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ABSTRACT
This study investigates the free vibration of a moderately thick
rectangular plate, which is composed of functionally graded
materials and floating on incompressible fluid. Material prop-
erties are assumed to be graded in the thickness direction
according to a simple power law distribution in terms of the
volume fraction of the constituent. The governing equations of
the plate are analytically derived based on the first-order shear
deformation theory with consideration of rotational inertial
effects and transverse shear stresses. Applied pressure on the
free surface of the plate is obtained by the velocity potential
function together with Bernoulli’s equation. The equation
governing on the oscillatory behaviour of the fluid is obtained
by solving Laplace equation with satisfying the boundary
conditions. The natural frequencies and shape modes of the
rectangular plate are determined by decoupling and solving
the motion equations system. Then, analyses of the numerical
results of free vibrations and the effects of the different para-
meters such as thickness to length of the plate, boundary
conditions, fluid density, index of volume fraction and the
height of the fluid on the frequencies are investigated.
Finally, the results of this research in limit case is compared
and validated with the results of other researchers and finite
element model.
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1 Introduction

The plates are the resistant structures which use extensively in industries.
Evaluation of the plate dynamic characteristics is a practical engineering
problem and has attracted the attention of many researches (Hejripour &
Saidi, 2012). Fluid–structure interaction problems can be found in many
engineering fields, and hydro-elastic characteristics of plates coupled with
fluid are important in various engineering applications such as in nuclear
engineering, liquid storage tanks, reactor internal components and solar plates
and offshore naval or marine structures. Thus, a good understanding of the
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dynamic interactions between an elastic plate and fluid is necessary
(Hasheminejad, Khaani, & Shakeri, 2013). It is generally well known that
the natural frequencies of structures coupled with fluid are different from
those in air (Kerboua, Lakis, Thomas, & Marcouiller, 2008). During the past
decades, different approximate solutions have been presented by investigators
to predict the natural frequencies of structures coupled with fluid. There have
been many theoretical and experimental studies devoted to vibration analysis
of plates coupled with fluid. Hosseini-Hashemi et al. studied free vibration of
functionally graded (FG) rectangular plate using the first-order shear defor-
mation plate theory. They presented analytical solution for vibration of FG
plate on Winkler elastic foundation (Hosseini-Hashemi, Taher, Akhavan, &
Omidi, 2010). Uğurlu et al. studied the dynamic behaviour of rectangular
plates mounted on an elastic foundation and in partial contact with a quies-
cent fluid. They employed the mixed-type finite element formulation to
present the natural frequencies and associated mode shapes of the plate
(Uğurlu, Kutlu, Ergin, & Omurtag, 2008). Allahverdizadeh et al. developed a
semi-analytical approach for nonlinear free and forced axisymmetric vibra-
tion of thin circular FG plate. They solved the governing equations of plate by
using assumed-time-mode and Kantrovich method for harmonic vibrations
(Allahverdizadeh, Naei, & Bahrami, 2008). The natural frequencies of annular
plates coupled with a fluid on one side were theoretically obtained by Amabili
et al. using the added-mass approach, whereas the coupled fluid-structure
system was solved by adopting the Hankel transform (Amabili, Frosali, &
Kwak, 1996). Triverdilo et al. derived added mass and frequencies for asym-
metric free vibration of coupled system including clamped circular plate
coupled with incompressible bounded fluid. They used two approaches to
derive the free vibration frequencies of the system (Tariverdilo, Shahmardani,
Mirzapour, & Shabani, 2013). Jeong dealt with the free vibration of two
identical circular plates coupled with a bounded or unbounded fluid. He
suggested an analytical method based on the finite Fourier–Bessel expansion
and Rayleigh–Ritz method. Also, the effect of gap between the plates on the
fluid-coupled natural frequencies is investigated (Jeong, 2003). Khorshidi and
Bakhsheshi analysed the free natural frequencies of an FG composite rectan-
gular plate coupled with fluid in two directions. They calculated the natural
frequencies of the plate coupled with sloshing fluid modes using Rayleigh–
Ritz method and based on minimising the Rayleigh quotient (Khorshidi &
Bakhsheshy, 2014). Dong investigated three-dimensional free vibrations of
FG annular plates with different boundary conditions using the Chebyshev–
Ritz method by choosing a set of duplicate Chebyshev polynomial series
multiplied by the boundary function satisfying the boundary conditions
(Dong, 2008). Kwak analysed the virtual mass effect due to the presence of
water on the natural frequencies of circular plates. He obtained the non-
dimensional added virtual mass incremental factors by employing the integral
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transformation technique in conjunction with the Fourier–Bessel series
approach (Kwak, 1997). More recently, Jeong et al. developed a theoretical
Reyleih–Ritz–based method to estimate the coupled natural frequencies of a
vertical clamped circular plate partially coupled with an ideal incompressible
liquid (Jeong, Lee, & Kim, 2009). Hosseini-Hashemi et al. analysed the free
vibration analysis of a horizontal rectangular plate, either immersed in fluid or
floating on its free surface. The governing equations for a moderately thick
rectangular plate analytically were derived based on the Mindlin’s plate
theory, whereas the velocity potential function and Bernoulli’s equation
were employed to obtain the fluid pressure applied on the free surface of the
plate. In this work, an exact closed-form characteristic equation was used for
the plate subjected to a combination of six different boundary conditions
(Hosseini-Hashemi, Karimi, & Rokni, 2012).

A new class of materials knew as functionally graded material (FGM)
has been introduced in which the material properties vary continuously in
one or more directions according to the specific profile. The development
of analytic solutions to identify the dynamic characteristic of FG plates
coupled with fluid is a challenge task. The above review clearly indicates
that while there exists a notable body of literature on the free vibrational
characteristics of fluid-coupled homogeneous plates, there seem to be no
rigorous theoretical or numerical solutions describing free vibrations of
fluid-coupled FG plates. This paper presents a theory to calculate the
natural frequencies of a circular FG plate partially contacting bounded
fluid, using Reyleih–Ritz method. In the developed model, the first-order
shear deformation theory is used to obtain the kinetic and strain energies
of the plate. Wet dynamic transverse displacement of the plate is approxi-
mated by a set of admissible trial functions which is required to satisfy the
boundary conditions. The equations governing the oscillatory behaviour of
fluid are obtained by solving Laplace equation with satisfying boundary
conditions. The natural frequencies and mode shapes of the coupled fluid
modes are calculated by using Chebyshev–Ritz method based on minimis-
ing the Rayleigh quotient. The proposed analytical method is verified by
comparing the results obtained by finite element analysis. Finally, the
influence of boundary conditions, plate and tank dimensions, fluid density
and depth on frequencies is discussed in details.

2 Formulation

2.1 Formulation for rectangular plate

Figure 1 shows a flat and moderately thick FG rectangular plate partially
coupled with incompressible fluid. a, b and h represent the length, width
and thickness of the rectangular plate, respectively, and h1 refers to depth
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of the fluid. The Cartesian coordinate system x1; x2; x3ð Þ is considered to
extract mathematical formulations when x1 and x2 axes are located in the
undeformed mid-plane of the plate.

The displacement along the x1 and x2 axes is denoted by U1 and U2,
respectively, and the displacement in the direction perpendicular to the
undeformed mid-plane x3 is denoted by U3. According to Mindlin’s plate
theory in Cartesian coordinate x1; x2; x3ð Þ, the displacement components
are assumed to be given by (Hashemi, Karimi, & Taher, 2010):

U1 ¼ �x3ψ1 x1; x2; tð Þ
U2 ¼ �x3ψ2 x1; x2; tð Þ
U3 ¼ ψ3 x1; x2; tð Þ

(1)

where ψ1 and ψ2 are the rotational displacements about the x1 and x2 axes
at the midsurface, respectively, ψ3 is the transverse displacement and t is
the time variable. Under the assumption of small deformation and linear
strain–displacement relations, the strain components of the FG rectangular
plate can be expressed as:

ε11 ¼ @U1

@x1
¼ �x3ψ1;1

ε22 ¼ @U2

@x2
¼ �x3ψ2;2

ε33 ¼ @U3

@x3
¼ 0

ε12 ¼ 1
2

@U1

@x2
þ @U2

@x1

� �
¼ � 1

2
ψ1;2 þ ψ2;1

� �
x3

ε13 ¼ 1
2

@U1

@x3
þ @U3

@x1

� �
¼ � 1

2
ψ1 � ψ3;1

� �

ε23 ¼ 1
2

@U3

@x2
þ @U2

@x3

� �
¼ � 1

2
ψ2 � ψ3;2

� �

(2)

Figure 1. Rectangular plate coupled with cubic fluid with coordinate convection.
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Considering the plane stress state for FG plate, the stresses are defined as
follows:

σ11 ¼ E x3ð Þ
1�ν2 ε11 þ νε22ð Þ

σ22 ¼ E x3ð Þ
1�ν2 ε22 þ νε11ð Þ

σ12 ¼ E x3ð Þ
2 1þνð Þ 2ε12ð Þ

σ23 ¼ E x3ð Þ
2 1þνð Þ 2ε23ð Þ

σ13 ¼ E x3ð Þ
2 1þνð Þ 2ε13ð Þ

(3)

where ν is Poisson’s ratio and is considered to be constant and E x3ð Þ is
Young’s modulus and is assumed to vary continuously throughout the
thickness of the FG plate in x3-direction. According to the power law
function, E x3ð Þ is written as below (Jomehzadeh, Saidi, & Atashipour, 2009):

E x3ð Þ ¼ Em þ Ec � Emð Þ 1
2
� x3

h

� �p

(4)

in which p is the power law index that takes values greater than or equal to
zero. The subscripts m and c refer to the metal and ceramic, respectively.
Note that the variation of both continuous of ceramic and metal is linear
when p ¼ 1. Moreover, for the value of p ¼ 0, a fully ceramic plate is
intended. Based on the strain–displacement relations given in Equation (2)
and assuming a stress distribution in accordance with Hook’s law, the
resultant bending moments, twisting moments and the transverse shear
forces, all per unit length in terms of ψ1, ψ2 and ψ3, are obtained by
integrating the stresses and moment of the stresses through the thickness
of the plate. These are given by:

M11 ¼
ðh=2
�h=2

σ11x3dx3 ¼ �D ψ1;1 þ vψ2;2

� �

M22 ¼
ðh=2
�h=2

σ22x3dx3 ¼ �D ψ2;2 þ vψ1;1

� �

M12 ¼
ðh=2
�h=2

σ12x3dx3 ¼ �D 1� vð Þ
2

ψ1;2 þ ψ2;1

� �

Q1 ¼
ðh=2
�h=2

σ13dx3 ¼ �A 1� vð Þκ2
2

ψ1 � ψ3;1

� �

Q2 ¼
ðh=2
�h=2

σ23dx3 ¼ �A 1� vð Þκ2
2

ψ2 � ψ3;2

� �

(5)

in which κ2 is the transverse shear correction coefficient, applied to the
transverse shear forces due to the fact that the transverse shear strains (ε13
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and ε23) have a nearly parabolic dependency to the thickness coordinate
and it is assumed to be π2=12. Also, the parameters A, B and D are defined
in the following form:

A;B;Dð Þ ¼
ðh=2

�h=2

E x3ð Þ
1� v2

1; x3; x3
2

� �
dx3 (6)

According to Navier–Stokes equation, the governing equations of the
rectangular plate motion in Cartesian coordinate system can be given:

@
@x1

σ11 þ @
@x2

σ12 þ @
@x3

σ13 ¼ ρ x3ð Þ @2U1
@t2

@
@x1

σ21 þ @
@x2

σ22 þ @
@x3

σ23 ¼ ρ x3ð Þ @2U2
@t2

@
@x1

σ31 þ @
@x2

σ32 þ @
@x3

σ33 ¼ ρ x3ð Þ @2U3
@t2

(7)

Multiplying the first and second equations to x3dx3 and third equation to
dx3, integrating through the thickness of the plate and using Equation (5),
the following equations are obtained:

M11;1 þM12;2 � Q1 ¼ �I3ψ1
M12;1 þM22;2 � Q2 ¼ �I3ψ2
Q1;1 þ Q2;2 � P ¼ I1ψ3

(8)

In the above equations, a dot above each parameter denotes partial differ-
entiation with respect to time variable t and Ii i ¼ 1; 2; 3ð Þ are inertia terms
which are defined as:

I1; I2; I3 ¼
ðh=2

�h=2

ρ x3ð Þ 1; x3; x3
2

� �
dx3 (9)

where ρ x3ð Þ is the density of FG plate which is assumed to vary through
the thickness of the plate in x3-direction by power law function as below:

ρ x3ð Þ ¼ ρm þ ρc � ρm
� � 1

2
� x3

h

� �p

(10)

Since the dynamic pressure of the fluid is perpendicular to the plate
surface, it appears only in x3-direction as an applied load P in Equation
(8) and can be expressed as:

P ¼ m� @
2U3

@t2
¼ m� ψ3 (11)
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in which m�, calculated in Section 2.2, is the added mass (AD) and
dependent on fluid modelling and fluid–plate conditions.

Substituting the resultant forces and moments obtained from Equations
(5) into Equation (8), the governing equations of motion for an FG
rectangular plate are obtained as:

D 1� vð Þ
2

�2ψ1 þ
D 1þ vð Þ

2
ψ1;1 þ ψ2;2

� �
;1
� Aκ2 1� vð Þ

2
ψ1 � ψ3;1

� �
¼ I3ψ

1

D 1� vð Þ
2

�2ψ2 þ
D 1þ vð Þ

2
ψ1;1 þ ψ2;2

� �
;2
� Aκ2 1� vð Þ

2
ψ2 � ψ3;2

� �
¼ I3ψ

2

Aκ2 1� vð Þ
2

�2ψ3 � ψ1;1 þ ψ2;2

� �h i
¼ I1 þm�ð Þψ3 (12)

For coding and derivational convenience, the following non-dimensional
parameters are introduced:

X1 ¼ x1
a ; X2 ¼ x2

b ; η ¼ a
b ; δ ¼ h

a

β1 ¼ ω
ffiffiffi
I3
A

q
; β2 ¼ aω

ffiffiffi
I1
A

q
; δ2 ¼ D

Aa2

γ ¼ m�
I1h

(13)

in which β1 and β2 are named the eigenfrequency parameters. For a
harmonic solution, the rotational and transverse displacements are
assumed to be:

~ψ1 X1;X2ð Þ ¼ ψ1 x1; x2; tð Þe�iωt

~ψ2 X1;X2ð Þ ¼ ψ2 x1; x2; tð Þe�iωt

~ψ3 X1;X2ð Þ ¼ 1
a
ψ3 x1; x2; tð Þe�iωt

(14)

where ω denotes the natural frequency of vibration in radians and
i ¼ ffiffiffiffiffiffiffi�1

p
. Note that each parameter, having the over-bar, is dimensionless.

Substituting Equations (13) and (14) into the governing Equation (12)
yields:

~ψ1;11 þ η2~ψ1;22 þ
ν2
ν1

~ψ1;11 þ η~ψ2;12

� �
� Aκ2a2

D
~ψ1 � ~ψ3;1

� �
þ I3a2ω2

Dν1
~ψ1 ¼ 0

~ψ2;11 þ η2~ψ2;22 þ
ν2
ν1

η ~ψ1;12 þ η~ψ2;22

� �
� Aκ2a2

D
~ψ2 � η~ψ3;2

� �
þ I3a2ω2

Dν1
~ψ2 ¼ 0

~ψ3;11 þ η2~ψ3;22 � ~ψ1;1 þ η~ψ2;2

� �
� 1þ γð Þ β22

κ2ν1
~ψ3 ¼ 0

(15)
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in which, ν1 ¼ 1�ν
2 and ν2 ¼ 1þν

2 .
The boundary conditions along the edges of the rectangular plate are

defined in Table 1.
Equation (15) is the three coupled partial differential equations in terms

of in-plane displacements, rotation functions and transverse displace-
ments. For solving these equations analytically, it is desirable to find a
method for decoupling them. Using the following analytical method, these
governing equations will be decoupled. The general solution to Equation
(14) in terms of the three dimensionless potential functions W1, W2 and
W3 may be expressed as (Hosseini-Hashemi et al., 2012):

~ψ1 ¼ c1W1;1 þ c2W2;1 � ηW3;2

~ψ2 ¼ c1ηW1;2 þ c2ηW2;2 þW3;1

~ψ3 ¼ W1 þW2

(16)

where:

c1 ¼ 1� α22
ν1α23

c2 ¼ 1� α21
ν1α23

(17)

in which α21, α
2
2 and α23 are the coefficients that may be determined using

equations of motion and can be given after mathematical manipulation by:

α21 ¼
β21
δ2

� β22 1þ γð Þ
k2ν1

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β21
δ2

þ β22 1þ γð Þ
k2ν1

� �2

� β22 1þ γð Þ
δ2

s

α22 ¼
β21
δ2

� β22 1þ γð Þ
k2ν1

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β21
δ2

þ β22 1þ γð Þ
k2ν1

� �2

� β22 1þ γð Þ
δ2

s

α23 ¼ � 1þ γð Þ k2

δ2
� β22
k2ν1

� �
(18)

Equation (15) can be restated in terms of the three dimensionless poten-
tials as follows:

W1;11 þ η2W1;22 ¼ �α21W1

W2;11 þ η2W2;22 ¼ �α22W2

W3;11 þ η2W3;22 ¼ �α23W3

(19)

One set of solutions to Equation (19) is taken as:

Table 1. Different boundary conditions of rectangular plate.
Edges
X1 ¼ 0 and X1 ¼ 1

Edges
X2 ¼ 0 and X2 ¼ 1

Simply supported �M11 ¼ ~ψ2 ¼ ~ψ3 ¼ 0 Free edge: �M22 ¼ �M12 ¼ �Q2 ¼ 0
Simply supported: �M22 ¼ ~ψ1 ¼ ~ψ3 ¼ 0
Clamped edge: ~ψ1 ¼ ~ψ2 ¼ ~ψ3 ¼ 0
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W1 ¼ A1 sin λ1X2ð Þ þ A2 cos λ1X2ð Þ½ � sin μ1X1
� �

þ A3 sin λ1X2ð Þ þ A4 cos λ1X2ð Þ½ � sin μ1X1
� �

W2 ¼ A5 sinh λ2X2ð Þ þ A6 cosh λ2X2ð Þ½ � sin μ2X1
� �

þ A7 sin λ2X2ð Þ þ A8 cos λ2X2ð Þ½ � sin μ2X1
� �

W3 ¼ A9 sinh λ3X2ð Þ þ A10 cosh λ3X2ð Þ½ � cos μ3X1
� �

þ A11 sin λ3X2ð Þ þ A12 cos λ3X2ð Þ½ � cos μ3X1
� �

(20)

In above equations, λj and μj are related to αj by following relationships:

α21 ¼ μ21 þ η2λ21

α22 ¼ μ22 � η2λ22

α23 ¼ μ23 � η2λ23

(21)

On the assumption of simply supported conditions at edges X1 ¼ 0 and
X1 ¼ 1, Equation (20) is given by:

W1 ¼ A1 sin λ1X2ð Þ þ A2 cos λ1X2ð Þ½ � sin μ1X1
� �

W2 ¼ A5 sinh λ2X2ð Þ þ A6 cosh λ2X2ð Þ½ � sin μ2X1
� �

W3 ¼ A9 sinh λ3X2ð Þ þ A10 cosh λ3X2ð Þ½ � cos μ3X1
� � (22)

in which μ1 ¼ μ2 ¼ μ3 ¼ mπ m ¼ 1; 2; . . .ð Þ
Introducing Equation (22) in Equation (16) and substituting the results into

the appropriate boundary conditions along the edges X2 ¼ 0 and 1 lead to six
homogenous equations. To obtain non-trivial solution of these equations, the
determinant of coefficient matrix must be zero, which yields characteristic
equations for rectangular Mindlin’s FG plates with six combinations of
boundary conditions, namely SSSS, SSSC, SCSC, SSSF, SFSF and SCSF.

2.2 Formulation for fluid motion

Generally, the fluid pressure acting upon the structure is expressed as a
function of acceleration. The fluid force matrices are superimposed onto
the structural matrices to form the dynamic equations of a coupled fluid-
structure system. Linear potential flow is applied to describe the fluid effect
that leads to the fluid dynamic forces. The mathematical model is based on
the following assumptions: (i) the fluid flow is potential; (ii) vibration is
linear; (iii) since the flow is inviscid, there is no shear, and the fluid
pressure is purely normal to the plate wall; and (v) the fluid is incompres-
sible. Based on the aforementioned hypothesis, the potential function,
which satisfies the Laplace equation, is expressed in the Cartesian coordi-
nate system as (Myung & Young, 2003):
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�2Φ ¼ @2Φ

@x21
þ @2Φ

@x22
þ @2Φ

@x23
¼ 0 (23)

where Φ is the potential flow function. Using Bernoulli’s equation, the
fluid pressure at the solid–fluid interface may be expressed as:

pL ¼ pjx3¼�h
2
¼ �ρf

@

@t
jx3¼�h

2
(24)

where ρf is the fluid density. The dynamic displacement of the fluid normal to
the plate must coincide with that of the plate to satisfy the continuity require-
ment. This condition implies a permanent contact between the plate surface
and the peripheral fluid layer. So, compatibility condition between plate and
the fluid becomes:

@ϕ
@x3

� �
x3¼�h

2

¼ @U3

@t
(25)

The following separate variable relation is assumed for the potential
velocity function:

ϕ x1; x2; x3; tð Þ ¼ F x3ð ÞG x1; x2; tÞð (26)

where F x3ð Þ and G x1; x2; tð Þ are two separate functions to be determined.
Using Equations (24) and (25) and introducing Equation (26) into

Equation (25), the potential velocity on the bottom surface of the plate is
obtained as follows:

Φ x1; x2; x3; Þð ¼ F x3ð Þ
dF
dx3

jx3¼�h
2

@U3

@t
(27)

Substituting Equation (27) into relation (23) leads to the following differ-
ential equation of second order:

d2F x3ð Þ
dx32

� μf
2F x3ð Þ ¼ 0 (28)

in which μf is a plane wave number, which is determined by the vibrating

frequency of the plate in contact with fluid and fluid boundary conditions in

the x1 and x2 directions as μf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ21 þ μ22

p
(Myung & Young, 2003). Kerboua

et al. (2008) used a simple form of μf ¼ π=að Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

p
for all boundary

conditions. Though the value of μf varies for various boundary conditions,

they ignored the effect of boundary conditions on the μf . In addition, the wave

number presented in Kerboua et al. (2008) is independent of air frequency
and is constant when mode number changes. In this study, the wave number
parameter proposed in Haddara and Cao (1996) is modified using Mindlin’s
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plate parameters. It is worthwhile to mention that when higher degrees of
edge constraint are applied to the other two edges of the rectangular plate (in
the order from free to simply supported to clamped), the variation of the μf is
more tangible (e.g., from SFSF to SCSC).

The following wave number parameters are introduced when at least
one of the rectangular plate edges can freely vibrate (i.e. SFSF, SCSF and
SSSF):

μ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 � nπ

a

� �2
r

; μ2 ¼
2π
L

(29)

where:

α2 ¼ βa
2

2a2
β21
δ2

� β22
k2υ1

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β21
δ2

þ β22
k2υ1

� �2

� β22
δ2

s2
4

3
5 (30)

In the above equations, L is width of tank and βa is dimensionless frequency
parameter in vacuum. For other three boundary conditions (i.e. SSSS, SCSC
and SSSC), μ2 in Equation (29) is replaced with μ2 ¼ mπ=a, while μ1 will
remain unchanged. Note that when μ1 takes a complex value, �μ1 must be used

instead of that as �μ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�α2 þ nπ

a

� �2q
.

The general solution of Equation (28) is given as:

F x3ð Þ ¼ B1e
μf x3 þ B2e

�μf x3 (31)

where B1 and B2 are two unknown constants. Substituting Equation (29)
into Equation (27), one gets the following expression for the potential
function:

Φðx1; x2; x3; Þ ¼ B1e
μf x3 þ B2e

�μf x3

dF
dx3

jx3¼�h
2

@U3

@t
(32)

The boundary conditions on the rigid bottom assure the zero velocity:

@

@x3
jx3¼�h1�h

2
¼ 0 (33)

Introducing Equation (32) into Equation (33), the potential function is
obtained as follows:

Φ ¼ eμf x3 þ c1e
�μf x3

μf e�μf
h
2 � c1e

μf
h
2

� � @U3

@t
(34)
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where:

c1 ¼ e�2μf ðh1þh
2Þ (35)

By inserting Equation (34) into Equation (24), the pressure acting upon the
bottom surface of the plate can be expressed as:

pL ¼ � ρf
μf

1þ c1e
μf h

1� c1e
μf h

" #
@2U3

@t2
¼ m� @

2U3

@t2
(36)

3 Results and discussion

In order to validate the present method, first the numerical results of non-
dimensional frequency parameter �ω ¼ ω b2=hð Þ ffiffiffiffiffiffiffiffi

ρ=E
p

are compared with
the results of Hosseini-Hashemi et al. (2012) for homogeneous and iso-
tropic rectangular plate in Table 1 with SSSS boundary condition and
square plate coupled with cubic volume of fluid (δ ¼ 0:05 and η ¼ 1).
Also, the finite element model of FG rectangular plate coupled with fluid
has been analysed with η ¼ 2, δ ¼ 0:05, h1=a ¼ 0:4 and ν ¼ 0:3. The non-
dimensional frequency parameter β ¼ ωa

ffiffiffiffiffiffiffiffiffiffiffi
ρc=Ec

p
for the FG rectangular

plates with various boundary conditions is compared with results of FEM
in Table 3. It can be found from Tables 2 and 3 that the present results are
in good agreement with those of Hosseini-Hashemi et al. (2012) and with
the FEM results. It is necessary to mention that values of wave number μf
have a remarkable effect on added mass m� in Equation (36). This para-
meter is constant and it is depend on problem conditions. It seems that the
differences between results in Table 2 are related to choosing of this
parameter.

Table 2. Comparison of the first six frequency parameters �ω ¼ ω b2=hð Þ ffiffiffiffiffiffiffi
ρ=E

p
for a homo-

geneous square plate coupled with cubic volume of fluid with Hosseini-Hashemi et al. (2012).
B.C. Method β1 β2 β3 β4 β5 β6
SSSS Hosseini-Hashemi et al. (2012) 11.620 38.681 38.681 65.477 75.877 78.502

Present 11.980 40.106 40.106 67.414 80.102 83.254

Table 3. Comparison of the first six frequency parameters β ¼ ωa
ffiffiffiffiffiffiffiffiffiffi
ρc=Ec

p
for an FG square

plate coupled with cubic volume of fluid with FE model.
B.C. Method β1 β2 β3 β4 β5 β6
SSSS Present 1.13 1.80 2.91 3.79 4.38 5.80

FEM 1.16 1.84 3.37 4.26 4.46 6.50
SCSC Present 2.61 6.13 4.91 8.30 12.91 18.93

FEM 2.66 6.23 5.44 9.20 14.32 20.05
SFSF Present 1.06 1.76 3.99 4.24 4.95 7.54

FEM 1.08 1.81 4.34 4.76 5.84 8.50
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For numerical results, an FGM composed of aluminium (as metal) and
alumina (as ceramic) is considered. The mechanical properties of plate are:
Young’s modulus and density of aluminium Em ¼ 70 GPa, ρm ¼
2700 kg=m3 and Young’s modulus and density of ceramic are ceramic
Ec ¼ 380GPa, ρc ¼ 4500 kg=m3. The Poisson’s ratio of the plate is assumed
to be constant through the thickness and equal to 0.3, and the density of
the fluid is assumed to be 1000 kg=m3.

The first four non-dimensional frequencies β ¼ ωa
ffiffiffiffiffiffiffiffiffiffiffi
ρc=Ec

p
are shown

for three boundary conditions SSSS, SCSC and SFSF, respectively, in
Tables 4–6 for different power law index (p) and thickness/length ratio
h=a. Other parameters are assumed to be η ¼ 1, h1=a ¼ 0:4 and ν ¼ 0:3.

It can be seen that for all boundary conditions, the natural frequencies
decrease by increasing the ratio thickness to length h=a. Also, by increasing
the power law index p, the natural frequencies decrease.

In Figure 2, the variation of the non-dimensional frequency parameter β
against the thickness to length ratio δ for the various boundary conditions
of the plate is plotted. It is seen from Figure 2 that with the increase of the
thickness to length ratio δ, the non-dimensional frequency parameter β
generally decreases for any boundary conditions of the plate. Moreover,
decreasing of β for boundary condition SCSC is greater than other two
boundary conditions.

The variation of the non-dimensional frequency parameter β versus the
thickness to length ratio δ is presented for some values of h1=a, p ¼ 2 and
η ¼ 2 (Fig. 3). It can obviously be seen that the non-dimensional frequency
parameter β initially increases when the thickness to length ratio δ varies
between 0.05 and 0.1 and then decreases when δ > 0:1.

The effect of the length to width ratio of the plate η on the non-
dimensional frequency parameter β is shown in Figure 4 for different
values of power law index p, h1=a ¼ 0:4 and δ ¼ 0:02. It can be observed

Table 4. First four frequency parameters β of SSSS FG square plate coupled with cubic volume
of fluid for different values of h=a and p.

h=a
Frequency
parameter

Power law index (p)

0 0.5 1 2 5

0.05 β1 3.4409 2.9322 2.6473 2.4017 2.2528
β2 5.2802 4.5122 4.0773 3.6953 3.4492
β3 8.0710 6.9231 6.2636 5.6695 5.2579
β4 9.7416 8.6926 7.8711 7.1189 6.5749

0.1 β1 3.6518 3.0983 2.7937 2.5386 2.3998
β2 5.7693 4.8997 4.4192 4.0142 3.7881
β3 9.1876 7.8145 7.0512 6.4015 6.0247
β4 11.831 10.074 9.0928 8.2515 7.7505

0.2 β1 3.7123 3.1456 2.8352 2.5777 2.4425
β2 5.9198 5.0175 4.5228 4.115 3.8939
β3 9.5668 8.1121 7.3132 6.6471 6.2903
β4 12.456 10.566 9.5261 8.6572 8.1875
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that the non-dimensional frequency parameter β decreases by increasing η
for all values of p.

The influence of the aspect ratio length to width of the plate η on the
non-dimensional frequency parameter β for constant value of thickness/
length ratio (δ ¼ 0:02) and power law index (p ¼ 2) of rectangular plate
coupled with cubic fluid is presented in Figure 5. It is observed that by
increasing the aspect ratio η, the non-dimensional frequency parameter
increases for boundary conditions SCSC and SSSS and decreases for
boundary condition SFSF. It can also be inferred from Figure 5 that
increasing of the non-dimensional frequency parameter for boundary
condition SCSC is greater than that for SSSS.

In order to study the effects of the fluid density on the vibrational
behaviour of the rectangular FG plate coupled with fluid, the non-dimen-
sional frequencies are listed for boundary condition SFSF in Table 7 with
p ¼ 2, h1=a ¼ 0:4 and η ¼ 2. As expected, it can be found that by increas-
ing the fluid density, the non-dimensional frequency parameter β
decreases.

Table 5. First four frequency parameters β ¼ ωa2
ffiffiffiffiffiffiffiffiffiffi
ρc=Ec

p
=h of SCSC FG square plate coupled

with cubic volume of fluid for different values of h=a and p.

h=a
Frequency
parameter

Power law index (p)

0 0.5 1 2 5

0.05 β1 6.7663 5.8409 5.3039 4.8032 4.4127
β2 12.060 10.420 9.4561 8.5466 7.8331
β3 13.501 11.758 10.712 9.6759 8.7548
β4 17.718 15.423 14.040 12.670 11.473

0.1 β1 8.0702 6.8847 6.2222 5.6494 5.2930
β2 14.862 12.693 11.472 10.405 9.7255
β3 17.918 15.371 13.921 12.621 11.714
β4 23.850 20.475 18.543 16.799 15.566

0.2 β1 8.5674 7.2715 6.5585 5.9612 5.6332
β2 16.065 13.642 15.390 11.181 10.555
β3 20.050 17.051 12.305 13.981 13.167
β4 27.100 23.060 20.816 18.904 17.785

Table 6. First four frequency parameters β of SFSF FG square plate coupled with cubic volume
of fluid for different values of h=a and p.

h=a
Frequency
parameters

Power law index (p)

0 0.5 1 2 5

0.05 β1 2.7184 2.5672 2.5096 2.5006 2.4429
β2 4.2650 4.0376 3.9474 3.9260 3.8764
β3 8.8171 8.3769 8.1902 8.1217 8.0770
β4 9.4629 8.9983 8.8020 8.7282 8.6752

0.1 β1 2.8569 2.6905 2.6296 2.6253 2.5820
β2 4.6570 4.3908 4.2915 4.2811 4.1656
β3 10.246 9.6764 9.4582 9.4233 9.3830
β4 11.002 10.390 10.157 10.121 10.092

0.2 β1 2.8977 2.7268 2.6648 2.6620 2.5233
β2 4.7986 4.5176 4.4150 4.4090 4.3071
β3 10.809 10.182 9.9505 9.9330 9.145
β4 11.561 10.888 10.641 10.624 10.553
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4 Conclusions

The aim of this paper is to present an analytical solution for the free
vibration analysis of moderately thick FG rectangular plate coupled with
incompressible fluid. The governing equations of motion have been derived
based on the first-order shear deformation plate theory, and the equation
governing on the oscillatory behaviour of fluid has been obtained by solving
Laplace equation with satisfying boundary conditions. These equations are
five highly coupled partial differential equations that have been decoupled
by some mathematical manipulations. The decoupled equations have been
solved analytically for the FG rectangular plate with various boundary
conditions in edges. By solving the governing equations on fluid–plate
interactions and satisfying the boundary conditions in edges, the natural

Figure 2. The non-dimensional frequency parameter β versus the thickness to length ratio δ
for the three boundary conditions of the FG rectangular plate when p ¼ 2, h1=a ¼ 0:4 and
η ¼ 2.

Figure 3. The non-dimensional frequency parameter β versus the thickness to length ratio δ
for SCSF FG rectangular plate when p ¼ 2 and η ¼ 2.
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frequencies of plate have been obtained in various cases. The natural fre-
quencies of the rectangular plate for different boundary conditions with
several aspect ratios, different thickness/length ratios and some power law
indices have been tabulated. The following conclusions can be remarked:

Figure 4. The non-dimensional frequency parameter β versus the length to width ratio η for
SCSF FG rectangular plate when h1=a ¼ 0:4 and δ ¼ 0:02.

Figure 5. The non-dimensional frequency parameter β versus the length to width ratio η for
the three boundary conditions of the FG rectangular plate when p ¼ 1, h1=a ¼ 0:4 and
δ ¼ 0:005.

Table 7. First five frequency parameters β ¼ ωa2
ffiffiffiffiffiffiffiffiffiffi
ρc=Ec

p
=h of SFSF FG square plate coupled

with cubic volume of fluid for different values ρf .

Fluid ρf
kg

ðm3Þ β1 β2 β3 β4 β5
Gasoline (16°C) 737.22 3.2672 5. 8625 12.576 14.235 16.189
Kerosene (16°C) 817.15 2.8535 4.5726 10.221 12.321 14.852
Water pure (4°C) 1000 2.6512 4.3958 9.9213 10.602 12.153
Sea water (25°C) 1025 2.6253 2.8628 8.9592 9.9125 11.425
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(1) As the power law index increases, the natural frequencies of the FG
rectangular plate coupled with fluid decrease for all ratios of thick-
ness/length and boundary conditions.

(2) By increasing the length to width ratio of the rectangular plate, the
non-dimensional frequency parameter increases for SCSC and SSSS
boundary conditions.

(3) By increasing the length to width ratio of the rectangular plate, the
non-dimensional frequency parameter decreases for SFSF boundary
condition.

(4) The value of the natural frequency initially increases when the
thickness to length ratio δ varies between 0.05 and 0.1 and then
decreases when δ > 0:1 for boundary conditions SSSS, SFSF and
SCSC.

(5) The non-dimensional frequency parameter decreases by increasing
the length to width ratio of the plate for boundary condition SFSF
and all values of power law indexes.

(6) By increasing the fluid density, the non-dimensional frequency
parameter decreases.
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