
A high fidelity cost efficient tensorial method based on
combined POD-HOSVD reduced order model of flow field
Mohammad Kazem Moayyedia and Milad Najaf beygib

aCFD and Turbulence Research Laboratory, Department of Mechanical Engineering, University of
Qom, Qom, Iran; bDepartment of Mechanical and Aerospace Engineering, The University of
Oklahoma, Norman OK, USA

ABSTRACT
Computation time and data storage is a significant challenge in
every calculation process. Increasing computational speed by
upgrading hardware and the introduction of new software are
some of the techniques to overcome this challenge. One of the
most interesting methods for fast computations is the reduced
order frameworks. In this study, the aerodynamic coefficients of
the NACA0012 airfoil in subsonic and supersonic flows have
been reconstructed and estimated by a cost-efficient form of
combined proper orthogonal decomposition–high-order singu-
lar value decomposition (POD-HOSVD) scheme. The initial data
ensemble contains some members related to the variations of
the angle of attack and Mach number. To reduce the computa-
tion time, the structure of the standard combined POD-HOSVD
approach has been changed to a cost-efficient format. The
present method is a grid independent formulation of standard
combined POD-HOSVD for the fields with a large number of
elements and several effective variables. Results indicate more
than 90 percent reduction in the calculation time compares
with computational fluid dynamics and standard combined
POD-HOSVD methods for a subsonic flow field.
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1. Introduction

Today engineers are challenging with time-consuming numerical solutions
and introducing new software programs, and optimal methods are the pri-
mary goal of them. So reduce order methods have a significant impact
through this path. The most optimal reduce order model used for the first
time by Karhunen and Lumley in 1946 at the same year but separately, was
named proper orthogonal decomposition (POD), which is also known as an
extension of (K-H) (Karhunen, 1946; Lumley, 1967). Later, this method was
applied to various fields. Up to 1980, proper orthogonal decomposition
method has been used often in statistical big data analysis. Nowadays, this
approach is applying to a variety of issues such as image processing, data
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compression, signal analysis and the identification process. As a reduced order
model, the benefits of POD functions in comparison with the other modes are
as followed.

POD systems are often nonlinear equations. The POD modes derived
simply by the output data of numerical simulations, but in other methods,
equations must be linearised to consider on a case as an answer. Also in
other methods, the calculation of eigenvalues and eigenvectors produce
huge data matrices, which increase the calculation volume and make some
difficulties in the computational process. In the other side, POD functions
are optimal. So, there are no other modes that can express field in a lower
order than POD functions.

Recent progress in POD application, at turbulent flow problem, could
reduce a large number of numerical calculations. Modelling the turbulent
flow problems by POD had been started since 1967. Lumley used this method
for the first time to model the structure of nonhomogeneous turbulence in
atmospheric turbulence flow and radio wave propagation. However,
a significant development in the proper orthogonal decomposition method
occurred when the index technique was used in the context of this method in
1987 by Sirovich and Kirby (1987). He used the index technique to create
a process in the determination of human’s face. With this development, it was
possible to apply any non-square matrix to provide initial data for reduced-
order models based on proper orthogonal decomposition. Later, Karhunen-
Loeve expansion was used as a powerful method in dynamical systems,
reduced order modelling of the unsteady flow, turbulence flow and its inter-
action with structure (Chambes, Adrian,Moin, Stewart, & Sung, 1988; Dowell
et al., 1999; Holmes, Lumley, & Berkooz, 1996; Romanousk, 1996). Estimation
of the shock wave location in high-speed flow is another noteworthy applica-
tion of POD (Lucia, 2001). Bui-Thanh et al. (2004) used proper orthogonal
decomposition to study aerodynamic data reconstruction and inverse design.
He mixed experimental and numerical data to provide initial data or snap-
shots matrix for the POD process. His case of the study was an incomplete
data set of compressible external flow.He successfully applied PODon inverse
design, also determined the lost data in the initial database (Bui-Thanh,
Damodaran, & Willcox, 2004). POD was also used in database generation of
F16 aeroelasticity in various Mach numbers and angle of attacks. Modelling
the turbulent velocity structures of an open problem channel flow and reduce
order modelling of the supersonic developed compressible and transonic flow
around an airfoil for studying the small deformations of the airfoil is also part
of the applications of this approach (Bergmann & Cordier, 2008; Bourguet,
Braza, & Dervieux, 2011; Connell, Kulasiri, Lennon, & Hill, 2007; 1993;
Leschziner, Fishpool, & Lardeau, 2009; Lieu & Farhat, 2005; Moayyedi,
Sabour, Najafbeygi, & Hojaji, 2013; Sharma, 2009).
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The tensorial express of PODneeds high-order singular value decomposition
(HOSVD) as a method to decompose a tensor to some matrices (Lathauwer,
Moor, & Vandewalle, 2000). This method has been applied for classification of
handwriting by Berkant et al. (2006). HOSVD was used for modelling the
turbulence flow around NACA0012 2D and 3D models to Study the dynamic
stall by Martinat et al. (2008) (Berkant and Lars, 2006; Martin & Senior, 2008).
Lorente et al. found the HOSVD as an efficient method to generate an aero-
dynamic database for a 2D airfoil with the variations of three parameters: Mach
number, flap deflection angle and the angle of attack. Authors have achieved the
pressure distribution around the surface of the airfoil by HOSVD method
(Lorente, Vega, & Velazquez, 2008). Moayyedi et al. used a combined form of
POD and HOSVD model in free vibration simulation of a linear beam under
variations of several parameters (Moayyedi, Najafi, & Najafbeygi, 2014;
Najafbeygi, Sabour, Moayyedi, & Hojaji, 2014). Razvan Stefanescu and his
colleagues had research on tensorial proper orthogonal decomposition and
compared the results with numerical experiments, standard POD and POD/
discrete empirical interpolation method (DEIM), in a two-dimensional shallow
water equation test case. Authors employed a polynomial nonlinearities struc-
ture in POD technique to remove the dependence on the dimension of the
discretised system. Results show the tensorial POD can reduce the computa-
tional cost by up to 76× times. However, the method was two to eight times
slower than the POD/DEIMmodel. Finally, they used their tensorial method to
increases the calculation speed in the off-line stage of POD/DEIM model
(Ştefănescu, Sandu, & Navon, 2014).

Standard combined POD-HOSVD formulation requires a considerable
amount of data storage and extensive calculation time for reconstructing
flow fields with a large number of elements. But this method can change to
a more efficient and less time-consuming approach. The objective of this
paper is introducing a method to fast estimate the data from several
parameter variations in flow fields with a large number of elements
based on cost-efficient combined POD-HOSVD reduced order model.
For recovering lost data during the process of numerical simulation, the
proper orthogonal decomposition separately was combined with cubic
interpolation and cost-efficient HOSVD. The presented method is
a powerful approach in the reconstruction of the flow fields with a large
number of grids. Calculation time and occupied storage of cost-efficient
POD-HOSVD, combined POD-HOSVD and computational fluid
dynamics (CFD) methods have been compared. The relative error of
each grid, the pressure distribution lines, pressure coefficient and fraction
coefficient diagrams on the surface of the airfoil has been compared with
the results of the numerical solution. The results indicate the high compu-
tational speed and the accuracy of the proposed method.
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2. Proper orthogonal decomposition

The expressions of mathematical formulation here closely follow the refer-
ence (Bui-Thanh et al., 2004). If consider θ x; tð Þ as a random field on
a domain Ω. This field can decompose into μ xð Þ and time-varying
parts u x; tð Þ.

θ x; tð Þ ¼ uðx; tÞ þ μðxÞ (1)

At time tn, the system displays a snapshot un xð Þ ¼ uðx; tnÞ. The objec-
tive in POD is obtaining the most effective characteristic structure φðxÞ of
a set of snapshots of the field u x; tð Þ. Based on the Karhunen-Loeve
expansion, Lumley expressed that for coherent structures of turbulent
flows, this is equivalent to calculate the basis function φðxÞ. This function
maximised the following expression:

h u x; tð Þ;φ xð Þð Þ2i
hφ xð Þ;φ xð Þi With k φk2 ¼ 1; (2)

which (f,g) express the inner-product in L2 space as �
Ω
f xð Þg xð ÞdΩ and

k � k¼ ð�; �Þð1=2Þ: denotes the norm. Expression (2) means that the projec-
tion of field u along φ makes a content which is greater than a projection
of u along any other basis function. h�i; denotes the ensemble averaging
that can replace by time averaging with the assumption of ergodic flow:

h�i ¼ lim
T!1

1
T
�
T

0
dT: (3)

Similar to the Gram-Schmidt orthogonalisation procedure, in a subspace
that is orthogonal on φ xð Þ, maximisation of Equation (2) can be repeated,
and this repetition prepares the set of orthogonal functions that defined as
POD modes. By using POD modes,u x; tð Þ can be reconstructed as follow
(Bui-Thanh et al., 2004):

u x; tð Þ ¼
XN

k¼1

ak tð Þφk ~xð Þ; (4)

where the coefficient ak tð Þ is uncorrelated, i.e. and is determined by
ak tð Þ ¼ u x; tð Þ;φk xð Þ� �

. To use the POD snapshot, a set of fluctuations,
un xð Þ; with N members in different time steps, tn, has been considered as
the initial data. The discretisation can be on any other variables which are
obtained from CFD simulations or experimental tests.

un xð Þ ¼ u x; tnð Þ; (5)
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where un is unknown at the given time tn in each point of the computa-
tional grid. tn is a variable which belongs to parameters such as time, Mach
number or angle of attack. Mostly the step size of the tn is considered as
a constant amount. Also, from the mathematical viewpoint, the snapshots
must be liner independent.

C ¼ 1
n

Xn�1

i¼0

uiu
T
i ; (6)

where C is the correlation matrix

Cφk ¼ Λφk (7)

Λ0 � Λ1 � Λ2 � � � � � Λn�1 � 0, k = 0,1,2,. . ., n−1
where φ is the eigenvector, Λ is an eigenvalue of the POD and each

eigenvector is related to a specify eigenvalue. The POD modes actually can
be considered as the spatial correlation matrix eigenfunctions. Hence, POD
basis vectors are determined by Equation (5) as eigenvectors of C, while the
eigenvalues of C are determined with respect to the value of each vector. To
determine the eigenfunctions, Sirovich introduced snapshot method that does
not need explicitly to calculate the correlation matrix (Bui-Thanh et al., 2004).

If θ x; tð Þ is written as a matrix, Aij, the SVD method is obtained to solve
the correlation matrix. This method provides a situation to apply POD
even in non-square matrices. The SVD of an m × n matrix such as A, leads
to a decomposition A ¼ U �W � VT , where T stands for transpose, U is
an m × m orthogonal matrix that contains the left singular vectors; V is
n × n orthogonal matrix contains the right singular vectors. W is
an m × n positive definite matrix with diagonal entries contains r nonzero
elements, that known as singular values (eigenvalues) of matrix A, where
r is the rank of matrix A. U and V can be calculated as the eigenvectors
associated with the nonzero eigenvalues of the (symmetric) matrices A � AT

and AT � A. Consequently, the SVD of A is written as the following expres-
sion (Lathauwer et al., 2000):

Aij ¼
Xr

l¼1

UilWlV
T
jl : (8)

2.1. Combined POD-SVD snapshot method with cubic spline interpolation

Generally, in a POD-SVD solution, any set of data is decomposing into two
parts, variables and constant data. The variables are determining an exclusive
feature of each data set. In order to use this feature, the matrix of numerical
data, at different angles of attack, for various Mach numbers, is considered as
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initial data. Instead of the angle of attack and Mach number, any other
optional parameters also can be obtained. These parameters assumed to be
arbitrary parameters such as δ. A set of numerical or experimental data from
flow field for different values of δ must be prepared, which is arranged
intentionally. To predict the flow field for each value of δ, which does not
exist, an eigenvalue problem has to be solved. φk is the eigenvalue of the flow
field. To estimate the flow field for the desired values of δ, the modal
coefficients (ak) have to be interpolated or extrapolated. Hence, instead of
interpolation between all grids of the field, combined POD-SVD snapshot
method with an algorithm of interpolation or extrapolation is reconstructing
the field just by obtaining an interpolation or extrapolation algorithm in
modal coefficients (ak) (Najafbeygi et al., 2014). Through this method, the
number of interpolation or extrapolation operations is going to reduce sig-
nificantly. Themost known and classic algorithm for interpolation is the cubic
spline. Actually, this algorithm is based on a polynomial between two nodes.
Splines produce a function that includes first and second derivatives. So,
splines can be more stable than fitting some polynomial. In this case, the
cubic spline will be continued among the different variations of (ak).

3. High-order singular values decomposition

HOSVD is a tensorial form of standard SVD, which only applies to matrices
(Lorente et al., 2008). If A is considered as a high-order tensor, it has been
decomposed into the matrices. In this case, the snapshot tensor has been
decomposed to the symmetric matrices to calculate the eigenvectors and eigen-
values. Consequently, it is possible to reconstruct a reduced order model of
snapshot tensor A. Tensor decomposition is expressed by the following
equation:

Aijk ¼
Xr1
η

Xr2
μ

Xr3
ζ

σημζuiηvjμwkζ ; (10)

where σημζ is the components of another third-order tensor, called the
core tensor the (the order of the core tensor is always equivalent with the
order of snapshot tensor). uiη; vjμ and wkζ are matrices that are known as
HOSVD modes (eigenvectors) also uiη; vjμ; wkζ are the components of
some orthogonal systems. These are eigenvectors of symmetric matricesB1

il,
B2
jl and B3

kl. On the following expression, any tensor can be decomposed to

the symmetric matrices. In this case, we applied a third-order tensor as the
initial snapshot data. The first and second indexes of tensor Aijk are
variations of the angle of attack and Mach number, and the third index
is about the number of grids of the flow field. In fact, snapshot tensor can
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be in any order, and its order only depends on the number of various
parameters. So, the HOSVD procedure is started by producing symmetric
matrices as follow:

B1
il ¼

X
j;k

AijkAljk

B2
jl ¼

X
i;k

AijkAilk

B3
kl ¼

X
i;j

AijkAijl (11)

The HOSVD modes are given by:

Xm1

l¼1

B1
iluiη ¼ αη

� �2
uiη; η ¼ 1; 2; . . . ;m1

Xm2

l¼1

B2
jlvjμ ¼ βμ

� �2
vjμ; μ ¼ 1; 2; . . . ;m2

Xm3

l¼1

B3
klwkζ ¼ γζ

� �2
wkζ ; ζ ¼ 1; 2; . . . ;m3; (12)

where, mi is the rank of the matrix Bi. The positive scalar amounts, αη, βμ
and γζ are the high-order singular values of the snapshot tensor. When the
calculation of the HOSVD modes done, the core tensor can calculate by
the following equation:

σημζ ¼
Xm1

i

Xm2

j

Xm3

k

Aijkuiηvjμwkζ : (13)

3.1. Standard combined POD-HOSVD model

To construct a reduced order model based on tensorial data, a similar manner
with POD method has been used. HOSVD can decompose a tensor to the
symmetric matrices (Equation (11)). Then, the POD approach is applied to
compute the reduced order model of the field by eigenvalues and eigenvectors
of these symmetric matrices (Equation (12)). The mentioned approach is
creating a reduced order model, which is the combination of POD and
HOSVD methods. The required number of modes to reconstruct an approx-
imate model of the field is determined by the parameter Si. This number can
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be chosen by considering the relative energy of each mode. Consequently, the
following expression is the reduced order model of tensor A:

Aijk ffi
XS1
η

XS2
μ

XS3
ζ

σημζuiηvjμwkζ : (14)

where Si � mi. Figure 1 shows a schema of the standard tensor decom-
position to a core tensor and three eigenvector matrices. At the following
schema, the snapshot tensor decomposed to three plates which are the
modes and a cube which is representing the core tensor (Lorente et al.,
2008).

4. Mode selection to construct a reduce order model

Generally, in reduce order approaches, increasing the number of modes,
leads to a more accurate model. Therefore, there is an optimum condition
for choosing less number of modes to reconstruct the reduced order model
(ROM) of the flow field. Thus, the total relative energy of modes is
calculated, to choose the modes with the highest level of energy, by
following equation (Bui-Thanh et al., 2004):

k ¼
PNr

i¼1 λiPNTotal
i¼1 λi

; (15)

where λ is the eigenvalues of the snapshot matrix and NTotal is the total
number of snapshots for a certain parameter. If the value of k is equal to
99.9%, Nr shows the optimum number of modes to reconstruct a reduced
order model by sufficient accuracy.

Figure 1. Standard tensor decomposition for a third-order snapshot tensor (Lathauwer et al., 2000).
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Algorithm 1: combined POD-SVD snapshot method with cubic spline
interpolation

1. Prepare snapshots matrix
2. Calculate the eigenfunctions φk and eigenvalues λ of snapshot matrix by
SVD algorithm

3. Estimate the eigenvalues of the field for the desired value of parameter δ
by using a cubic spline interpolation algorithm on eigenvalues matrix.

4. Define order reduction criteria (Equation (15)) and choose the modes to
construct a reduced order model.

5. Reconstruct the estimated field by modes that have been chosen in 4 and
Equation (14).

5. Cost efficient combined POD-HOSVD model

In combined POD-HOSVD tensor decomposition procedure, the grids
of the field always are defined as a variable parameter. In the standard
combined POD-HOSVD method, wkζ is a symmetric matrix which is
containing m3 × m3 arrays. The arrays of this matrix in each row and
column are equal to the number of flow field grids. Hence, in the
decomposition of snapshot tensor, computation of wkζ needs a lot of
calculation time and storage capacity. Also, calculation of σημζ is
another costly part of the HOSVD procedure. To define the required
time for the reconstruction of the field, in addition to the σημζ and wkζ

time consumption, we need to consider the required time for the inner
product of these two variables. For instance, if the flow field in each
snapshot has 9,600 grids, the number of arrays of wkζ will be around
9 × 107. So, production and involvement of wkζ in the calculation
procedure is the beginning stage of computational difficulties. This
problem conducted us to provide a cost-efficient combined POD-
HOSVD method. The following formulation is proposed, instead of
Equation (13), to reduce the CPU time by the authors recently:

σημk ¼
Xm1

i

Xm2

j

Aijkuiηvjμ: (16)

In Equation (16) σημζ changed to σημk and wkζ is eliminated (it can be
demonstrated by continuum mechanics rules). wkζ is associated with
properties of grids of the flow field. In the above formulation, the location
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properties of grids of one snapshot transferred to the core tensor and
calculation of the matrix wkζ completely extracted from POD-HOSVD
decomposition procedure. Finally, the reconstructed flow field is calculat-
ing, by the following equation:

Aijk ffi
XS1
η

XS2
μ

σημkuiηvjμ: (17)

Figure 2 shows a schema of cost-efficient tensorial decomposition. The
core tensor σημk is carrying the k index. Therefore, it is possible to
eliminate the matrix wkζ .

Now with an interpolation or extrapolation algorithm, it is possible to
estimate the eigenvectors of any desired field. So, Equation (17) can be
written as the following expression:

Tk ffi
XS1
η

XS2
μ

σημkuintηvintμ; (18)

where Tk is the matrix of desired filed which was not existing in the
snapshot tensor. uintη and vintμ are interpolated eigenvectors, and σημk is
the transformed core tensor. In this case of study, u and v matrices are
containing variations of Mach number and angles of attack respectively.

Algorithm 2 and 3 are the standard combined POD-HOSVD method
and the cost-efficient combined POD-HOSVD method for the same
snapshot tensor that includes several variables. The second, third and
fourth steps of the standard combined POD-HOSVD are different from
the cost-efficient combined POD-HOSVD method. The novelty of the
presented method is on a new definition of the core tensor that is
containing all grids of the field. Subsequently, it is no longer required

Figure 2. Schema of matrix elimination and index transfer, to reconstruct the reduce order
model of tensor A.
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to compute the symmetric matrix of grids and calculating its eigenvec-
tors to produce the core tensor.

Algorithm 2: Standard combined POD-HOSVD snapshot method with
cubic spline interpolation

1. Preparing the snapshot tensor that includes several matrices A1;���;N .
2. Decomposition of any symmetric or asymmetric snapshots tensor to

symmetric matrices by

Bn
il ¼

X
"n; n�l;i

A1;���;i;���;N � A1;���;l;���; N

n is the number of parameters, n = 1,. . .,N
3. Calculation of the eigenvalues and eigenvectors of the symmetric

matrices
l is counting the variations of each parameter.
n is the number of parameters.
mn is the total number of variations of each parameter.
αη are the eigenvalues of the symmetric matrix.
uiη are the eigenvectors of the symmetric matrix.

Xmn

l¼1

Bn
iluiη ¼ αη

� �2
uiη;

η ¼ 1; 2; . . . ;mn

4. Calculation of the core tensor σ1;���;M for the snapshots tensor A1;���;N .
where M is equal to N.
The core tensor is the result of the inner product of the snapshot tensor
and symmetric matrices eigenvectors, which have been calculated at the
third step.
5. Definition of the order reduction criterion (Equation (15)) and choosing
the number of modes to construct the ROM.

6. Interpolation or extrapolation the eigenvectors to find the variables of
the estimated field.

7. Constructing the estimated field as the result of the inner product of
the core tensor and a sufficient number of eigenvectors for each
parameter.
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Algorithm 3: Cost-efficient combined POD-SVD snapshot method by
cubic spline interpolation

1. Preparing the snapshot tensor, contains several matrices A1,. . ., N.
2. Decomposing any symmetric or asymmetric snapshot tensor to sym-

metric matrices by

Bn
il ¼

X
"n; n�l;i

A1;���;i;���;N � A1;���;l;���;N

n is the number of parameters. n = 1,. . ., N − 1
There is no need to produce the symmetric matrix for grids.
3. Calculation of the eigenvalues and eigenvectors of the symmetric

matrices by Lagrange algorithm.
4. Calculation of the core tensor by transferring the index of grids to the

core tensor and eliminating the eigenvectors of grids from the core
tensor calculation (Equation (16)).

5. Defining the order reduction criteria (Equation (15)) and choosing
modes to construct the reduced order model.

6. Interpolating or extrapolating the eigenvectors to find the variables of
the estimated field.

7. Constructing the estimated field as same as the standard method.

6. CFD calculations of snapshots

In this research, to obtain the preliminary data, which are mentioned
above as snapshots, the CFD method has been used to calculate the
aerodynamic coefficients of a NACA0012 airfoil in inviscid flow. The
calculation was done by a 2.30 GHz CPU, 8 GB RAM and 64-bit operating
system. The Roe flux splitting method and circle (O Type) mesh with 9600
elements is considered for the CFD simulation. The CFL was assumed to
be 1. Elements are generated as structured mesh, shown in Figure 3.

Initial data for variations of the angle of attack and Mach number in
subsonic and supersonic flow are generated. Subsequently, snapshots can
be divided into two main parts, subsonic and supersonic snapshots. To
validate the initial data, in the following comparative example the numer-
ical method has been compared with experimental results, in pressure
coefficient of NACA0012 in Mach number of 0.8 and the angle of attack
of 10 degrees in Reynolds number of 500. Figure 4 depicts the implemen-
tation of experimental results and CFD computation.
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7. Snapshots details

Snapshots are divided into two parts such as subsonic and supersonicflowfields.
In this study, the angle of attack andMach number is as the variable parameters.
There is no limitation on choosing the number of variable parameters. The angle
of attack is changed between 2.5 and 17.5 degrees by step sizing of 2.5 degrees for
both subsonic and supersonic flows. Mach number varies from 0.35 to 0.65 by

Figure 4. Pressure distribution on the surface of NACA0012 at M∞ = 0.8, Angle of attack = 10
and Re = 500 (1993).

Figure 3. Structured mesh generation around the airfoil NACA0012.
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the step sizing of 0.15 for subsonic flow. In the supersonic flow test case, Mach
number variations are between 1.2 and 2.8 by the step size of 0.2. In subsonic
flow field, laminar compressible flow at the Reynolds number of 500 and in
supersonic flow Reynolds number considered as 500,000.

8. Results and discussion

In general, snapshots included variables for subsonic and supersonic flows. In
subsonic flow field, the variation of the angle of attack varies 2.5–17.5 by
2.5-degree step size and the Mach number variation is 0.35–0.65 by the step
size of 0.15 and Reynolds number of 500. Also in supersonic flow variation of
Mach number is between 1.2 and 2.8 with the step size of 0.2. The angle of attack
variance is the same as the subsonic flow field, and Reynolds number is 500,000.
Combined POD-HOSVD and cost-efficient POD-HOSVDmethods were com-
pared in computational time consuming and required storage at the specified
set of snapshots. To generate the missing data, the cost-efficient combined
POD-HOSVD method was combined with the cubic spline interpolation
method. Figure 5(a,b) shows the variations of the relative energy of each mode

Figure 5. Relative energy spectrum of HOSDVmodes: (a) angle of attack, (b) Mach number modes
in subsonic flow filed, (c) angle of attack and (d) Mach number modes in supersonic flow filed.
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for the angle of attack andMach number in subsonic flow. The total number of
variation ofMach number and angle of attack in snapshot tensor is determining
the number of generated modes. Hence, in subsonic flow filed seven and three
modes for the angle of attack and Mach number respectively produced by
decomposition. Calculation of the relative energy percentage of the angle of
attack and Mach number shows that 99.9 percentage of relative energy is
captured only by six modes of the angle of attack and two modes of Mach
number. In the same figure, (c) and (d) depict the captured relative energy
percentage byMach number and angle of attack modes in supersonic flow. The

Table 1. Comparison of the computational time and storage capacity.

Method
Computational

time (s)
Computational time percentage

in comparing with CFD
Produced extra data
for calculation (MB)

RAM
(MB)

CFD 550 100% 7.2 160
Standard combined POD-
HOSVD

512 93.1% 3,328 380

Cost efficient combined
POD-HOSVD

5 0.9% 10.1 100

Figure 6. Contours of the first four strongest HOSVD modes of the angle of attack on the first
mode of Mach number that captured the highest level of total kinetic energy of the subsonic
flow field.
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firstfivemodes of the angle of attack and thefirst sixmodes of theMach number
are the most effective modes when they have captured the 99.9 percentage of
relative energy.

Table 1 shows a comparison in computational time for subsonic flow
field snapshot tensor between CFD and cost-efficient combined POD-
HOSVD methods. This tensor has 201,600 arrays. The cost-efficient

Figure 7. Contours of the first three strongest HOSVD modes of Mach number on the first
mode of the angle of attack that captured the highest level of total kinetic energy of the
subsonic flow field.

Figure 8. Contours of the first four strongest HOSVDmodes of the angle of attack on the first mode
of Mach number that captured the highest level of total kinetic energy of the supersonic flow field.
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combined POD-HOSVD approach is around 100 times faster than regular
combined POD-HOSVD method. Results indicate that standard combined
POD-HOSVD approach produces around 3 GB more data.

The subsonic flow was modelled only by six modes of the angle of attack and
two modes of Mach number. Also, in supersonic modelling five modes of the
angle of attack and six modes of Mach number have been used. Figure 6 shows
HOSVD modal distribution in subsonic flow for the first four modes of the
angle of attack on the first mode of Mach number. Figure 7 depicts the modal
distribution of the first three modes of Mach number in the first mode of the
angle of attack.

By Figures 6 and 7, it is evident that the first mode captured a higher
level of the kinetic energy of the field. So, it is the most detailed modes of
the field. Figure 8 shows mode distribution in supersonic flow field for the
first four modes of the angle of attack and the first mode of Mach number.
Figure 9 is the HOSVD modes for the first four modes of Mach number
and first mode of the angle of attack.

Generally, despite the longer distance of angle of attack variations (in
comparison with Mach number variance in subsonic and supersonic flow
fields) themodes of the angle of attack captured a higher level of relative energy.

Figure 9. Contours of the first four strongest HOSVD modes of Mach number on the first mode of
the angle of attack that captured the highest level of total kinetic energy of the subsonic flow field.
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Figure 10. Contour of the pressure coefficient in 13 degrees and the Mach number of 0.45,
solid lines are CFD data, dashed lines are reconstructed filed using CE-POD-HOSVD model.

Figure 11. Surface pressure distribution in 13 degrees and the Mach number of 0.45.
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It can be concluded that this approach is more sensitive to Mach number
variance than the angle of attack.

According to the results of the surface pressure coefficient distribution
of airfoil NACA0012 and pressure distribution of the flow field, it can be
obtained, that in subsonic and supersonic flows, the reconstructed field,
highly matched with the numerical data especially in the near distances to
the surface of the airfoil (Figure 10–13). Therefore, constructed data can be
applied to estimate the airfoil drag and lift. Table 2 shows the comparison
of the lift and drag coefficients in subsonic and supersonic flows between
CFD results and cost-efficient combined POD-HOSVD method.

Results indicate that cost-efficient combined POD-HOSVD approach is
a highly reliable method. Thus, the skin friction coefficient is one of the most
sensitive data of an airfoil in the flow field. Results directly refer to the accuracy
of approach in the near distance of the airfoil in subsonic and supersonic flows.
According to the obtained data, cost-efficient combined POD-HOSVD can be

Figure 12. Contour of the pressure coefficient at an angle of attack of 8 degrees and the Mach
number of 2.1, solid lines are CFD data, dashed lines are reconstructed filed using CE-POD-HOSVD
model.
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applied to different parameters of the field (see Figure 14–15). Also, the aero-
dynamic coefficients data acknowledge a very high accuracy of the method in
flow field estimation. Relative error percentage contour of each element in
subsonic and supersonic fields show the deviation of the constructed field
with CFD simulation for each element. It is observed that in subsonic flow,
most parts of the field matched precisely with CFD results (Figure 16). In
supersonic flow, only after the shock wave, it can estimate properly (Figure
17). Also, in supersonic flow, it can be a reliable scheme for flow field after the
shock wave, nearby the airfoil. Supersonic flows can be categorised in the
hyperbolic problems which are two primary characteristics lines. Due to this
reason and the creation of shock waves in the flow field, the transmission of
information in the field is performed in two regions which are called active and

Figure 13. Surface pressure distribution at an angle of attack 8 degrees and the Mach number
of 2.1.

Table 2. Comparison of the lift and drag coefficients.

CFD
Cost efficient combined

POD-HOSVD
Error in comparing

with CFD

Lift coefficient (subsonic flow) 0.4096171 0.4119045 0.56%
Drag coefficient (subsonic flow) 6.4353794E−02 6.4585261E−02 0.36%
Lift coefficient (supersonic flow) 0.8405706 0.8324854 0.96%
Drag coefficient (supersonic flow) 8.1440508E−03 7.8240037E−03 3.93%
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Figure 14. Skin friction coefficient distribution at an angle of attack 13 degrees and the Mach
number of 0.45.

Figure 15. Skin friction coefficient distribution at an angle of attack of 8 degrees and the
Mach number of 2.1.
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Figure 16. Contour of the relative error of pressure coefficient in subsonic flow field at an
angle of attack of 13 degrees and the Mach number of 0.45.

Figure 17. Contour of the relative error of pressure coefficient in supersonic flow field at an
angle of attack of 8 degrees and the Mach number of 2.1.
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silent. With respect to the reasons which are mentioned above, the flow field in
the downstream of the shock wave is more important for the prediction of
aerodynamic data. One of the numerical approaches for the solution of super-
sonic flows is a shock fitting scheme. In this scheme, the flow field in the
downstream of the shock wave is more important. Therefore, the higher error
of the flow field in the upstream region is not very important for the calculation
of aerodynamic data in the supersonic flow regime.

9. Conclusion

Standard combined POD-HOSVD is a powerfulmethod to reconstruct the field
with various numbers of effective parameters. Besides this advantage, the
HOSVD approach has a lack in the reconstruction of the whole flow field
with a large number of elements (grids). The challenge was overcome by the
formulation which was presented in this research. HOSVD method was for-
mulated independently from the spatial grids of snapshots. So, the elimination
of a huge matrix from calculation indicates that the cost-efficient combined
POD-HOSVDmethod is significantly faster than regularmethods. Based on the
results, for a specific test case, the cost-efficient combined POD-HOSVD
approach is about 100 times faster than standard combined POD-HOSVD
method. That makes it a good choice for reconstruction of the missing or
incomplete data, without time-consuming of CFD simulation. Also, the cost-
efficient combined POD-HOSVD method can be applied as a fast pre-
processing approach. The error percentage of the estimated flow field in sub-
sonic and supersonic flows shows that the approach has sufficient accuracy to
estimate integral data such as lift and drag coefficients and the simulation of the
whole flow field. The proposed model can be applied for any problems with
a snapshots tensor under the variations of some effective parameters such as
modelling of a control system, inverse design and inverse problems, and free
vibration of beam models under the effect of different loadings and changes of
the effective parameters.
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