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ABSTRACT
In this paper, biomagnetic fluid flow in a three-dimensional
channel in the presence of obstacles and under the influ-
ence of a magnetic field is studied numerically. The mag-
netic field is generated by a wire carrying electric current.
The mathematical model of biomagnetic fluid dynamics
which is consistent with the principles of ferrohydrody-
namics and magnetohydrodynamics is used for the problem
formulation. A computational grid which accurately covers
the magnetic force is used for the discretisation of compu-
tational domain. The flow field is studied in the different
arrangements of the obstacles and diverse magnetic field
strengths. The results show that the flow pattern is drasti-
cally influenced by the applied magnetic field. Applying the
magnetic field causes a secondary flow that affects the
velocity distribution considerably. The magnetic force also
reduces the maximum axial velocity. Furthermore, the mag-
netic field has a considerable impact on the recirculation
zones behind the obstacles. The magnetic field makes the
recirculation zones smaller. This study indicates that apply-
ing the magnetic field increases the axial drag coefficients of
the obstacles significantly (in a case, by 40.15%).
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1. Introduction

Biomagnetic fluids are recognised as the biological fluids which magnetic
forces have effects on. Biomagnetic fluids’ behaviour in the presence of
magnetic fields has become an interesting area for many researchers. Cell
separation (Haik, Pai, & Chen, 1999a; Miltenyi, Müller, Weichel, &
Radbruch, 1990), targeted drug delivery (Crane et al., 2004; Cregg,
Murphy, & Mardinoglu, 2012; Lu, Wei, Ma, Yang, & Chen, 2012; Yellen
et al., 2005; Yu, Chen, Chen, & Zhou, 2008), wound healing due to the
effects of magnetic fields (Henry, Concannon, & Yee, 2008; Nursal et al.,
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2006), and cancer treatment with magnetic hyperthermia (Baghban &
Ayani, 2017; Lahiri, Ranoo, & Philip, 2017; Liangruksa, Ganguly, & Puri,
2011) are some applications of this field in the medical and biomedical
engineering. Blood is the most characteristic biomagnetic fluid.
Haemoglobin is a protein-based component of the red blood cells which
are primarily responsible for the transportation of oxygen in the human
body. Oxygen binds to iron atoms existing in the haemoglobin structure.
Studies (Higashi, Ashida, & Takeuchi, 1997; Higashi et al., 1993; Iino,
1997; Motta, Haik, Gandhari, & Chen, 1998; Takeuchi, Mizuno, Higashi,
Yamagishi, & Date, 1995) show that the red blood cells orient under the
influence of magnetic fields. Binding oxygen to haemoglobin causes change
in the magnetic susceptibility of the haemoglobin, so that oxyhaemoglobin
behaves as a diamagnetic material, and deoxyhaemoglobin behaves as
a paramagnetic material (Shiga, Okazaki, Seiyama, & Maeda, 1993;
Yamagashi, Takeuchi, Hagashi, & Date, 1992). In general, biological ele-
ments have weak magnetic susceptibilities in the order of 10−6 (Schenck,
1996). To perform some mechanical works on the biological fluids, the
magnetic susceptibilities of the fluids could be enhanced, for instance, by
labelling the biological cells with magnetic materials (Haik et al., 1999a;
Miltenyi et al., 1990).

The study of biomagnetic fluid flow in ducts which are narrowed in
some locations affected by magnetic fields is one of the most interesting
areas for researchers. Haik, Chen, and Chatterjee (2002) presented
biomagnetic fluid’s behaviour in a two-dimensional channel with
a semi-circular thrombus exposed to a magnetic field. In their study,
the centre of the magnetic field is located behind the thrombosis in flow
direction. They showed that without the magnetic field a small recircu-
lation zone is formed just behind the thrombus downstream. By apply-
ing the magnetic field new recirculation zones are created, and the
recirculation zone behind the thrombosis changes. The strength of the
recirculation increases as the magnetic field’s strength increases. They
indicated that when the magnetic field is applied the friction coefficients
at the lower and upper walls of the channel increase drastically, and
also increase as the magnetic field’s strength increases. Khashan and
Haik (2006) investigated the magnetic field effects on the biomagnetic
fluid downstream an eccentric stenotic orifice two dimensionally. They
showed that according to the location of the magnetic field, the reat-
tachment point downstream of the stenotic orifice changes. Tzirtzilakis
(2008) studied the biomagnetic fluid (blood) flow in a channel with
symmetric stenosis under the action of a magnetic field two dimension-
ally. He showed the formation of two symmetric vortices downstream of
the stenosis in the pure hydrodynamic flows for symmetric stenosis. By
applying the magnetic field, the vortex close to the magnetic field source
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is enlarged. Consequently, the reattachment of the flow is shifted down-
stream. In some cases, one of the vortices appearing in the hydrody-
namic case diminishes by applying the magnetic field, and the
detachment of the flow does not occur on one of the two plates.
Mustapha, Amin, Chakravarty, and Mandal (2009) performed a two-
dimensional axisymmetric study in terms of the effect of a uniform
magnetic field on the blood flow through an artery in the presence of
irregularly shaped paired stenoses. Their results show the formation of
wall shear stress peaks in the maximum constriction sites. With apply-
ing the magnetic field the wall shear stress increases, and with increas-
ing the magnetic force the stress increases. By imposing the magnetic
field to the fluid flow, the flow separation can be controlled signifi-
cantly. Sankar and Lee (2011) analysed the effects of a uniform mag-
netic field on a pulsatile flow of blood through narrow arteries with
mild stenosis. They considered blood as a non-Newtonian fluid. They
showed that the skin friction increases significantly in the presence of
magnetic field, and the increase of the magnetic force leads to the
increase of the skin friction.

Biomagnetic fluid dynamics (BFD) is the biological fluid dynamics in
the presence of magnetic fields. Haik, Pai, and Chen (1999b) presented
a mathematical model of the BFD based on ferrohydrodynamics (FHD)
(Rosensweig, 1985). In this model the magnetic force due to magnetisation,
which depends on the gradient of the magnetic field, is considered only.
Tzirtzilakis (2005) developed the BFD model by considering the Lorentz
force based on the principles of magnetohydrodynamics (MHD) (Shercliff,
1965).

One of the non-uniform magnetic fields is the magnetic field gener-
ated by a wire carrying electric current. Mousavi, Farhadi, and Sedighi
(2016) presented a method used for finding appropriate computational
grids to simulate the effects of this magnetic field on magnetic fluids.
They showed that the computational grids must cover the magnetic
force accurately.

The aim of the present work is the 3D numerical study of
a biomagnetic fluid flow under the influence of a non-uniform magnetic
field in a channel in the presence of obstacles. The magnetic field
generated by a wire carrying electric current is considered. The obsta-
cles are cubic. In the numerical study of the effects of this magnetic
field on the magnetic fluid flow, computational grids play an essential
role in the accuracy of obtained results (Mousavi et al., 2016).
Therefore, according to the method presented by Mousavi et al.
(2016), a computational gird accurately covering the magnetic force is
created. This simulation is carried out based on the BFD mathematical
model which is consistent with the principles of ferrohydrodynamics
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and magnetohydrodynamics. In this study, the flow fields in the pre-
sence of one obstacle, two obstacles in a row, and two obstacles not in
a row are analysed. Moreover, axial drag coefficients on the obstacles
are specially studied. The analysis of the obtained results indicates that
the application of the magnetic field in a magnetic fluid flow could be
useful for medical and engineering applications.

2. Theoretical formulation

2.1. Governing equations

The three-dimensional steady laminar incompressible flow of
a homogeneous Newtonian electrical conductor biomagnetic fluid in
a channel in the presence of obstacles under the influence of the magnetic
field of a wire carrying electric current is considered. A schematic model of
the considered problems is shown in Figure 1. The wire with coordinates
ða; bÞ, (a = 0.5 h and b = 1.2 h), in the x-y plane of the channel is located
above the channel parallel to the z axis (Figure 1).

The viscosity changes due to the applied magnetic field are neglected.
Equilibrium magnetisation (M and H parallel) and continuation of mag-
netic induction i.e. � � B ¼ 0 are considered. Given the above assumptions,
according to the mathematical model presented by Tzirtzilakis (2005), the
equations governing the flow are as follows:
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A laminar fully developed flow with average axial velocity �W0 enters the
channel (at z = 0), and diffusion fluxes for all flow variables normal to the
exit plane are assumed to be zero at the outlet of the channel (z = L). The
no-slip condition is imposed on the walls.
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In the above equations, V ¼ u; v;wð Þ is the velocity field, ρ is the biomag-
netic fluid density, p is the pressure, μ is the biomagnetic fluid dynamic
viscosity, μ0 is the magnetic permeability of vacuum,M is the magnetisation,
H is the magnetic field intensity, B is the magnetic field induction (Bx and By

are the magnetic field induction components along the x and y directions,
respectively) and σis the biomagnetic fluid electrical conductivity.

The terms μ0M@H=@xþ σ vBxBy � uBy
2

� �
, μ0M@H=@yþ σ uBxBy�

�
vBx

2Þ, and � σ wB2ð Þ in Equations (2)–(4) represent the components of

x-y cross-sectional plane

(a)

(b)

(c)

Figure 1. Schematic models of the considered problems. Channel with (a) one obstacle, (b)
two obstacles in a row, (c) two obstacles not in a row.
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the magnetic force per unit volume along the x, y, and z directions,
respectively. μ0M@H=@x and μ0M@H=@y are due to the magnetisation
that depends on the existence of the magnetic gradient. σ vBxBy � uBy

2
� �

,

σ uBxBy � vBx
2

� �
, and � σ wB2ð Þ represent the components of the Lorentz

force per unit volume (the Lorentz force per unit volume is equal to J� B
where J is the density of the electric current, and ��H ¼ J ¼ σ V� Bð Þ)
which are due to the induced electric current.

The relation between the magnetic field induction and magnetic field
intensity is as follows:

B ¼ μ0H (6)

The magnetisation as a linear equation (Tzirtzilakis, 2005) is considered as
follows:

M ¼ χH (7)

where χ is the magnetic susceptibility of the biomagnetic fluid.
The magnetic field intensity components Hx and Hy along the x and

y directions are as follows:
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where ða; bÞ is the position of the wire in the x-y plane, and I is the electric
current intensity.

The magnitude of the magnetic field intensity is given by
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The dimensionless variables are defined as follows:
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The dimensionless forms of equations are
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The dimensionless numbers are

Re ¼ ρ �W0h
μ

Mn ¼ μ0χH0
2

ρ �W0
2 ¼ χB0

2

μ0ρ �W0
2 N ¼ μ0

2H0
2hσ

ρ �W0
¼ B0

2hσ
ρ �W0

¼ Ha2

Re

where Re is the Reynolds number, Mn is the magnetic number, and N is
the Stuart number which is the ratio of the square of the Hartmann
number (Ha) to the Reynolds number. H0 and B0 are the magnetic field
intensity and magnetic field induction at the point ða; hÞ, respectively,
and B0 ¼ μ0H0.

2.2. Numerical method

In the present study, the computational fluid dynamics software ANSYS
FLUENT was employed to solve the mentioned equations in the previous
section using the finite volume method. To apply the magnetic forces some
User-Defined Functions (UDFs) were written and added to the software.
The SIMPLE algorithm was used for the velocity-pressure coupling. The
convective and diffusive terms in the momentum equations were discre-
tised by using the second order upwind method. A structured non-
uniform grid was used for the discretisation of computational domain.
To ensure that the solution is not affected by the computational grid size,
grid independency is analysed. According to the Mousavi, et al.’s work
(2016) the computational grids covering the magnetic force relatively
accurately were created. The grid independency in the x, y, and
z directions in the presence of two obstacles in a row (Figure 1(b)) was
investigated by choosing the dimensionless axial velocity, and the results
are shown in Figure 2. According to the results, the non-uniform grid
175 × 125 × 130 was selected as a suitable grid. As can be seen in Figure 2,
with increasing the number of grid points, the dimensionless axial velocity
does not change significantly.
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3. Results and discussion

3.1. One obstacle

In the presence of one obstacle, the streamlines are shown in Figure 3. In
the absence of the magnetic field, the streamlines are mainly parallel to
the z-axis (Figure 3(a)). By applying the magnetic field a secondary flow
is created. As shown in Figure 3(b), the streamlines are not just parallel to
the z-axis, and the streamlines in the form of recirculation zones are
visible in the x-y cross sectional planes of the channel. Figure 4 shows the
streamlines in the y-z cross sectional plane of the channel (at x�=.5) in
the various magnetic field strengths. The presence of obstacle changes the
pressure distribution. Positive pressure gradient occurs downstream of
the obstacle, which causes the creation of a recirculation zone. By apply-
ing the magnetic field, the streamlines are driven towards the bottom wall

Figure 2. The comparison of the dimensionless axial velocity for Re = 50, Mn=1:0� 105, and
N=6:065� 10�2 on the axial line at x�=.5 and y�=0.75 in the different grid points (the grids
are non-uniform) along the (a) x� direction, (b) y� direction, (c) z� direction.
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of the channel. This flow movement towards the bottom wall of the
channel affects the pressure gradient and can change the recirculation
zone. With increasing the magnetic force the vortex located downstream
of the obstacle becomes smaller. Since the magnetic field is applied
throughout the channel, the flow from upstream to downstream of the
obstacle is changed. When the flow in upstream of the obstacle, which
comes down, reaches the obstacle is forced to pass through the sides of
the obstacle as shown in Figure 5. The flow in the region close to the
magnetic source is driven downwards sharply. As can be seen in Figure 5,
by applying the magnetic field the flow hits the middle of channel’s
bottom wall (x�=.5). In Figure 6 the streamlines are shown in the two
perpendicular longitudinal sections. In Figure 6(b) the flow driven to the
bottom of the channel by the magnetic force and the flow passed through
the side of the obstacle are obvious. Figure 7 shows the streamlines in the
transverse sections before and on the obstacle. As can be seen in the
Figure 7, the magnetic field influences the flow pattern, and a flow in the
direction of the magnetic force is created which causes the secondary
flow. The flow towards the bottom of the channel causes the recirculation
zones in the upper corners of the channel. The axial velocity distribution
in the transverse sections before and on the obstacle in the absence and
presence of the magnetic field is shown in Figure 8. It can be seen that
applying the magnetic field has a significant impact on the velocity
distribution. The comparison of the axial velocity distributions in the
absence and presence of the magnetic field indicates that in the absence

(a) Mn=0 and N=0

(b) Mn=6.4×104 and N=3.881×10-2

Figure 3. Streamlines at Re = 50.
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of the magnetic field the maximum velocity is higher. In the presence of
the magnetic field, the flow goes towards the bottom of the channel, and
this causes maximum axial velocity reduction.

The drag coefficient CD is calculated by the following relation:

CD ¼ FD
1
2 ρ

�W0
2A

(15)

(a) Mn=0 and N=0

(b) Mn=1.6×104 and N=9.703×10-3

(c) Mn=3.6×104 and N=2.183×10-2

(d) Mn=6.4×104 and N=3.881×10-2

(e) Mn=1.0×105 and N=6.065×10-2

Figure 4. Streamlines in the y-z cross sectional plane at x�=0.5 and Re = 50.
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where FD is the drag force, and A is the surface area.
In Figure 9, the influence of applying the magnetic field on the

obstacle drag coefficient in the axial direction is shown. In this figure
the values of CD=CD0 are shown at different values of Mn, where CD0 is
the obstacle drag coefficient in the absence of the magnetic field. With
increasing the magnetic force the obstacle drag coefficient increases so
that at Mn = 1.0 × 105 the obstacle drag coefficient increases by 22.14%
compared to the obstacle drag coefficient in the absence of the magnetic

(a) Mn=0 and N=0

(b) Mn=1.6×104 and N=9.703×10-3

(c) Mn=3.6×104 and N=2.183×10-2

(d) Mn=6.4×104 and N=3.881×10-2

(e) Mn=1.0×105 and N=6.065×10-2

Figure 5. Streamlines on the bottom of the channel at Re = 50.
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field. The total drag comprises skin friction drag and pressure drag.
Applying the magnetic field causes a downward flow leading to the
reduction of the recirculation zone behind the obstacle. This phenom-
enon reduces the pressure drag, but applying the magnetic field
increases shear stress significantly as Mousavi et al. (2016) reported.
Therefore, the skin friction drag increases significantly. According to
our results, in Re = 50, the increase of frictional drag outweighs the
decrease of pressure drag.

3.2. Two obstacles in a row

Figure 10 depicts the streamlines in the presence of two obstacles in a
row, in the y-z cross sectional plane of the channel (at x�=.5) in the
absence and presence of the magnetic field. In the absence of the
magnetic field a vortex is formed downstream of each obstacle
(Figure 10(a)). Applying the magnetic field drives the flow towards
the bottom of the channel. This movement affects the vortexes and
makes them smaller (Figure 10). In Figure 11, the effect of the

(a) Mn=0 and N=0

(b) Mn=6.4×104 and N=3.881×10-2

Figure 6. Streamlines on longitudinal sections at x�=.5 and y�= for Re = 50.
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magnetic field on the flow in the bottom of the channel is shown. The
downward flow and the flow passing through the sides of the obstacles
can be seen in Figure 12. In Figure 13, the axial velocity distributions
in the transverse section between the two obstacles in the absence and
presence of the magnetic field are shown. It can clearly be seen that by
applying the magnetic field, the maximum of the axial velocity is
decreased and the velocity distribution is changed enormously.

The calculation of the drag coefficients in the axial direction shows
that at Mn = 6.4 × 104 the drag coefficient of the first obstacle increases

Figure 7. Streamlines on transverse sections at Re = 50, Mn = 3.6 × 104, and N = 2.183 × 10−2.
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by 14.22% compared to the drag coefficient of this obstacle in the
absence of the magnetic field. Moreover, the drag coefficient of
the second obstacle increases by 40.15% compared to the drag coeffi-
cient of this obstacle in the absence of the magnetic field. The increase
in second obstacle’s drag coefficient is extremely significant. According
to Figure 10, in the absence of the magnetic field, the area in front of
the second obstacle is in the wake region of the first obstacle. Applying
the magnetic field causes a downward flow leading to the decrease of
the wake region and increase of the pressure in front of the second
obstacle. Therefore, in this case, applying the magnetic field increases
not only frictional drag but also pressure drag, which causes a dramatic
rise in the total drag on the second obstacle.

Figure 8. Dimensionless axial velocity at Re = 50.
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3.3. Two obstacles not in a row

Figure 14 depicts the streamlines in the presence of two obstacles not in a row,
in the side and bottom walls of the channel. In Figure 14(b), the confluence of
the flows passing through the side of the obstacle, and moving towards the
bottom of the channel is quite apparent. To show the influence of the
magnetic field on the flow pattern between two obstacles, the axial velocity
distributions in the transverse section between the two obstacles in the
absence and presence of the magnetic field are shown in Figure 15.

Mn

C
D
/C

D
0

20000 40000 60000 80000 100000
1

1.05

1.1

1.15

1.2

1.25

Figure 9. Relative drag coefficient of the obstacle in the different strengths of the magnetic
field at Re = 50.

(a) Mn=0 and N=0

(b) Mn=6.4×104 and N=3.881×10-2

Figure 10. Streamlines on the y-z cross sectional plane at x�=.5 and Re = 50.
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(a) Mn=0 and N=0

(b) Mn=6.4×104 and N=3.881×10-2

Figure 11. Streamlines on the bottom of the channel at Re = 50.

(a) Mn=0 and N=0

(b) Mn=6.4×104 and N=3.881×10-2

Figure 12. Streamlines on longitudinal sections at x�=0.5 and y�=0 in Re = 50.
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(a) Mn=0 and N=0 (b) Mn=3.6×104 and N=2.183×10-2

Figure 13. Dimensionless axial velocity at z�=4 and Re = 50.

(a) Mn=0 and N=0

(b) Mn=6.4×104 and N=3.881×10-2

Figure 14. Streamline on longitudinal sections at x�=1 and y�=0 in Re = 50.
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The calculation of the drag coefficients in the axial direction shows that
at Mn = 6.4 × 104 the drag coefficient of the first obstacle increases by
19.42% compared to the drag coefficient of this obstacle in the absence of
the magnetic field. Furthermore, the drag coefficient of the second obstacle
increases by 24.42% compared to the drag coefficient of this obstacle in the
absence of the magnetic field.

4. Conclusion

In this study, the effect of the magnetic field generated by a wire carrying
electric current on the biomagnetic fluid flow is studied numerically. The
flow in a three-dimensional channel in the presence of one obstacle, two
obstacles in a row, and two obstacles not in a row is investigated. The wire
carrying electric current is located above the channel. The following con-
clusions are obtained from the results:

● Applying the magnetic field causes a secondary flow, and therefore
velocity distribution is changed.

● The magnetic field completely affects the flow, and considerably changes
the recirculation zones downstream of the obstacles. The flow is driven
towards the bottom wall of the channel by the magnetic force, which
makes the recirculation zones downstream of the obstacles smaller.

● Evaluating the drag coefficient in the axial direction in the presence of
an obstacle in the channel indicates that with increasing the magnetic
force the drag coefficient also increases. The drag coefficient at
Mn = 6.4 × 104 increases by 14.98% and at Mn = 1.0 × 105 increases
by 22.14% compared to the drag coefficient in the absence of the
magnetic field.

(a) Mn=0 and N=0 (b) Mn=3.6×104 and N=2.183×10-2

Figure 15. Dimensionless axial velocity at z�=4 and Re = 50.
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● In the presence of the two obstacles in a row in the axial direction and
at Mn = 6.4 × 104 the drag coefficient of the first obstacle increases by
14.22%, and the drag coefficient of the second obstacle increases by
40.15% compared to the drag coefficient of the same obstacles in the
absence of the magnetic field. The increase of second obstacle’s drag
coefficient in the presence of the magnetic field is noticeable.

● In the presence of the two obstacles not in a row in the axial direction
and at Mn = 6.4 × 104 the drag coefficient of the first obstacle
increases by 19.42%, and the drag coefficient of the second obstacle
increases by 24.42% compared to the drag coefficient of the same
obstacles in the absence of the magnetic field.
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