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ABSTRACT
The purpose of this work is to efficiently evaluate the design
of cathodic protection (CP) systems of tank bottoms using
concentric ring or linear anodes. As customary in current
CP systems, the outer surface of the tank bottom is usually
in electrical contact with a slender homogeneous layer of
conductive concrete (or something similar) which in turn is in
direct contact with the homogeneous deep soil region. The
boundary element method (BEM) together with a subregion
technique has been widely adopted to analyse such CP systems
where the domain consists of two (or even more) homogeneous
zones. However, the numerical solution of the final matrix
system of equations can be quite time-consuming, especially if
the slender intermediate layer is to be discretised, requiring a
considerable number of elements, due to its somewhat reduced
thickness. To overcome this problem, the present work proposes
a new methodology in which the slender subregion is indirectly
introduced, as a theoretically created polarisation curve, acting
as a new boundary condition at the boundary of the soil
domain (original common interface). Numerical simulations have
been carried out using BEM implementations and results are
discussed, including CP studies of practical axisymmetric and
three-dimensional engineering problems.
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1. Introduction

Cathodic protection (CP) is an electrochemical technique used to prevent or
to reduce corrosion rate of metallic structures. Electrochemical systems re-
quire anode, cathode, electric circuit and electrolyte to promote the current
flux between anode and cathode. Thus, cathodic protection can be applied to
buried, submerged or, less frequently, concrete structures. The protection of
the structure against corrosion can be achieved by making it the cathode of an
electrochemical cell. Thermodynamically, steel is immune to corrosion processes
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when the electrochemical potential achieves a predetermined value, as prescribed
by specific standards (ISO/15589-1, 2015; NACE/SP0169, 2007).

In practice, the goal is to provide a uniform potential distribution on themetal
surfaces, limited by a minimum potential value to guarantee protection from the
corrosion using an external power source (impressed current CP) or a galvanic
anode (Fontana&Greene, 1967; Roberge, 1999). The concept of this technique is
widely discussed in the literature (Peabody, 2001). Galvanic or impressed current
are used to protect structures such as offshore platforms, ships, buried pipelines
and storage tanks.

Considering aboveground storage tanks, internal and external corrosion
processes can occur. To prevent internal corrosion, galvanic anodes can be
placed on the bottom of the tank and to protect the underside (soil side), im-
pressed current is an option. Effective cathodic protection will increase reliability
and reduce costs associated with maintenance and inspection. Installation of
secondary spill containment, motivated by past tank failures and associated
environmental damage, is currently required for new tank installations (US-
EPA, 1988). Cathodic protection of tanks with secondary spill containment
can be achieved using anodes placed between the liner and the tank bottom
(Koszewski, 1999). In addition, a common configuration includes the use of
a slender homogeneous medium, as sand/bentonite mixtures or conductive
concrete, for example, between the tank and the homogeneous deep soil region.

The traditional cathodic protection systems design consists of the application
of empirical formulas to determine the current density required. The great
advantage in applying numerical techniques to analyse and optimise cathodic
protection systems is the possibility of considering the actual geometry of the
structures. The current density and potential distributions are influenced not
only by the electrolyte resistivity, but also by the structure geometry.

Themost commonmethods formodelling cathodic protection systems are the
finite element method (FEM) and the boundary element method (BEM). Math-
ematical simulations of cathodic protections systems using FEM can be seen in
Montoya,Aperador, andBastidas (2009),Montoya,Gakvan, andGenesca (2011),
Parsa, Allahkaram, and Ghobadi (2010). Due to its accuracy and simplicity of
mesh generation, the BEM is the most appropriate technique to solve problems
involving CP systems (Riemer & Orazem, 2010). This method requires only
the representation of anodes and cathodes surfaces, which may lead to better
resolution and reduction in computer run time. Several different applications
of BEM to study CP systems have been reported in the literature, including
reference to practical analyses performed by offshore oil companies (BEASY,
2000; Brasil, Telles, & Miranda, 1991; Kim, Kim, Choi, Lim, & Kim, 2017;
Santiago & Telles, 1997; Telles, Mansur, Wrobel, & Marinho, 1990). Recently,
the method of fundamental solution (MFS) has also been used successfully to CP
problems (Santos, Santiago, & Telles, 2012, 2014, 2016).
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Polarisation curves define the electrochemical conditions of a metallic surface
in an electrolyte, considering the relation between current density and poten-
tial. The good correlation between in-situ measurements and numerical results
largely depends on the appropriate prescription of boundary conditions that are
based on experimental tests carried out in laboratory. Therefore, polarisation
curves and resistivity values, applied as problem conditions, need to be carefully
determined to guarantee accurate results. The BEM implementation includes a
Newton–Raphson solution algorithm to accommodate the nonlinear boundary
conditions given by such polarisation curves (Azevedo &Wrobel, 1988).

The numerical solution of the matrix system obtained with the BEM is a time
consuming step of the technique, and hence can be a burden in presence of large
number of elements. In Kita andKamiya (1994), this disadvantage was overcome
transforming the linear system for each subregion into equations similar to the
stiffness equations of the FEM, and then the global matrix equation can be
constructed by superposition of these equations for each subregion.Nevertheless,
a relatively large global coefficient matrix was still needed. Lu and Wu (2005)
proposed a new subregion boundary element technique based on the domain
decompositionmethod. The technique ismore efficient than traditionalmethods
because it significantly reduces the size of the final matrix, being applicable to
the stress analysis of multi-region elastic media, such as layered materials.

Storage tanks can be located on top of a slender homogeneous layer of
conductive concrete which in turn is in direct contact with the homogeneous
deep soil region. In this scenario, the BEM procedure together with a subregion
technique can be used to analyse the multi-region CP system. The present work
proposes a newmethodology in which a theoretically created polarisation curve,
to be introduced at the common interface of adjacent zones, is obtained. This
allows for a standard single regionBEMsolutionprocedure to be applied,without
need to discretise the slender subregion.After obtaining the potential and current
density at the original concrete/soil interface, the potential distribution can be
easily obtained over the actual tank bottom by an inversion of the theoretical
process used for getting the modified polarisation curve. Results of applications
are discussed to demonstrate the accuracy and efficiency of themethod, involving
bottoms of storage tanks.

2. Mathematical model

In order to design CP systems for tank bottoms, one needs to know the elec-
trochemical potential and current density over the metal to be protected. As
can be seen in Figure 1, the tank bottom is usually in electrical contact with a
slender conductive concrete layer, of low resistivity ρ1, which in turn is in direct
contact with a homogeneous deep soil region of resistivity ρ2. Furthermore, CP is
achieved using anodes placed between the liner and the slender conductive layer.

370 W. J. SANTOS ET AL.



Figure 1. Hypothesis of the potential problem.

The conductive concrete layer height is represented as h1, whereas the height of
the soil region is denoted by h2.

Considering that the CP technique includes the two subregions of Figure 1,
the mathematical model of the problem is based on a Laplace equation for the
electrochemical potential (φ):

∇2φ = 0. (1)

Over the metal surface in direct contact with the conductive concrete, the
boundary condition is given by the polarisation curve, which describes a non-
linear relationship between current density (i) and electrochemical potential on
the metal, φ = f (i). All the other boundaries are insulated (i = 0A/m2). In
addition, from Ohm’s law

i = k
∂φ

∂n
, (2)

in which k is the conductivity of the electrolyte and n is the outward normal to
the boundary �.

The starting equation to represent the electrical field problem using boundary
elements (Brebbia, Telles, & Wrobel, 1984) is

c(ξ)φ(ξ) =
∫

�

φ∗(ξ , x)i(x)d� −
∫

�

i∗(ξ , x)φ(x)d�, (3)

where φ∗(ξ , x) and i∗(ξ , x) define the fundamental solution for potential and re-
spective current density. The coefficient c(ξ) depends on the boundary geometry
at the source point ξ .

In order to solve numerically Equation (3), the boundary� is to be discretised
into a number of elements whose geometry, current and potential are approxi-
mated as functions of the nodal values. Thus, the familiar algebraic system can
be obtained (Brebbia et al., 1984):
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Hφ = Gi. (4)

For nonlinear boundary conditions, system (4) is usually solved by a tangent
Newton–Raphson method, which can be formulated considering only the first-
order terms in a Taylor series expansion:

ik = ik−1 + Jk−1φk, (5)

where the Jacobian matrix J is given by

Jk−1 =
(

∂i
∂φ

)k−1
. (6)

The axisymmetric fundamental solution for Laplace’s equation is used to
simulate the CP system of tank bottoms using concentric rings. In this case,
the fundamental potential can be calculated explicitly in terms of the complete
elliptic integral of the first kind K(m) as (Brebbia et al., 1984)

φ∗
axis =

∫ 2π

0
φ∗(ξ , x) dθ = 4K(m)

(a + b)
1
2
, (7)

where φ∗ is the three-dimensional fundamental solution in cylindrical polar
coordinates (R, θ ,Z) and

m = 2b
a + b

,

a = R2(ξ) + R2(x) + [
Z(ξ) − Z(x)

]2 ,
b = 2R(ξ)R(x). (8)

The parameterm has range of [0, 1]. The normal derivative of the axisymmet-
ric fundamental solution is given by

i∗axis = 4

(a + b)
1
2

·
{

1
2R(x)

[
R2(ξ) − R2(x) + [

Z(ξ) − Z(x)
]2

a − b
E(m) − K(m)

]
nR(x)

+ Z(ξ) − Z(x)
a − b

E(m)nz(x)
}
, (9)

where E(m) is the complete elliptic integral of the second kind.
For convenience of numerical implementation, the complete elliptic integrals

are approximated by polynomial expressions (Abromowitz & Stegun, 1965).
Substituting Equations (7) and (9) into Equation (3), written in cylindrical polar
coordinates, and using a collocation technique, it is possible to obtain the system
of Equations (4).
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Figure 2. Domain divided into two subregions.

3. Traditional solution technique

The potential problem cited above and illustrated in Figure 1 is defined over a
piecewise homogeneous body consisting of two subregions and, therefore, the
boundary element procedure can be applied to each homogeneous subregion (see
Figure 2). The final set of equations for the whole region can then be obtained
by assembling the set of Equations (4) for each subregion using compatibility of
potentials and equilibrium of fluxes between the common interfaces (Brebbia &
Dominguez, 1989; Brebbia &Walker, 1980).

The problem under consideration is usually solved using the BEM procedure
with a subregion technique. In this case, a large number of elements is required in
order to discretise the slender subregion in direct contact with the tank bottom.
For this reason, the purpose of the present paper is to obtain a theoretically
created polarisation curve, acting as a new boundary condition at what was the
original common interface.

4. A new solution technique

In order to create the theoretical polarisation curve on the interface, the current
flowing through the slender conductive concrete was considered as a through
layer thickness linear circuit (resistivity ρ1). According to Ohm’s law, there is
a linear relationship between the voltage drop across a circuit element and the
current flowing through it. In equation form, this relation can be written as
follows:

V = IR, (10)

where V is the potential difference (φ1 − φ2) between any two points, in volts
(V), I is the current flowing through, in Amperes (A), and R is the resistance,
in ohms (	), as shown in Figure 3. Considering a homogeneous and isotropic
material with resistivity ρ1, a cross-sectional areaA and the height h1, the current
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Figure 3. Potential difference between any two points in a circuit.

density and the resistance are given, respectively, by the following equations:

i = I
A
, (11)

R = ρ1
h1
A

. (12)

Using the Equations (11) and (12), it is possible to rewrite the relation (10) for
any two points presented in Figure 3 as

φ1 − φ2 = iρ1h1. (13)

After experimentally determining the polarisation curve for the tank bottom,
which is in electric contact with the conductive concrete, Equation (13) can be
used to create a theoretical polarisation curve for the concrete/soil interface.
For each pair of points (ik,φk

1) given by experimental polarisation curve over the
tankbottom, the corresponding theoretical polarisation curve in the concrete/soil
interface is approximated by the point pairs (ik,φk

2) ≡ (ik,φk
1 − ikρ1h1). Thus,

only the soil layer of resistivity ρ2 needs to be considered and hence a stan-
dard single region BEM procedure can be applied. Finally, after calculating the
potential at the boundary that was the original interface, the inversion relation
φk
1 = φk

2 + ikρ1h1 is used to determine the potential distribution on the tank
bottom.

5. Numerical results

5.1. Boundary condition

A polarisation curve is a plot of current density (i) versus electrode potential (φ)

for a specific electrode–electrolyte combination. Plots of log |i| vs. φ or vs. (φ −
φo) are the basic kinetic law for any electrochemical reaction.

In order to use polarisation curves as boundary conditions, experimental tests
should be carried out as close as possible to the real conditions of the cathodic
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Figure 4. Experimental device to obtain polarisation curve, considered as boundary condition.

protection system under study. Figure 4 shows the experimental device used to
obtain the relation between these parameters (current density and potential).
A common methodology includes a three-electrode cell: a steel coupon as a
working electrode, a reference electrode and a counter-electrode (or an auxiliary
electrode).

5.2. Two-dimensional problem

For the purpose of testing the proposed methodology, a tilted anode cathodic
protection system, shown in Figure 5, was initially analysed. The sacrificial
anodes are mathematically represented by linear sources producing a current
intensity of −0.06A/m. The idea was to achieve a potential distribution on the
metal surface below the minimum potential: φ ≤ φc = −0.850V (vs. SCE). The
two zones present resistivities ρ1 = 80	m and ρ2 = 500	m. The height of
the first subregion is 0.5m.

Table 1 presents the experimental polarisation curve on the metal (i × φ1)

and the corresponding theoretical polarisation curve (i × φ2), estimated for the
interface location and obtained by relation (ik,φk

2) ≡ (ik,φk
1 − ikρ1h1).

The proposed formulation is compared with the alternative subregion tech-
nique. Figure 6 shows the potential distribution obtained on the metal surface
using the subregion technique and the proposed methodology, where the simi-
larity of the results can be seen.

Using the proposed methodology, the process time was approximately one
fourth of the subregions approach. In applications involving optimisation prob-
lems and inverse problems, this difference will be a lot more significant, due to
the necessity of recursively solving the numerical problem. In addition, for this
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Figure 5. A two-dimensional potential problem.

Table 1. Polarisation curves for the two-dimensional problem.

Current density (A/m2) Potential on the metal (V) Potential in the interface (V)

0.0022 −0.835 −0.923
0.0062 −0.850 −1.098
0.0141 −0.874 −1.438
0.0192 −0.881 −1.649
0.0273 −0.903 −1.995
0.0452 −0.945 −2.753
0.0570 −0.984 −3.264
0.0780 −1.033 −4.153
0.1554 −1.086 −7.302

example, the geometry was even simplified, avoiding the re-entrant corners of
the original problem.

5.3. Axisymmetric problem

In this application, the cathodic protection of an external tank bottom (see Figure
1) is analysed. Here, a conductive concrete layer with height h1 = 0.03m and
resistivity ρ1 = 87	m is considered and the resistivity of the soil layer with
height h2 = 0.3m is ρ2 = 331.34	m. Aiming at reducing corrosion and
extending the service life of the tank bottom, a system of concentric ring anodes
is proposed. The number of such rings usually varies with the tank diameter.
In this case, the diameter of the tank bottom is 84m and the fixed distance
between the 14 anodes is 3m. In addition, these anodes are localised over the
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Figure 6. Potential distribution on the metal.

Table 2. Polarisation curves for the axisymmetric problem.

Current density (A/m2) Potential on the metal (V) Potential in the interface (V)

0.000001 −0.738 −0.738
0.000500 −0.768 −0.769
0.000600 −0.818 −0.820
0.000800 −0.918 −0.920
0.001000 −0.938 −0.941
0.002000 −1.018 −1.023
0.003000 −1.068 −1.076
0.006000 −1.168 −1.184
0.020000 −1.318 −1.370

liner and each anode has a prescribed potential of −1.6V. Figure 7 illustrates
this somewhat new design procedure to protect tank bottoms.

Table 2 presents the polarisation curve for the tank bottom, which is in electric
contact with the concrete, including the theoretical polarisation curve, to be used
at the original interface, estimated by relation (13).

The problem has been solved considering just the soil layer and the estimated
polarisation curve at the interface. All boundary values have axial symmetry and
consequently all domain values are also axisymmetric. Thus, an axisymmetric
analysis (R,Z) has been considered in this example, using the axisymmetric
fundamental solutions, Equations (7) and (9). The calculated potential values
on the metal, solved by proposed formulation and the alternative subregion
technique are presented in Figure 8, whereas Figure 9 depicts the BEM solution
in the soil layer (electrolyte of resistivity ρ2).
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Figure 7. Concentric ring anode system.

Figure 8. Potential distribution on the metal.

The computer run time significantly reduces using the proposed technique in
this example. The CPU times were 78.0 s using BEMwith the subregion idea and
5.6 s using BEM with the tested methodology.

5.4. Three-dimensional problem

The last example has been selected to illustrate an actual real size tank bot-
tom application, in which in-situ measurements have been effected. A total of
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Figure 9. Potential in the soil layer.

Figure 10. Potential distribution over the boundary of the soil layer – top view.

three anodes, close to the liner, within the electrolyte are considered. These
anodes are mathematically represented as linear sources, therefore, a typical
three-dimensional problem as shown in Figure 1 is studied. The height of the
conductive concrete, the resistivity values and the polarisation curve are the same
as in the previous example. Here, the radius of the tank bottom is equal to 1.0m
and each linear source has a length of 0.5m. The distance between the linear
anodes is 0.25m.

The potential distribution along the boundary of the soil layer with resistivity
ρ2 is indicated in Figures 10 and 11. Table 3 shows the minimum and maximum
potential values, computed and transposed to the tank bottom, using the modi-
fied polarisation curve determined by relation (13). The cylinder base (see Figure
1) is centred at (0, 0, 0).

For such a real size example, in-situ electrochemical measurements have been
performed to obtain the instant-off potential. These instant-off potentials, mea-
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Figure 11. Potential distribution over the boundary of the soil layer – bottom view.

Table 3.Maximum and minimum potential values.

Location Maximum potential (V) Minimum potential (V)

Interface −0.876 −0.978
Metal −0.873 −0.972
(x , y) ( − 0.941,−0.080) ( − 0.007,−0.025)

sured immediately after switch-off of the CP current, are used as representative
of the effective on-potential (with IR-drop compensation). The maximum and
minimum potential values measured on site have been −0.870V and −0.980V,
respectively, indicating close enough agreement with the numerical simulation.

6. Concluding remarks

Themain goal of this paper is to evaluate the designofCP systemsof tankbottoms
using an efficient boundary element procedure. In the scenario presented, the
BEM implementation together with a subregion technique is commonly used
to model the inhomogeneous domain. However, the numerical solution of this
matrix system is usually the most time consuming step of the solution process,
especially when the slender intermediate layer is to be discretised, requiring
a considerable number of elements. Herein, a new methodology is proposed,
a theoretically created polarisation curve at the common interface of adjacent
zones is adopted, requiring no need for the implementation of the subregion
technique.

Examples 1 and2 showsatisfactory equivalencebetween theproposedmethod-
ology and the alternative subregion technique, where the process time for the
numerical calculation using the tested methodology was significantly less. In
addition, simulations of cathodic protection systems show satisfactory estimates
for the potential distribution over the metal to be protected involving practi-
cal problems such as bottoms of storage tanks, also including installation of
secondary spill containments.
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In addition, most applications involving CP systems include optimisation
and inverse problems. In such cases, the computer time difference, between
the proposed methodology and the subregion technique, should be a lot more
significant due to the necessity of repeatedly solving the numerical problem.
These analyses should be the subject of future work.
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