½ �Nm �ð ÞNn ηð ÞJl �; ηð Þd�dη (17)

Since Ts
ij and Us

ij contain singularities, both the regular and the singular
forms of Plmn

ij s and Qlmns
ij need to be considered. The general criterion for

determining the convergences of these integrals is given by (Rigby, 1995)

log10
max Ii � Ii�1j jð Þ
max Ii�1j jð Þ

� �
� �5 (18)

where I can be either one of the integrals in Equation (17), and the use of
the subscripts i and i� 1 indicates that the convergence studies are done in
iterations, in which the numbers of integration points are incremented.

When a singular integral is treated by the transformation of variable
technique, the location of singularity determines the number of triangular
elements to be divided into, the angles within these sub-divided elements,
and the number of integration points required for achieving convergence.
In Figure 5, the nodes in each of the element configurations that are under
investigation (when the aspect ratio of the element is 1:1) are separated
into groups based on their relative positions. For the sake of computational
efficiency, the number of integration points required for achieving
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convergence, when each of these groups of nodes act as the locations of
singularity, is to be found.

Mesh convergence study

Numerical methods such as the FEM and the BEM rely on the use of
discretised sub-domains for the approximation of variables. The accuracy
of approximation is highly dependent on the sizes of the elements used for
discretisation. For the current example, the solution of interest is the
z-direction displacement of the top surface of the specimen at where the
sinusoidal traction is applied.

1 2

3

1 2 3

4 5

6

4

5

5

6

1 2

3
4

5

5

6

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

1 2 3

1 2 3 1 2 3

4

5

5

6

1 2

3

1 2 3

4 5

6

1 2 3

4 5

6

Figure 5. Grouping of the nodes within (a) 16-node, (b) 25-node and (c) 36-node Lobatto
elements; (d) 16-node, (e) 25-node and (f) 36-node Chebyshev elements; (g) 16-node, (h) 25-
node and (i) 36-node Gauss–Legendre elements; and (j) 8-node serendipity elements.
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Although the solutions in time domain are the meaningful ones, the
mesh convergence studies are to be carried out on the solutions in the
Laplace domain in order to restrict the type of errors to only the spatial
one. Since the oscillation frequencies of the solutions also increase with
the imaginary parts of Laplace terms, the mesh convergence studies in
the current example should equally make use of the Laplace term
with k ¼ 20.

In the next section, the results of the mesh convergence studies and of
the convergence studies on numerical integration will be presented
together. For elastodynamic analysis by the BEM, the results of these two
sets of convergence studies are interrelated since they are both influenced
by element sizes.

The responses of the structure in the current example can be solved
analytically by (Eringen & Suhubi, 2013)

u x; tð Þ ¼ 1
ρc1

X1
n¼1

�1ð Þn�1 H t � 2n� 1ð ÞL� x
c1

� �ðt� 2n�1ð ÞL�x
c1

0
p τð Þdτ

"

�H t � 2n� 1ð ÞLþ x
c1

� �ðt�2 n�1ð ÞLþx
c1

0
p τð Þdτ

# (19)

where p is the applied traction, ρ is the density of the material and L is the
length of the structure in the direction of loading. The mesh convergence
of the Laplace domain solution of the BEM is assessed by the Laplace
transform of Equation (19) with the Laplace term with k ¼ 20.

Results

Convergence studies

The detailed results of the convergence studies on numerical integration
are given in Appendix B. The numbers of integration points required by
the integrals of the static fundamental solutions do not change with
element sizes. On the other hand, as an element becomes smaller, it
captures less oscillations periods of the dynamic functions, and therefore
less integration points are required by the respective integrals.

As shown in Figure 6, when a singular integral is treated by the
transformation of variable technique, if the location of singularity is too
close to an edge of an element, the angles formed at the location of
singularity in some of the sub-divided elements will be highly obtuse. In
a Gauss–Legendre element, when the singularity is located at Node Group
1, 2 or 3 (detailed in Figure 5), a significantly large number of integration
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points are needed. This is because these nodes are not on, but are extre-
mely close to, the edges of the element.

It is possible to avoid the formation of highly obtuse angles by sub-
dividing a quadrilateral element into more than four triangular ones (say
eight). However, it is unknown whether a noteworthy reduction in total
numbers of integration points will be achieved since more sub-divided
elements would need to be considered. Nevertheless, it will be shown in
this paper than even without further element sub-division, the use of
spectral elements has already managed to achieve a computational effi-
ciency that is substantially higher than that of the conventional BEM.

For each of the element configurations that are under investigation, the
converged element size is given in Table 1. The numbers of integration
points required for achieving convergence by both the regular and the
singular integrals can be found in Appendix B.

In Figures 7 and 8, the mesh convergences the 16-, the 25- and the 36-
node configurations of the three types of spectral elements are compared
among themselves and with that of the 8-node serendipity elements.
Convergences are assessed by the differences between the complex moduli

Highly obtuse angle

Highly obtuse angle

Figure 6. An example showing the highly obtuse angles formed at the point of singularity as
a result of element sub-division.

Table 1. Converged element sizes.
Element size (λL = 0.0509175 m)

16-Node Lobatto λL/5 × λL/5
25-Node Lobatto 2λL/7 × 2λL/7
36-Node Lobatto 2λL/5 × 2λL/5
16-Node Gauss–Legendre λL/4 × λL/4
25-Node Gauss–Legendre λL/3 × λL/3
36-Node Gauss–Legendre λL/2 × λL/2
16-Node Chebyshev λL/5 × λL/5
25-Node Chebyshev 2λL/7 × 2λL/7
36-Node Chebyshev 2λL/5 × 2λL/5
8-Node serendipity 2λL/19 × 2λL/19
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of the numerical and the analytic solutions. The length of the specimen is
normalised by the wavelength of the longitudinal wave mode.

The comparisons of the computational expenses, shown in Table 2, are
based on setting the convergence criterion of a difference of 1% between
the numerical and the analytic solutions – an acceptable level of accuracy
from an engineering perspective, and on computing 21 Laplace terms. The
in-house source code for each type of element was written in the same
structure and logic flow. The CPU times of the simulations with the
spectral elements are normalised by that of the simulation with the 8-
node serendipity elements. Normalised CPU times are shown here since
the absolute time needed for an analysis is highly dependent on the
processor used. Also, normalised values provide more direct visualisation
of the savings achieved.

(a) (b)

Error = 1% Error = 1%

(c) 

Error = 1%

Figure 7. Comparisons, by node configuration, of the mesh convergences of (a) Lobatto, (b)
Gauss–Legendre and (c) Chebyshev elements.

EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 217



Generally speaking, both the spectral and the 8-node serendipity ele-
ments are able to reach the same level of accuracy at convergence.
However, the spectral elements achieve mesh convergence much earlier.

(a) (b)

(c) 

Error = 1%

Figure 8. Comparisons, by type, of the mesh convergences of (a) 16-node, (b) 25-node and (c)
36-node spectral element configurations.

Table 2. Computational expenses of the spectral elements at convergence.
Number of nodes per

wavelength
Total number of

nodes
Normalised
CPU time

Improvement in CPU
time (%)

16-Node Lobatto 15.5 5402 0.728 27.2
25-Node Lobatto 14.5 4706 0.496 50.4
36-Node Lobatto 13 3752 0.309 69.1
16-Node Chebyshev 15.5 5402 0.729 27.1
25-Node Chebyshev 14.5 4706 0.500 50.0
36-Node Chebyshev 13 3752 0.314 68.6
16-Node Gauss–Legendre 16 6144 0.544 45.6
25-Node Gauss–Legendre 15 5400 0.442 55.8
36-Node Gauss–Legendre 12 3456 0.275 72.5
8-Node serendipity 19 6500 1 N/A
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As shown in Table 2, the improvement in computational efficiency,
brought forward by the use of spectral elements, is significant.

As illustrated in Figure 7, a general tendency that is observed for all
three types of spectral elements is that when the number of nodes in an
element increases, mesh convergence comes by earlier and computational
expense becomes smaller. This is in contrast to the behaviours of conven-
tional high-order elements with equally spaced nodes. The computation
with those elements tends to become unstable when the number of nodes
in an element reaches a certain level (Gottlieb & Orszag, 1977).

Among the three types of spectral elements considered, the mesh con-
vergence trends of Lobatto and Chebyshev elements are very similar, and
convergences are reached at the same numbers of nodes per element. Also,
the CPU times required by the simulations with these elements are highly
identical. When the number of nodes per element is 16 or 25, the simula-
tion with Gauss–Legendre elements demands the largest number of nodes
(i.e. more memory space) but the shortest CPU time. When the number of
nodes in an element reaches 36, the use of Gauss–Legendre elements
becomes the most efficient choice.

Furthermore, it is worth mentioning that the mesh convergence of the 36-
node Lobatto elements is on par with the finding by Kim et al. (2008) who
employed these elements in the SEM. Although the simulations in their work
were conducted in time domain, the frequency of the dynamic loading and the
time period of interest, which dictate mesh convergence, are the same as those
in the current example. The agreement in mesh convergence trends suggests
that when spectral elements are incorporated in the BEM, the amount of
improvement in computational efficiency that they ought to bring can also be
well realised. Since the BEM does not require domain discretisation, the
current formulation is meant to use even less memory space than the SEM.

Time-domain responses

In Figure 9, the time-domain displacements of the top surface of the speci-
men, computed by the BEM using all of the spectral element configurations
and the 8-node serendipity elements, are compared to the analytic solution.
Generally speaking, the numerical and the analytic solutions are in excep-
tional agreement. The divergence exhibited by the numerical solutions
towards the end of the time domain is due to the known limitation of
Durbin’s method for inverse Laplace transform (Durbin, 1974).

The scalability of the current formulation to large structures has also been
testified. For determining the numbers of elements to be used for meshing the
boundaries of structures, the rules set out in Table 3 were followed. The
specimens considered have different lengths in the direction of loading (i.e.
the z-direction) but the same cross-sectional area of 2λL × 2λL. The applied
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traction and the time period of interest are the same as those in the previous
example.

Through numerical simulations, it was observed that the percentage
saving in total number of nodes and CPU times, shown in Table 2, does
not change with the lengths of structures. This suggests that spectral

(a) (b)

(c)

Figure 9. Comparison of the analytic solution and the displacements computed by the BSEM
using (a) Lobatto, (b) Gauss–Legendre and (c) Chebyshev elements.

Table 3. Numbers of elements required for meshing two wavelengths of the
longitudinal wave mode (the frequency of the applied traction is 100 kHz and
the time period of interest is 0.0001 s).

Number of elements for 2λL
8-Node serendipity 19
16-Node Lobatto 10
25-Node Lobatto 7
36-Node Lobatto 5
16-Node Gauss–Legendre 8
25-Node Gauss–Legendre 6
36-Node Gauss–Legendre 4
16-Node Chebyshev 10
25-Node Chebyshev 7
36-Node Chebyshev 5
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elements are truly appropriate for the dynamic analysis of large engineer-
ing structures since the absolute amount of saving in computational
expenses increases with the sizes of structures. Also, when computational
resources are limited such that fully converged meshes cannot be afforded,
simulations with spectral elements will result in more accurate solutions.

Numerical experiments

In this section, the performance of the BSEM will be further assessed by
numerical experiments. In order to achieve a balance between computa-
tional efficiency and convenient numerical integration, 36-node Lobatto
elements were chosen to be used. Although 36-node Gauss–Legendre
elements require less computational resources, they are more difficult to
implement due the extremely large numbers of integration points needed
for evaluating singular integrals.

High-frequency applications

Two cubic specimens, which measure 3λL × 3λL × 3λL (λL = 0.0169725 m) and
4λL × 4λL × 4λL (λL = 0.0101835 m), were considered in the first numerical
experiment. The material properties of the specimens are the same as those of
the specimen used for the parametric studies. Both specimens are fixed in the
z-direction at their bottom surfaces and are subjected to a sinusoidal traction
with a peak amplitude of 1 GPa in the z-direction at their top surfaces. The
excitation frequencies are 300 and 500 kHz, respectively. For either specimen,
21 Laplace terms are needed for the simulation. The time periods of interest in
the simulations are 3.33 × 10−5 s and 2 × 10−5 s.

For both specimens, the comparisons of the mesh convergences of the
36-node Lobatto elements and the 8-node serendipity elements are shown
in Figure 10. The comparisons of the computational expenses of the
simulations with these elements are displayed in Table 4. As expected,
the spectral elements reach mesh convergence much more quickly. Also,
the fact that the numbers of nodes required per wavelength for achieving
convergence are very similar to those determined by the parametric studies
acts as a solid proof of the consistency of the BSEM.

A three-dimensional specimen

In the second numerical experiment, the capability of the BSEM in modelling
structures with realistic material properties will be examined. While the
Young’s modulus and the density of the specimen remain 2700 kg/m3 and
70 GPa, the Poisson’s ratio is now 0.33. The specimen, shown in Figure 11, is
subjected to the same applied load and boundary condition as Specimen 2 in
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the previous experiment was. It has a dimension of 0.02 m × 0.01 m × 0.01 m
(~2λL × λL × λL) and is discretised into 3, 3 and 6 elements of
0.00333 m × 0.00333 m in its x-, y- and z-direction. This is equivalent to
meshing each wavelength of the longitudinal wave mode by 19 nodes – a
number that is much higher than what is required for achieving convergence
as determined by the parametric studies. In the simulation, the time period of
interest is 2 × 10−5 s, and a total of 21 Laplace terms were considered.

In this experiment, the solutions of interest are the lateral and the
longitudinal displacement of the corner of the top surface of the specimen.
Since there is no analytic solution available for such a problem, the
solutions of the BSEM were validated by those of the FEM obtained
using Abaqus®/Explicit.

Error = 1%

(a) (b)

Error = 1%

Figure 10. Mesh convergences of the 36-node Lobatto elements and the 8-node serendipity
elements for the analysis of (a) Specimen 1 (3λL × 3λL × 3λL, 300 kHz) and (b) Specimen 2
(4λL × 4λL × 4λL, 500 kHz).

Table 4. Computational expenses of the analysis of (a) Specimen 1 and (b) Specimen 2.
Number of nodes per

wavelength
Total number of

nodes
Normalised CPU

time
Improvement in CPU

time (%)

36-Node
Lobatto

14 9062 0.439 56.1

8-Node
serendipity

19 14,114 1 N/A

(a)

Number of Nodes per
Wavelength

Total Number of
Nodes

Normalised CPU
Time

Improvement in CPU
Time (%)

36-Node
Lobatto

13 15,002 0.353 64.7

8-Node
serendipity

19 24,644 1 N/A

(b)
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In Figure 12, the comparisons of the results of the FEM and of the
BSEM with 36-node Lobatto elements are presented. The phases of the
responses are highly identical and the maximum difference between the
amplitudes is within 5%. Based on the reasonably high level of agreement,
it can be concluded that the BSEM formulated in this work is a valid
numerical tool for the analysis of three-dimensional elastic structures that
are subjected to high-frequency dynamic loadings.

The total numbers of nodes required for achieving convergence by the
BSEM with 36-node Lobatto elements and by the FEM with 8-node linear

Figure 11. Schematic diagram and boundary element mesh of the specimen used in the
second numerical experiment.

(a) (b)

Figure 12. (a) Lateral and (b) horizontal displacements of the corner of the top surface of the
specimen computed by the BSEM and the FEM.
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solid elements and explicit integration scheme are 2252 and 262,701, respec-
tively. Although this comparison is between two different types of elements, it
illustrates the amount of saving in computational costs that the BSEM has
managed to achieve over a widely used commercial FEM package.

Also, it is worth mentioning that the BSEM has been experimentally
validated through modelling the piezoelectric smart structures that are com-
monly used in damage detection applications (Zou & Aliabadi, 2017).

Conclusion

In this paper, an efficient and accurate numerical method for modelling
high-frequency wave propagation in three-dimensional engineering struc-
tures has been presented. By employing high-order spectral elements for
boundary discretisation, a significant reduction in the demand on compu-
tational resources has been achieved by the BSEM over the conventional
BEM. A systematic study on the implementation of spectral elements in
the BEM has been demonstrated. Due to the nature of BIEs, the imple-
mentation is not exactly straightforward.

Three types of spectral elements – Lobatto, Gauss–Legendre and
Chebyshev elements – with three different node configurations have been
considered. Among these, 36-node Lobatto elements provide the optimal
balance between convenient implementation and efficient computation.
Using these elements, numerical experiments have been conducted in
order to assess the capabilities of the BSEM in modelling high-frequency
applications and realistic engineering structures. The BSEM has also been
validated against a well-established FEM.
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Appendix A

The fundamental solutions in Equation (3) are given by Wen et al. (1998)
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Appendix B

Table B1. Numbers of integration points required by the integrals of the static fundamental
solutions for achieving convergence (the numbers of integration points do not change with
element sizes).

Plmn
S

ij ;QlmnS
ij

Singular (location of singularity)

Regular Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

16-Node Lobatto 8 × 8 8 × 8 12 × 12 14 × 14 N/A N/A N/A
25-Node Lobatto 8 × 8 8 × 8 14 × 14 10 × 10 18 × 18 22 × 22 10 × 10
36-Node Lobatto 8 × 8 8 × 8 16 × 16 10 × 10 22 × 22 28 × 28 14 × 14
16-Node Gauss–Legendre 8 × 8 28 × 28 46 × 46 14 × 14 N/A N/A N/A
25-Node Gauss–Legendre 8 × 8 34 × 34 62 × 62 62 × 62 16 × 16 18 × 18 10 × 10
36-Node Gauss–Legendre 8 × 8 40 × 40 76 × 76 94 × 94 18 × 18 22 × 22 12 × 12
16-Node Chebyshev 8 × 8 8 × 8 12 × 12 16 × 16 N/A N/A N/A
25-Node Chebyshev 8 × 8 8 × 8 14 × 14 10 × 10 20 × 20 24 × 24 10 × 10
36-Node Chebyshev 8 × 8 8 × 8 18 × 18 10 × 10 26 × 26 34 × 34 14 × 14
8-Node serendipity 6 × 6 8 × 8 10 × 10 N/A N/A N/A N/A

EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 227



Ta
bl
e
B2

.N
um

be
rs

of
in
te
gr
at
io
n
po

in
ts

re
qu

ire
d
by

th
e
in
te
gr
al
s
of

th
e
dy
na
m
ic
fu
nc
tio

ns
fo
r
ac
hi
ev
in
g
co
nv
er
ge
nc
e
(s
¼

5þ
2�

21
�π

i
10

�4
).

El
em

en
t
si
ze

(λ
L
=
0.
05
09
17
5
m
)

16
-N
od

e
Lo
ba
tt
o

25
-N
od

e
Lo
ba
tt
o

36
-N
od

e
Lo
ba
tt
o

16
-N
od

e
G
au
ss
–

Le
ge
nd

re
25
-N
od

e
G
au
ss
–

Le
ge
nd

re
36
-N
od

e
G
au
ss
–

Le
ge
nd

re
16
-N
od

e
Ch

eb
ys
he
v

25
-N
od

e
Ch

eb
ys
he
v

36
-N
od

e
Ch

eb
ys
he
v

8-
N
od

e
se
re
nd

ip
ity

λ L
×
λ L

16
×
16

2λ
L/
3
×
2λ

L/
3

12
×
12

12
×
12

12
×
12

12
×
12

12
×
12

12
×
12

λ L
/2

×
λ L
/2

12
×
12

12
×
12

12
×
12

12
×
12

12
×
12

12
×
12

12
×
12

2λ
L/
5
×
2λ

L/
5

10
×
10

10
×
10

10
×
10

10
×
10

10
×
10

12
×
12

10
×
10

10
×
10

10
×
10

10
×
10

λ L
/3

×
λ L
/3

10
×
10

10
×
10

10
×
10

10
×
10

10
×
10

10
×
10

10
×
10

10
×
10

10
×
10

10
×
10

2λ
L/
7
×
2λ

L/
7

10
×
10

10
×
10

10
×
10

10
×
10

10
×
10

10
×
10

10
×
10

10
×
10

10
×
10

8
×
8

λ L
/4

×
λ L
/4

8
×
8

10
×
10

10
×
10

10
×
10

10
×
10

8
×
8

10
×
10

10
×
10

8
×
8

2λ
L/
9
×
2λ

L/
9

8
×
8

10
×
10

10
×
10

8
×
8

10
×
10

8
×
8

λ L
/5

×
λ L
/5

8
×
8

10
×
10

10
×
10

8
×
8

10
×
10

8
×
8

2λ
L/
11

×
2λ

L/
11

8
×
8

10
×
10

8
×
8

8
×
8

λ L
/6

×
λ L
/6

8
×
8

10
×
10

8
×
8

8
×
8

2λ
L/
13

×
2λ

L/
13

8
×
8

λ L
/7

×
λ L
/7

8
×
8

2λ
L/
15

×
2λ

L/
15

8
×
8

λ L
/8

×
λ L
/8

8
×
8

2λ
L/
17

×
2λ

L/
17

8
×
8

λ L
/9

×
λ L
/9

8
×
8

2λ
L/
19

×
2λ

L/
19

8
×
8

λ L
/1
0
×
λ L
/1
0

8
×
8

228 F. ZOU AND M. H. ALIABADI


	Abstract
	Introduction
	Boundary spectral element method
	Boundary integral equation (BIE) in Laplace domain
	Boundary discretisation
	Lagrange polynomial-based approximation
	Chebyshev polynomial-based approximation
	Discretised BIE
	Treatment of singularities
	Linear system of equations
	Inverse Laplace transform

	Parametric studies
	Convergence study on numerical integration
	Mesh convergence study

	Results
	Convergence studies
	Time-domain responses

	Numerical experiments
	High-frequency applications
	A three-dimensional specimen

	Conclusion
	Disclosure statement
	ORCID
	References
	Appendix A
	Appendix B



