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ABSTRACT
For the evaluation of a broad range of Re in incompressible
flows, particularly unsteady and transition regimes, the Vreman
subgrid scale model is studied within the framework of
a modified lattice Boltzmann equation. A unique multiple
relaxation time form which recovers the fully incompressible
unsteady Navier-Stokes equations is derived for the D3Q19
lattice. Solutions to the 3D-driven cavity are compared to
a number of lattice Boltzmann and Navier-Stokes solutions.
Initial simulations demonstrate the vanishing nature of eddy
viscosity in the steady laminar regime. Onset of unsteadiness is
found between Re 1900 and 1950, matching well with the
wealth of literature. At Re 6000, velocity history and complex
vortex structures show a transition to turbulence near the
domain bottom and front walls while the centre of the domain
retains laminar characteristics. By Re 8000 intermittent turbu-
lence has progressed to the domain centre. This range of Re for
transition and the flow characteristics are in agreement with the
general ranges in literature, with further observations being
added here. The Vreman model with an incompressible lattice
Boltzmann method is found to be a promising tool for laminar-
to-turbulent simulation.
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1. Introduction

Turbulent transition is one of the more active areas of research in compu-
tational fluid dynamics (CFD), and without direct numerical simulation
(DNS) this common physical occurrence requires unique treatment. To
avoid the computational cost of DNS while retaining large-scale fidelity in
the turbulent regime, a family of approaches combining resolution of the
largest turbulent structures and modelling of the smallest scales has been
developed, termed scale resolving simulation (SRS). Of this family, large
eddy simulation (LES) is the highest fidelity as only the smallest, approxi-
mately isotropic scales are modelled (Pope, 2000). A modification of this
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high-fidelity approach is employed within the lattice Boltzmann method
(LBM) in this study for the transition regime.

LBM approaches CFD from a kinetic theory basis (McNamara &
Zanetti, 1988). While the governing lattice Boltzmann equation (LBE)
can take many forms, the most common, and the form of interest here,
recovers the Navier-Stokes equations in the hydrodynamic limit. The LBM
provides many benefits versus the Navier-Stokes equations for turbulent
transition flows, including inherent parallelism, low numerical dispersion/
diffusivity and simple boundary condition treatment (Chen & Martinez,
1996; Kruger et al., 2017; Marie, Ricot, & Sagaut, 2009; Tolke, 2009).

Complex flows for CFD methods verification are often obtained with the
lid-driven cavity (LDC). Despite simple boundaries, the flow exhibits
characteristics common in engineering applications such as strong recir-
culation zones, varying boundary layer properties, and generating and
interaction of a variety of vortex sizes. With the plethora of literature on
the LDC, new solvers and methodology approaches can be readily com-
pared to those which are well established. Initial computational studies
were performed on a 2D plane section, representing the centre plane of an
approximately infinite width cavity in non-turbulent regimes (Ghia, Ghia,
& Shin, 1982). For verification of 3D solvers and fully turbulent flows
(turbulence being a 3D phenomenon), the CFD domain can be laterally
extended to a closed cube to allow for flow structures in the additional
dimension, a phenomenon present in turbulent flows. Experimental work
on this geometry has provided general insights and a spread of data across
the regimes (Prasad & Koseff, 1989).

LES turbulence modelling and the LBM have been tested together in the
literature through a number of canonical cases. While verified, much of this
research has been performed on fully turbulent flow (Ming, Xiao-Peng, &
Premnath, 2012; Ren, Song, & Haibao, 2018), performed with a version of
LES not suitable for transition (Anupindi, Lai, & Frankel, 2014; Si & Shi,
2015), or performed with an LBE which produces a compressibility error
(Ming et al., 2012; Ren et al., 2018). To overcome these limitations, several
modifications are implemented in the present work to further the study of
transition in the LBM framework.

In order to overcome the limitation of the original LES subgrid scale
(SGS) model proposed by Smagorinsky in 1963, which fails to adjust
accordingly in all locations (Pope, 2000), several variants have been pro-
posed. Two of the more utilised are the Dynamic Smagorinsky and Wall
Adapting Local Eddy Viscosity (WALE) SGS which can cover the range of
laminar through fully turbulent flow (Germano, Piomelli, Moin, & Cabot,
1991; Nicoud & Ducros, 1999). However, these and other dynamic models
add notable computational cost and implementation complexity in order to
compute an appropriate local eddy viscosity, and can even obtain unphysical
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numerics (Cabot, 1994; Ming et al., 2012). More recently, Vreman has
proposed an SGS model which locally varies the eddy viscosity at a cost
more similar to the original Smagorinsky SGS model (Vreman, 2004).

Since the LBE actually recovers the compressible Navier-Stokes equa-
tions in the low Mach limit, there is an error which scales with Mach
number when simulating incompressible flows. Recently, Murdock and
Yang have developed an explicit derivation methodology to recover the
unsteady incompressible Navier-Stokes equations (Murdock & Yang,
2016). For high Re flows, the multiple relaxation time (MRT) form pro-
vides additional numerical stability and viscosity-independent results
(d’Humieres, 1992). For DNS in 2D the unsteady incompressible LBE
(iLBE) has been developed into an MRT form (Murdock, Ickes, & Yang,
2017), and extension to 3D is desirable for generality and accurate simula-
tion of the role of an additional dimension for turbulent structures.

The objectives of this work are to establish a D3Q19 MRT-iLBE based
on the 2D MRT-iLBE, and pair it with the Vreman SGS model to verify the
combined solver for verification and further insight into the laminar-to-
transition process. To accomplish this, the study begins by applying the
solver to steady laminar flow in the LDC. Re is increased to find the onset
of instability (first Hopf bifurcation), the first critical step in the transition
process. Finally, Re is increased until the appearance of chaotic variable
histories, indicating turbulence, in order to discover the range of transition
and to add to the current sparse literature.

2. Methodology

2.1. The incompressible lattice Boltzmann equation

The Boltzmann equation describes the statistical properties of materials at
the mesoscopic level, a step between microscopic molecular dynamics and
macroscopic continuum flow (Harris, 2011). For computational physics
simulation, the equation is discretised by first-order finite differencing, and
the complex collision operator is linearised (Bhatnagar, Gross, & Krook,
1954). Focus here is placed on the incompressible form, while a thorough
description, derivation and history of the LBM is readily available within
(Guo & Shu, 2013; Kruger et al., 2017).

2.1.1. Single relaxation time
Both the standard and incompressible LBE proceed from the same form

fiðxþ δx; t þ δtÞ ¼ fiðx; tÞ � 1
τ

fi � f eqi
� �

; (1)
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where fi is the probability distribution function of particle velocities dis-
cretised to i lattice vectors. The single value parameter τ is related to
macroscopic viscosity by

ν ¼ 1
3

τ � 1
2

� �
δt: (2)

It is the equilibrium distribution term, f eqi , which can determine the macro-
scopic behaviour the LBE will exhibit. The term is based on the Maxwellian
distribution function of particle velocities, expanded and truncated at the
appropriate terms for hydrodynamics. In the work of Murdock and Yang
this term is modified to meet certain physical parameters to not just limit
density variation, but remove it to obtain the fully incompressible Navier-
Stokes equations (Murdock & Yang, 2016), i.e. to satisfy the incompressible
mass and momentum conservation laws. The conservation principles which
constrain portions of the final distribution form are the moments of discrete
particle velocity, ci, mass, momentum and momentum flux tensor,X

i

fi ¼ 1;
X
i

cifi ¼ u;
X
i

cicifi ¼ PI þ uu; (3)

respectively, where bold variables are vector quantities, and I is the identity
matrix. The additional required constraints are resolved with an ansatz
approach. Applying this methodology to the 3D 19 velocity lattice results
in the D3Q19 form

f eqi ¼

1� 2
9
1
c2 P þ Si; for i ¼ 0

1
54

1
c2 Pþ Si; for i ¼ 1� 6

1
108

1
c2 Pþ Si; for i ¼ 7� 18:

8>>>><
>>>>:

(4)

Si ¼ ωi 3
ðci � uÞ

c
þ 9
2
ðci � uÞ2

c2
� 3
2
ðu � uÞ
c2

" #
; (5)

where c is the lattice speed, taken to be 1 for square lattices, and ωi are the
lattice vector weights ω0 ¼ 1

3 , ω1�6 ¼ 1
18 and ω7�18 ¼ 1

36 . Pressure is then
a function of velocity squared and not density variation,

P ¼ � 9c2

5
1
2c2

u � uð Þ þ f eq0 � 1

� �
: (6)

Through the Chapman-Enskog multiscale expansion, Murdock and Yang
recover the following conservation equations:
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� � u ¼ 0
@u
@t þ � � uuð Þ ¼ ��P þ ν�2u: (7)

2.1.2. Multiple relaxation time
Use of a single relaxation time is the simplest approximation to the effects
of molecular collisions. However, the physical reality is that different
quantities, or modes, relax towards an equilibrium state at different rates
(d’Humieres, 1992). Several are the familiar macroscopic moments such as
ρ, or are related to recognisable properties such as diagonal terms of the
strain rate tensor. By performing collisions in the moment space each
mode can have a favourable relaxation time.

Previously, the unique D2Q9 MRT-iLBE form was derived for DNS study
(Murdock et al., 2017). In this work the same approach will be taken to
develop a distinct incompressible D3Q19 MRT form for the lattice structure
of Figure 1. The derivation proceeds from the SRT form, where Equation (4)
provides the necessary equilibrium distribution for incompressible physics.
Derivation details of the MRT form utilised in this work can be found in
Appendix A, including a script for computing key arrays and matrices. The
critical meq values which create the desired macroscopic behaviour are pre-
sented in this section as well,

meq
0 ¼ 1 meq

7 ¼ uz meq
14 ¼ uyuz

meq
1 ¼ �30þ 19

3 Pþ 19u2 meq
8 ¼ � 2

3 uz meq
15 ¼ uxuz

meq
2 ¼ 12� 3P � 11

2 u
2 meq

9 ¼ 2u2x � u2y � u2z meq
16 ¼ 0

meq
3 ¼ ux meq

10 ¼ 1
2 ðu2y þ u2zÞ � u2x meq

17 ¼ 0

meq
4 ¼ � 2

3 ux meq
11 ¼ u2y � u2z meq

18 ¼ 0

meq
5 ¼ uy meq

12 ¼ 1
2 ðu2z � u2yÞ

meq
6 ¼ � 2

3 uy meq
13 ¼ uxuy

It is noted that the values of meq derived here differ from those presented
in previous incompressible MRT derivations (Du & Shi, 2010). An impor-
tant deviation is that the current work is based on the unique equilibrium
distribution function of Equation (4), a methodology also utilised for
transition DNS D2Q9 MRT-iLBE study (Murdock et al., 2017).
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2.2. The Vreman subgrid scale model

LES offers a unique combination of benefits: reduced overall computa-
tional costs due to partial modelling, and DNS-like resolution in the
primary energy containing scales (Pope, 2000). However, several research-
ers have noted the limitations of the original modelling approach to LES.
In non-turbulent regimes the eddy viscosity should approach zero, appro-
priate adjustment should be made in transitional zones, and near walls it
should be substantially reduced from the free-stream value. The two
primary modifications proposed to correct these shortcomings are the
Dynamic Smagorinsky model (Germano et al., 1991), and the WALE
model (Nicoud & Ducros, 1999). Subsequent authors have noted that
while the limitations to physicality are reduced by these approaches
(although new ones may be introduced (Cabot, 1994)), difficulty in imple-
mentation and computational cost arise, and for Vreman, motivated the
derivation of a new local computation approach (Vreman, 2004). This
relatively new methodology is reviewed here and utilised within the LBM
framework.

In the original Smagorinsky approach to LES the modelled viscosity is
determined by

νe ¼ CSΔð Þ2 �Sj j; (8)

where CS is a semi-empirically determined value, �Sj j is the magnitude of
the filtered strain rate and Δ is the filter width (Smagorinsky, 1963), often
taken to be the grid size and dropped in further notation due to the square
lattice of size unity used here. CS is a constant value usually between 0.1
and 0.2. Various authors have arrived at values such as 0.13, 0.15 and 0.17

Figure 1. D3Q19 lattice structure used in this study.
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based on different analyses; however, the derived value is not valid over all
areas of the domain. Ideally, the value would be zero in laminar flows, and
substantially lowered near walls. Simplicity is the major benefit of this
model, and in fully turbulent flows it is often appropriate.

While the Dynamic Smagorinsky approach alters CS in time and space
to ensure an appropriate eddy viscosity, Vreman’s approach retains the
constant. Eddy viscosity is instead locally modified by employing
a different combination of velocity gradients computing not only the strain
rate, but also vorticity. Equation (9) displays how the components are
combined:

νe ¼ c

ffiffiffiffiffiffiffiffiffiffi
Bβ

αijαij

s
; (9)

where c is a new constant defined as � 2:5C2
S. For this study CS is 0.1.

Despite the existence of an empirical constant, the square root term
provides sufficient local variation, even to a value approaching zero.
Additionally, the computation is relatively simple, unlike previous dynamic
models, and the components (following the summation convention) are

αij ¼
@�uj
@xi

(10)

and

Bβ ¼ β11β22 � β212 þ β11β33 � β213 þ β22β33 � β223 (11)

where

βij ¼ αmiαmj (12)

The above computations are limited to first-order derivatives, and compar-
able to the computation cost of �Sj j in the basic Smagorinsky model
(Vreman, 2004). In fact, even compared to the WALE model the cost
may be as much as 40% lower (Ming et al., 2012). A further advantage is
that νe � 0 without the need for clipping in order to maintain physicality.
Gradients required for the subgrid model are computed with second-order
finite differencing.

As in the fully resolved LBE, viscosity is determined by the collision
relaxation time. Thus it is straightforward to provide a modelled eddy
viscosity component based on the Boussinesq hypothesis:

τeff ¼ 3ðνþ νeÞ þ 1
2
: (13)
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3. Lid-driven cavity parameters

All walls of the six-sided cubic domain of Figure 2 are no-slip. The top wall
translates in the positive x-direction. Each edge of the domain is given an
equivalent length, L, used as the characteristic length. The walls are imple-
mented with the second-order accurate halfway bounceback method fre-
quently used in LBM (Chen & Martinez, 1996). Ladd developed
a modification to the bounceback scheme to introduce the momentum
source of a Dirichlet boundary condition (Ladd, 1994). This method is
utilised, but with a minor modification since density is no longer a variable,

fi x; t þ δtð Þ ¼ f 0i0 x; tð Þ � 6ωi0ci0 � u (14)

where f 0 is the post-collision distribution function, i0 is the lattice velocity
opposite of i and u is the intended velocity at a given boundary condition.

Two boundary conditions have been historically implemented for the
translation of the lid: a value U which is constant for all points on the lid,
and a regularised value which is dependent on the specific location as

uxðx; ytop; zÞ ¼ U 1� 2x
L
� 1

� �18
 !2

1� 2z
L
� 1

� �18
 !2

(15)

to deal with the discontinuity at the edges. In the laminar cases the wall
translates at a constant, position-independent value U to fully conform to
the implementation in relevant literature (Chang, Hong, Lin, & Lin, 2013;
Feldman & Gelfgat, 2010; Hammami, Ben-Cheikh, Campo, Ben-Beya, &
Lili, 2012; Kuhlmann & Albensoeder, 2014; Loiseau, Robinet, & Leriche,
2016; Mynam & Pathak, 2013; Wong & Baker, 2002). For turbulence onset

Figure 2. Domain of the 3D LDC.
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the regularised velocity boundary condition, which is common in higher
Re simulations (Anupindi et al., 2014; Leriche & Gavrilakis, 2000; Shen,
1991; Shetty, Fisher, Chunekar, & Frankel, 2010), is employed.

Re is the independent variable in this simulation, and is defined as

Re ¼ UL
ν

: (16)

All of the values utilised in the calculation are actually lattice Boltzmann
units. Due to similarity the results are equivalent to those obtained through
physical units as long as Re is held constant between physical and lattice
Boltzmann domains. Additional generality is achieved by presenting
results in non-dimensionalised form. For this work L and U are held
constant, and νðτÞ is varied to meet the required Re. The statements on
unit type hold true for the characteristic time as well, defined as

tc ¼ L
U
; (17)

supplying the value for non-dimensional time calculation.
Simulations are initialised with zero velocity and uniform pressure

fields. As a result, a burn in time is required before steady or statistical
results are taken. When the flow demonstrates a constant mean value over
several hundred characteristic times the results are considered converged.
Non-dimensional probe points are monitored for convergence. Data at
these points are reported every 10 iterations (10 explicit LBM time units)
to avoid aliasing the details of the oscillations. Field results of transient
simulations are presented in a time-averaged form.

4. Results

4.1. Steady laminar flow

To verify the D3Q19MRT-iLBE proposed in Section 2.1.2, and to validate the
low-Re vanishing nature of the Vreman subgrid scale model contribution in
the LBM framework simulations are performed at Re 100, 400 and 1000 for
comparison to literature (Wong & Baker, 2002). In all cases the x-velocity
component is recorded along the vertical centreline of the domain. At this Re
it is expected that there is no z velocity component. Results are acquired once
the unnormalised RMS residuals of velocity and pressure attain 1:0e� 9.
A grid-sensitivity study was performed to ensure that the minimum value of
ux along the centreline changed by nomore 1% with total grid count increases
of at least 50%, resulting in a grid of 503 and L ¼ 51 for data collection.

The pattern of x-velocities plotted along the centreline running from the
stationary base to the translating lid is compared to 11 points from Navier-
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Stokes solutions (Wong & Baker, 2002) in Figure 3. In all cases the current
solver (including the SGSmodel)matches well with the purely laminar solution,
including the velocity variation peaks. z-velocity is consistently machine zero at
the centre plane as expected for the symmetric solution at these Re.

In all cases, the maximum eddy viscosity ratio present in the domain is
still dominated by the molecular viscosity (νe=ν ¼ 1:1e� 1 at Re 1000) per
the expectation of a laminar simulation. Averaging the value over the whole
domain demonstrates that most of the domain experiences virtually no
model contribution (νe=ν ¼ 3:4e� 3 at Re 1000). The slight contribution
of the model is unsubstantial based on the results of Figure 3. Figure 4(c)
shows the location of maximum ratio on the centre plane occurs where the
main recirculating flow rejoins the flow along the driven wall and where the
flow must turn along the wall at x ¼ 1, indicating a location of high shear.

The location and magnitude of the major vortical structures are an excellent
match to the literature evidenced by Figure 4(a). The pressure field of Figure 4
(d) is also qualitatively a good match with the results of other incompressible
methods. Kinetic energy in the domain is largely concentrated within
a relatively focused zone, visualised in Figure 4(b) where the isosurface contains
areas where velocity magnitude is at least 20% of the maximum.

(a) Re 100 centerline x-velocity. (b) Re 400 centreline x-velocity.

(c) Re 1000 centreline x-velocity.

Figure 3. Low Re x-velocity along the vertical centreline.
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4.2. The first Hopf bifurcation

With increasingRe, instabilitywill arise at a value past those simulated in Section
4.1. This point is well documented in literature for the 3D LDC (Anupindi et al.,
2014; Chang et al., 2013; Feldman & Gelfgat, 2010; Hammami et al., 2012;
Kuhlmann & Albensoeder, 2014; Loiseau et al., 2016; Mynam & Pathak, 2013),
making it a good solver verification tool. The goal here is to provide a narrow set
of bounds on Re to estimate ReHopf , where the flow becomes fundamentally
transient. Grid size is determined by simulatingRe 1950with lattice node counts
increasing by at least 50%until themean value and amplitude ofu changes by no
more than 3%, resulting in a grid of 703 andL ¼ 71.A relatively high tolerance is

(a) Streamlines. (b) Velocity magnitude
(0.2) isosurface, colored by
z-velocity.

(c) Eddy viscosity ratio. (d) Pressure field.
Figure 4. Re 1000 z-centre plane and isosurface results.
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employed so the behaviour of the SGS model on hydrodynamic stability can be
studied and verified without refining away its calculation.

To measure the onset of unsteadiness a series of Re are chosen based on the
previous literature. A given simulation is considered unsteady when the solver
cannot achieve the target steady-state RMS velocity residual value of 1:0e� 6.
Figure 5 displays the time histories of velocity magnitude at probe point
(0.6,0.6,0.5), well after initial convergence and transients, between tc 2000
and 2100. The first Re plotted, 1900, is on the lower end of the literature
consensus of Table 1 and displays a constant converged value. Moving up to
Re 1950, a regular oscillatory pattern ensues. Several thousand tcs demonstrate
that this pattern persists and represents a post-bifurcation flow. The resultant
range of values, 1900–1950, represents a good match with the majority of the
literature. Despite a comparatively coarse grid, the Vreman SGS, relying on
velocity gradient values from the iLBE computation, does not unduly influ-
ence the proper solution of the unsteady laminar flow field.

Looking to the time-averaged fields in Figure 6(a)–(d), some similarities to
the stable Re results are noted. The main vortex has shifted slightly to the
bottom-right corner, but the corner vortices remain in roughly the same
position and of the same magnitude. Flow energy is still largely contained
within the focused zone of Figure 6(b), although that zone is taking on
slightly more topological complexity. Symmetry is also maintained in the
unsteady case as uz on the centre plane is machine zero. Eddy viscosity ratio
is nearly zero, and the pressure nearly one at the plotted probe point of
Figure 5, indicating it is a relative calm zone. Eddy viscosity ratio throughout
the domain remains relatively low, with a maximum value of 1:8e� 1, and
an average of 4:1e� 3 at Re 1950. The top corners continue to generate both

2000 2025 2050 2075 2100

t
c

0.024

0.025

0.026

0.027

0.028

u

Re 1900
Re 1950

Figure 5. Velocity histories near the Hopf bifurcation at probe point (0.6,0.6,0.5).
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Table 1. Comparison to literary predictions of ReHopf .
References Methods summary ReHopf
Feldman and Gelfgat (2010) 2003 FVM NS 1914
Hammami et al. (2012) 483third-order FVM NS 1922
Mynam and Pathak (2013) 3013 LBM 1900–2000
Chang et al. (2013) 1283 LBM 1750–1950
Kuhlmann and Albensoeder (2014) 963 Spectral NS 1919.5
Anupindi et al. (2014)y 803 LESa LBM 2100–2250
Loiseau et al. (2016) 103 Sixth-order spectral NS 1900–1930
Present Study 703 LESb iLBM 1900–1950

yRegularised U, aSmagorinsky SGS, bVreman SGS.

(a)Streamlines. (b)Velocity magnitude
(0.2)isosurface, coloredby
z-velocity.

(c)Eddyviscosityratio. (d)Pressurefield.

Figure 6. Re 1950 time-averaged z-centre plane and isosurface results.
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the highest and lowest pressures on the centre plane.

4.3. Transition to turbulence

Following the experimental studies of (Prasad&Koseff, 1989) primitive variable
history is tracked to observe the transition to high-frequency fluctuations and
trace irregularity telling of turbulence. A probe point (0.5,0.05,0.5) near the
bottom of the domain, similar in location to their measurement point, provides
data closer to the boundary layer where it is expected that chaos will arise.
Additionally, probe point (0.6,0.6,0.5) is tracked as it lies well within the core
region, which is expected to see a later transition since different portions of the
domain can experience different flow regimes (Shankar & Deshpande, 2000).
To replicate the time ranges visualised in Prasad and Koseff and Shankar and
Deshpande for comparative purposes the period starting from 0 to 100 tc is
inspected for transition, although data are also examined at later times. Prasad
and Koseff and Shankar and Deshpande indicate transition occurs roughly
between Re > 3200–10,000 and Re 6000–8000, respectively. Study of transition
behaviour with the current methods begins at Re 6000. For post-transition
characteristics Bouffanais et al. provide comparative results in the LDC in the
unambiguous turbulent regime (Bouffanais, Deville, & Leriche, 2007).

Lid velocity is governed by the regularised condition. As in previous
literature the collision relaxation times not related to viscosity are reduced
to 0.7 for stability at the higher Re (Chang et al., 2013). Initial runs for Re 6000
were made with 1003, 1283 and 1383 points. The > 200% increase in grid
density between 1003 and 1283 yields a 5–8% change in mean velocity and
extrema while retaining the same basic trace patterns. Moving to the 1383

points results in a virtually identical trace pattern with mean and extrema
changing by less than 1%. The studies in this section are thus conducted on a
1383 grid. Characteristic length is then 139. While the SRT collision operator
would have been sufficient for the laminar studies, here the flexibility to tune
non-viscosity parameters in the MRT form is critical, and with SRT the
simulation at Re 6000 diverges almost immediately.

4.3.1. Re 6000
Time histories in Figure 7 display two different regimes in the cavity: A laminar
core (probe (0.6,0.6,0.5)) and a turbulent near-bottom zone (probe
(0.5,0.05,0.5)). The core probe point (Figure 7(a) and (c)) takes on the char-
acteristics of a slow and smooth fluctuation after the initial transients. Prasad
and Koseff attribute these low-frequency fluctuations to meandering Taylor-
Goertler-like (TGL) vortices in their Re 3200 case, and given the strong
similarities with their Re 3200 study, that is the analysis here. These similarities
include amplitude and frequency of the fluctuations, as well as a general
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correlation between component variations. Figure 7(c) goes beyond the char-
acteristic time they present, but shows a clear continuation of the trend. The
RMS values, ux0 ¼ 0:007 and uy0 ¼ 0:009, are close to the Re 3200 values of
Prasad and Koseff, demonstrating a calm flow. Symmetry is broken at both
points, and at the centre the absolute value of uz fluctuates about one order-of-
magnitude below the x and y components.

Flow at probe (0.5,0.05,0.5) has a very different history in Figure 7(b) and (d).
The characteristic high-frequency random fluctuations of turbulence are pre-
sent and persistent, and as a result there is little correlation between velocity
components. Velocity histories at this probe bear strong similarities to what
Prasad and Koseff present at Re 10,000, and what Bouffanais et al. find at Re
12,000. RMS ux0 ¼ 0:035 and uy0 ¼ 0:027 are of a similar magnitude to their
high-Re turbulent results. Shankar and Deshpande corroborates this transitory
behaviour wherein the chaos first develops near the high shear wall layers and is
not immediately transferred to the core flow.

At Re 6000 transition to turbulence is underway in the cavity, but not the
ubiquitous regime. The Vreman SGS model has contributed to a level that is
consistent with the expected results. Maximum eddy viscosity ratio rises to
0.884, a value representing near equivalence between modelled viscosity and
molecular viscosity. Eddy viscosity ratio on the centre plane in Figure 8(c)
displays a pattern of higher values along the front and bottom of the cavity
where the flow has obtained high energy from the lid and is in shear between
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Figure 7. Re 6000 velocity component time histories.
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(a)Streamlines. (b)Velocity magnitude
(0.2)isosurface, colored by
z-velocity.

(c)Eddyviscosityratio. (d)Pressurefield.

(e)Q-criterion (5)isosurface
along front wall, colored  byy-
velocity.

Figure 8. Re 6000 time-averaged z-centre plane and instantaneous isosurface results.
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the wall and lower energy core. These areas are also visualised in Figure 8(b)
and (e) where the primary kinetic energy and vortical structures are concen-
trated, although noticeably more dispersed than the low-Re studies.

4.3.2. Re 8000
At probe point (0.5,0.05,0.5) little has changed from Re 6000, however the
core probe point shows a noticeable shift in Figure 9(a) and (c). As time
progresses, higher frequency, seemingly random periods arise intermittently,
and at later times constitute a large proportion of the history. Some non-
turbulent characteristics are still observable during certain periods, such as
relatively smooth changes to velocity, and a general correlation in compo-
nent changes. Side-by-side with probe (0.5,0.05,0.5), the intermittent bursts
are relatively weak, but show strong similarities. Figure 10(a) clearly shows
the divergence in behaviour between Re 6000 and 8000 via power spectral
density (PSD) vs. frequency. At the core probe there is a shift in energy to
higher frequencies indicative of turbulence while the lower frequencies are at
a similar level. The pattern has changed from a largely linear decline in
energy with increasing frequency (on the log-log scale) to a more clearly
differentiated intermediate range following the expected −5/3 power law.
This new pattern at Re 8000 matches that seen in unambiguously turbulent
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Figure 9. Re 8000 velocity component time histories.
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flows (Bouffanais et al., 2007), and compares well against the chaotic flow at
probe point (0.5,0.05,0.5) (see Figure 10(b)). The RMS values at the core
probe point, ux0 ¼ 0:015 and uy0 ¼ 0:016, are doubled from their Re 6000
values. While this indicates a move towards turbulence, the more active
probe point has values of ux0 ¼ 0:033 and uy0 ¼ 0:029, which are in keeping
with fully turbulent results (Prasad & Koseff, 1989).

Qualitative changes to the flow are visible in Figure 11(a)–(e). Kinetic
energy in the flow, visualised by velocity magnitude isosurface shows
a greater dissipation as the area shrinks. Eddy viscosity ratio is at its greatest
at the top right corner and along the front wall to the bottom before shear
and vorticity drop significantly. In this case the maximum eddy viscosity
ratio for the domain rises to 1.38. Plotting the same isosuface value for
q-criteria in Figure 11(c) as in the Re 6000 case shows a much more active
field.

An additional insight and data point is presented in Figure 12, where the
time-averaged x-velocity values are plotted along the bottom half vertical
centreline of the cavity. While the Re values are not identical to those
presented in previous literature, comparison to centreline trends in Prasad
and Koseff (1989) further verifies the method while adding to the record.
The difference in the way velocity was applied experimentally compared to
Equation (15) must also be borne in mind. When compared to the Re 5000
and 7500 values from the aforementioned authors the same general patterns
emerge: a strong velocity gradient at the bottom of the domain, an inverse
relationship between maximum u-velocity magnitude and Re, and a sharp
change in velocity near the bottom. An additional small, but noticeable
‘bump’ occurs in velocity above the primary sharp change. While the
magnitude of the minimum velocity value is lower compared to experiment
(due to the way lid velocity is applied), the trend of a decrease in the extrema
with increasing Re matches experiment. With the increase in turbulent
velocity fluctuations, energy is shifted from the mean momentum.

(a) Probe point (0.6,0.6,0.5). (b) Probe point (0.5,0.05,0.5).

Figure 10. Power spectral densities.
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(a) Streamlines. (b) Velocity magnitude
(0.2) isosurface, colored by
z-velocity.

(c) Eddy viscosity ratio. (d) Pressure field.

(e) Q-criterion (5) isosurface
along front wall, colored by y-
velocity.

Figure 11. Re 8000 time-averaged z-centre plane and instantaneous isosurface results.
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5. Conclusions

This work has presented a multiple relaxation time collision operator for a 19
velocity incompressible lattice Boltzmann equation and conducted studies on
stability and turbulent transition with a large eddy simulationmodel. The single
relaxation time collision operator is first derived as a basis, and utilises
a previously developed ansatz approach. With a generalised constant density
of one the resultant multiple relaxation time form deviates from those pre-
viously proposed. Low Re lid-driven cavity results verify the derived form
behaves in accordance with the incompressible Navier-Stokes equations.

For all cases the Vreman subgrid scale model, an improvement in
predicting non-turbulent regimes over the Smagorinsky model, is active.
At low-Re the eddy viscosity contribution appropriately scales to allow
molecular viscosity to dominate, and on a modest grid allows for an
accurate vertical centreline velocity. The onset of laminar instability is
also well predicted on a modest grid, with ReHopf ¼ 1900� 1950.

By Re 6000 time history, fluctuation magnitude and power spectral density
measurements find a turbulent condition near the bottom wall while the core
flow is still showing laminar fluctuations. The fluctuation pattern seen in the
core has been identified as the meandering of Taylor-Goertler-like vortices
through comparison to experimental results. The dual regimes, turbulent near
the bottom boundary and unstable laminar in the core corresponds to observa-
tion in literature on the progress of transition in the cavity. At Re 8000 turbulent
activity arises in the core in the form of intermittent bursts of high-frequency

Figure 12. Time-averaged x-velocity along lower centreline at transition Re values.
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random fluctuations. However, the flow still returns to laminar characteristics
periodically. The range of Re 6000–8000 for transition found here is in general
agreement with past literature while adding details to the process. In the fully
turbulent zones the characteristics are likewise in agreement with fully turbulent
simulations.

Within the framework of an incompressible lattice Boltzmann equation
the Vreman subgrid scale model adjusts appropriately in laminar, unstable
and transitional regimes.

Notation

CFD Computational fluid dynamics
DdQq d-dimension q-velocity lattice architecture
DNS Direct numerical simulation
FVM Finite volume method
LBE\LBE Lattice Boltzmann equation\incompressible form
LBM Lattice Boltzmann method
LDC Lid-driven cavity
LES Large eddy simulation
MRT Multiple relaxation time
NS Navier-Stokes
PSD Power spectral density
Re Reynolds number
RMS Root mean square
SGS Subgrid scale model
SRS Scale resolving simulation
SRT Single relaxation time
TGL Taylor-Goertler-like
WALE Wall Adapting Local Eddy Viscosity model

Note

1. The solver was written in the C language, and parallelised using OpenMP.
A MATLAB script for computing equilibrium distribution functions and components
required for MRT implementation can be found at https://drive.google.com/file/d/
1yLfCq7HBcuZglRGe2JWPV7GDJdHfSW64/view?usp=sharing.
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Appendix A: MRT derivation

Starting from the SRT-iLBE

f ðxþ δx; t þ δtÞ � f ðx; tÞ ¼ � 1
τ
ðf ðx; tÞ � f eqðx; tÞÞ (A1)

and introducing the identity matrix I ¼ M�1M, the collision process is modified as
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f ðxþ δx; t þ δtÞ � f ðx; tÞ ¼ �M�1M 1
τ ðf ðx; tÞ � f eqðx; tÞÞ

¼ �M�1 1
τ IðMf ðx; tÞ �Mf eqðx; tÞÞ

¼ �M�1Sðmðx; tÞ �meqðx; tÞÞ;
(A2)

where S ¼ 1
τi
I, a diagonal matrix of inverse relaxation times. m and meq are the moment

and equilibrium moment vectors defined as Mf and Mf eq, respectively.
The transformation matrix is constructed of rows of orthnogonal basis vectors which are

polynomials of the lattice vectors. Here, M is the commonly utilised matrix in previous
non-incompressible derivations (Premnath & Abraham, 2007)

Moment distributions are then defined as

m ¼ ðρ0; e; e2; jx; qx; jy; qy; jz; qz; 3Pxx; 3πxx;Pww; πww;Pxy; Pyz;Pxz;mx;my;mzÞT : (A3)

where m0 is the density, m1;2 are related to energy and energy squared, m3;5;7 are
components of momentum, m4;6;8 are components of energy flux, m9;11;13�15 are strain

rate tensor-related components, m10;12 are fourth-order moments, and m16�18 are 3rd

order moments.
As in the SRT form, it is the equilibrium distributions which dictate the macroscopic

behaviour of the LBE. The array f eq is thus built from Equation (4). Acquiring the array
meq by multiplication of M and f eq is performed with the symbolic computation software
MATLAB (MathWorks, 2017) due to the size of the matrices involved. This script can be
accessed at https://drive.google.com/file/d/1yLfCq7HBcuZglRGe2JWPV7GDJdHfSW64/
view?usp=sharing. meq is thus

meq
0 ¼ 1 meq

7 ¼ uz meq
14 ¼ uyuz

meq
1 ¼ �30þ 19

3 Pþ 19u2 meq
8 ¼ � 2

3 uz meq
15 ¼ uxuz

meq
2 ¼ 12� 3P � 11

2 u
2 meq

9 ¼ 2u2x � u2y � u2z meq
16 ¼ 0

meq
3 ¼ ux meq

10 ¼ 1
2 ðu2y þ u2zÞ � u2x meq

17 ¼ 0

meq
4 ¼ � 2

3 ux meq
11 ¼ u2y � u2z meq

18 ¼ 0

meq
5 ¼ uy meq

12 ¼ 1
2 ðu2z � u2yÞ

meq
6 ¼ � 2

3 uy meq
13 ¼ uxuy

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The linked script also computes the transposed transformation matrix and scaling array
required for conversion back to velocity space after collisions are performed in moment
space.

S allows for unique relaxation times for some elements which can be optimised for stability.
To achieve the intended viscosity s9;11;13�15 must take on the value 1

τ . The other elements can
be tuned between 0 and 2. Unless otherwise stated, the values employed here are

s0;3;5;7 ¼ 1:0; s1 ¼ 1:19; s2;10;12 ¼ 1:0; s4;6;8 ¼ 1:2; s9;11;13;14;15 ¼ 1
τ
; s16;17;18 ¼ 0:98:
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