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ABSTRACT
When pollution spills occur, they impact on the quality of 
water in underlying aquifers. Such spills can be modelled 
as instantaneous pollution sources, and estimating their 
strengths from the concentration plumes they produce is 
an inverse problem which is addressed in this paper by the 
Green element method (GEM). Estimating the strengths of 
such spills, making use of the concentration data at various 
locations and times, is an inverse problem whose solution is 
often associated with non-uniqueness, non-existence and 
instability. Here the GEM is used to predict the strengths of 
pollution spills from measured concentration data at internal 
observation points. The performance of the methodology 
is illustrated using two numerical examples in which the 
contaminant plumes are from multiple point and distributed 
pollution sources. Single and multiple episodes of pollution 
injections are accommodated in both examples. It is observed 
that GEM is more accurate in predicting the strengths of 
distributed instantaneous pollution sources than point 
sources because of the discontinuities of the latter in both the 
spatial and temporal dimensions.

1.  Introduction

Injections of pollutants into groundwater systems do occur on a regular basis. 
These injections can be intentional or accidental. When they occur over a very 
small interval of time, they can be considered to be instantaneous, but when they 
occur over a prolonged period of time, they are then referred to as being contin-
uous. The former is the subject of this paper. The impacts of such instantaneous 
pollution injections on groundwater systems persist over spatial and temporal 
scales that are considerably much larger than those of the pollutant source as the 
pollutants undergo various chemical and hydrodynamic processes. It is common 
to observe these impacts in downstream wells and surface water bodies after 
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months or years of the occurrence of the spills. Forensic or inverse groundwa-
ter modelling uses pollution concentration information at different observation 
points in time to predict the strength of the pollution spill. The numerical chal-
lenges presented by such inverse modelling exercises are that many solutions 
could exist which satisfy the recreated contamination scenario, and the numerical 
solution could be unstable.

There is a wide variety of inverse groundwater contaminant transport prob-
lems that present themselves in practice, and their solutions have generally been 
addressed by stand-alone simulation techniques or combined simulation and 
optimization techniques or some variants of these (Atmadja & Bagtzoglou, 2001; 
Michalak & Kitanidis, 2004; Sun, Painter, & Wittmeyer, 2006a, 2006b). Most of 
the inverse solution techniques have addressed groundwater contaminant trans-
port with continuous pollution injections (Atmadja, & Bagtzoglou, 2001; Datta, 
Chakrabarty, & Dhar, 2011; Jha & Datta, 2013).

There are fewer attempts at inverse numerical simulations to estimate the pol-
lution source strength from instantaneous injection of contaminants into aquifers 
(Cokca, Bilge, & Unutmaz, 2009; Neupauer & Lin, 2006). Such problems have 
singularities in the temporal dimension because the pollutant is released in an 
infinitesimal time interval and, for problems with point pollution injections, there 
is the additional challenge of spatial discontinuity in the vicinity of the source. In 
this paper, the Green element formulation, presented in Taigbenu (2012) that had 
been been applied to inverse solution of groundwater contaminant transport with 
continuous pollution injection (Onyari & Taigbenu, 2017), is used in conjunction 
with Tikhonov regularisation to predict the strengths of point and distributed 
sources instantaneously introduced into an aquifer. The Green element method 
(GEM) is founded on the singular integral theory of the boundary element method 
(BEM) and it implements the theory in an element-by-element manner like in 
the finite element method (FEM). This approach achieves a resultant global coef-
ficient matrix that is banded, and has the added advantages of ease of solution of 
nonlinear problems in heterogeneous domains and those with point and distrib-
uted singularities. The inverse simulations use the concentration information at 
observation points to enhance the numerical solutions. Two numerical examples 
of transient contaminant transport in 2-D aquifers are used to demonstrate the 
capability of the methodology. The first example relates to instantaneous injections 
of pollutants at point sources, while the second relates to instantaneous injections 
at distributed sources. In both examples, the performances of the inverse Green 
element formulation are evaluated when there is a single episode of injections 
and when there are multiple episodes of injections. The formulation provides 
more stable and reliable estimates of the pollution source strengths for distrbuted 
sources than point sources.
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2.  Contaminant transport equation

The transient contaminant transport equation in a 2-D aquifer is addressed in 
this paper. The equation describes the spread of the pollutant due to hydrody-
namic dispersion, its advection as it is transported by the ambient flow field and 
as well the temporal variation of its concentration. The governing equation for 
an incompressible aquifer is (Bear, 1979):

 

where ∇ = �∕�x�x + �∕�y�y is the 2-D gradient operator with unit vectors ex and 
ey in the spatial directions x and y, C = C(x,y,t) is the concentration in time and 
space in the domain Ω, V = uex + vey is the flow velocity vector, D is the hydro-
dynamic dispersion coefficient and R is the retardation factor which, in the test 
cases addressed in this paper, assumes a value of unity. The inverse problem that 
is addressed solves Equation (1) subject to the Dirichlet and Neumann boundary 
conditions:

 

 

in which n is the unit outward pointing normal vector, and Ω is the domain with 
boundary Γ = Γ1 ∪ Γ2 (Figure 1). On the piece-wise smooth boundary in Figure 1, 
n does not exist everywhere but only along the smooth segment of the boundary. 
The initial condition reflects either instantaneous point pollution sources that are 
described by the relationship

(1)∇ ⋅ (D∇C) − ∇C ⋅ � − R
�C

�t
= 0

(2)C(x, y, t) = f1 onΓ1

(3)−D∇C ⋅ � = q1 onΓ2

Figure 1. Schematic of the problem statement.
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or instantaneous distributed pollution sources that are described as
 

where Si is the pollution source strength of the injection into the aquifer and P 
is the number of sources . It is expected that the inverse simulation predicts the 
source strength Si and it is assumed that the spatial characteristics of the source 
are known. There are available measured data on the concentration at B number 
of observation points, (xb,yb) which, in practice, could be plagued with human 
errors and/or measurement deficiencies. These errors are expressed as

 

where φ is the noise level, and RAN represents random numbers and C̃b is the 
perturbed value of the observed concentration Cb=C(xb,yb).

3.  Inverse Green element formulation

Equation (1) is solved in a homogeneous aquifer so that it becomes:
 

The complementary differential equation to (6) in an infinite space in two dimen-
sions is

 

where δ is the Dirac delta function, r = (x,y) is the field point and ri = (xi,yi) is the 
collocation point. The solution to Equation (7) is well known; it is Gi = ln(r − ri) 
which is has a singularity at ri. With the application of Green’s second identity to 
Equations (6) and (7), the following integral equation is obtained.

 

where Ci = C(ri) and λ is the nodal angle at ri, and q = −D∂C/∂n is the normal 
contaminant flux. Equation (8) is the classical integral equation that emerges in the 
singular integral theory of the BEM (Brebbia, 1978). It is however implemented in 

(4a)C(x, y, 0) ≡ C(r, 0) =

P∑
i=1

Si�(r − ri)

(4b)C(x, y, 0) ≡ C(r, 0) =

P∑
i=1

Si(r)

(5)C̃b ≡ C̃(xb, yb, t) = C(xb, yb, t)
[
1 + 𝜙 × RAN(b)

]

(6)D∇2C − ∇C ⋅ � − R
�C

�t
= 0

(7)∇2G = �
(
r − ri

)

(8)D

(
−�Ci + ∫

Γ

C
�G

�n
ds

)
+ ∫

Γ

G q ds +∬
Ω

G
[(

R
�C

�t
+ � ⋅ ∇C

)]
dA = 0
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the finite element sense by discretizing the computational domain into polygonal 
elements over which the quantities C, V and q are approximated by basis functions 
of the Lagrange family (C ≈ NjCj). In this work, rectangular elements and linear 
basis functions are used. The discrete element equation for each element Ωe with 
boundary Γe is

 

where
 

The nodal angle λ at ri is indicated in Figure 1 for the element Ωe with bound-
ary Γe. The discrete element equation (9) is aggregated for all elements used in 
discretizing the computational domain, and the temporal term is approximated 
by a finite difference approximation in time, that is, dC/dt ≈ [C(2)–C(1)]/∆t at the 
time t = t1+θ∆t, where 0 ≤ θ ≤ 1 is the weighting factor and ∆t is the time step 
between the current time t2 and the previous time t1. With this approximation, 
Equation (9) becomes

 

where Eij = Vij + Uikjuk + Yikjvk, ω = 1 − θ, and the superscripts represent the times 
at which the quantities are evaluated. The instantaneous releases of pollutants 
into the aquifer, described by Equations (4a) and (4b), have to be accounted for 
in Equation (9). The point sources that are instantaneously injected at t = t1 are 
accounted for by implementing the term RWij

Δt
C(1)

j
 in Equation (9), and this is 

achieved in the following manner.
 

It is observed in Equation (12) that we have taken advantage of the property of 
the Dirac delta function in the evaluation of the integral, and the contribution 
of an instantaneous point injection is the Logarithm of the absolute value of the 
distance between the collocation point and the pollution source location. For 

(9)VijCj + Lijqj +WijR
dCj

dt
+ UikjukCj + YikjvkCj = 0

(10)
Vij = D

(
∫
Γe

Nj∇Gi − �ij�

)
, Lij = ∫

Γe

NjGids, Wij = ∬
Ωe

NjGidA,

Uikj = ∬
Ωe

GiNk

�Nj

�x
dA, Yikj = ∬

Ωe

GiNk

�Nj

�y
dA

(11)�EijC
(2)

j
+ R

Wij

Δt
C(2)

j
+ �EijC

(1)

j
− R

Wij

Δt
C(1)

j
+ �Lijq

(2)

j
+ �Lijq

(1)

j
= 0

(12)

R

Δt ∬Ω

GC(r, 0)dA =
R

Δt ∬Ω

P∑
j=1

Sj�(r − rj) ln(r − rj)dA =
R

Δt

P∑
j=1

Sj ln(ri − rj)
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distributed sources instantaneously injected into the aquifer at t = t1, then RWij

Δt
C(1)

j
 

is evaluated by the relationship
 

It is observed in Equation (13) that the elemental matrix Wij, whose expression is 
presented in Equation (10), is used in accounting for the source strength. Equation 
(11) is now simplified to

 

where Hij denotes the matrix that captures the contribution of the instantaneous 
pollution sources. The global matrix equation of (14) is achieved by retaining the 
concentration, C, and contaminant flux, q, at the external nodes, and expressing 
the latter in terms of the former at the internal nodes so that only C is calculated 
at the internal nodes. The procedure to achieving this is described in Taigbenu 
(2012). In a condensed form, Equation (14) is expressed as

 

where
 

where P is an M × N matrix, with M being the number of nodes or collocation 
points in the computational domain which is the same as the number of discrete 
equations generated, and N represents the number of unknowns in the vector z 
which are Cj and/or qj at external nodes, Cj at internal nodes where measurement 
data are not available, and the pollution sources, Sj. The vector f represents the 
known quantities which consist of the terms on the right hand side of Equation 
(14) and as well as the contributions from the available concentration measure-
ments. Equation (15) is generally an over-determined, ill-conditioned system 
of equations which is solved by the least squares method and regularised by the 
Tikhonov regularisation technique. We have achieved improved stability of the 
regularisation technique by decomposing the matrix P by the singular value 
decomposition (SVD) technique. This gives

 

(13)
R

Δt ∬Ω

GC(r, 0)dA =
R

Δt ∬Ω

P∑
j=1

Sj(r) ln(r − rj)dA =
R

Δt

P∑
j=1

WijSj

(14)�EijC
(2)

j
+ R

Wij

Δt
C(2)

j
+HijSj + �Lijq

(2)

j
= −�EijC

(1)

j
− �Lijq

(1)

j

(15)�� = �

(16)� =

⎡⎢⎢⎢⎣

�Eij + R
Wij

Δt

�Lij

Hij

⎤⎥⎥⎥⎦
and � =

⎧⎪⎨⎪⎩

C(2)

j

q(2)
j

Sj

⎫⎪⎬⎪⎭

(17)� = ���
tr =

N∑
i=1

�iuiv
tr
i
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where U and V are M × M and N × N orthogonal matrices, ui and vi are respec-
tively the column vectors of U and V, and D is an M × N diagonal matrix with 
N non-negative diagonal elements of singular values σi (D = diag (σ1, σ2, ... σN)) 
which satisfy the condition: σ1  >  σ2  >  ···  >  σN  >  0. The least squares solution 
of Equation (15) with Tikhonov regularisation minimises the Euclidean norm 
║Pz – f║2 + α2║z║2 in computing the solution of z which is given as;

 

where α is the regularisation parameter, and the factor σi/(α2 + σi
2) plays the role 

of dampening the instability caused by the small singular values which tend to 
have considerable influence on the quality of the numerical solutions. The choice 
of the value of α is facilitated by the L-curve technique which is a graphical tool 
that identifies the suitable compromise of the norms of ║Pz  –  f║2 and ║z║2 
(Hansen, 1994). In this work, the optimum values of the regularisation parameter 
are automatically obtained from the code of the L-curve technique that has been 
incorporated into the current GEM formulation.

4.  Numerical examples and discussion of results

Two numerical examples are employed to demonstrate the capabilities of the 
inverse Green element formulation in predicting the strengths of pollution sources 
that are instantaneously injected into an aquifer. In the two examples, single and 
multiple injection episodes are examined. The first example arises from instanta-
neous injection of pollutants from four point sources, and it has an exact solution 
which is used as a benchmark for the numerical solutions. The second example 
addresses distributed instantaneous pollution sources in an aquifer. The accuracy 
assessments of the numerical solutions in relation to benchmark solutions are 
evaluated by the mean error between the calculated nodal concentrations and 
their benchmark values using the equation

 

where the superscripts (b) and (n) refer to the benchmark and numerical solutions.

(18)�(�) =

N∑
i=1

�i

�2 + �2
i

utr
i �vi

(19)� =
1

M

���������

M∑
i=1

�
C(b)

i
− C(n)

i

�2

M∑
i=1

C(b)2

i

× 100
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4.1.  Example 1 of point pollution sources

4.1.1.  Single injection episode
This example relates to the instantaneous release of contaminants from four point 
sources (p = 4) in a 2-D homogenous aquifer that is infinitely extensive. The flow 
in the aquifer is in the x-direction with a uniform velocity u. The exact solution 
for the spatial and temporal distribution of the concentration plume is given by 
Bear (1979)

 

The flow and aquifer property values used in the simulations are: u = .5, D = 1.0 
and R = 1.0. The inverse Green element simulations are carried out on a rectan-
gular domain [50 × 20] with the values of the contaminant flux, obtained from 
Equation (20), prescribed on the top and bottom boundaries, while the left and 
right boundaries are Dirichlet boundaries with concentration values obtained 
from Equation (20). The analytical solution is generated with pollution source 
strengths S1 = 85.0 at (x1 = 4.5, y1 = 6.0), S2 = 40.0 at (x2 = 13.0, y2 = 16.0), S3 = 62.0 
at (x3 = 21.0, y3 = 8.0) and S4 = 25.0 at (x4 = 28.0, y4 = 11.0). The domain is discre-
tised into 160 uniform rectangular elements each [Δx = 2.5 × Δy = 2.5], a uniform 
time step Δt = 1.5, and a weighting factor, θ = .75 are adopted in the simulations. 
We achieved better prediction of the source strength with GEM when the source 

(20)C(x, y, t) =
R

4�Dt

4∑
j=1

Sj exp

(
−

R

4Dt

[(
x − xj −

ut

R

)2

−
(
y − yj

)2
])

Figure 2. Exact and inverse GEM solutions for instantaneous point source strengths of Example 1 
with injection at t = 0.
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location is centred within the element. A minimum of 4 observation points is 
required to solve for the strengths of the pollution sources, and these are placed 
close to the locations of the pollution sources and on their downstream end. The 
observation points are at (5.0,5.0), (15.0,15.0), (22.5,7.5) and (30.0,10.0).

The inverse GEM predictions of the strengths of the four point sources in com-
parison with their exact values are presented in Figure 2. There is good prediction 
of the pollution source strength by GEM at t = 0, but residual sources remain for 
about five time steps. Whereas the source strengths should theoretically become 
zero for t > 0, the residual source strengths are due to the spatial and temporal 
discontinuities that arise from point sources which are only active at an infini-
tesimal time interval. The optimal values of the regularisation parameter range 
used in the simulations range between 5.48 × 10−6 and 4.99 × 10−5 with an average 
value of 2.05 × 10−5.

The variation of the mean error ε at every simulation time step is presented 
in Figure 3. It is observed that the errors are quite small and they decrease expo-
nentially with time, which suggests that the inverse GEM prediction of the con-
taminant plume is excellent.

The contaminant plumes of the exact and the inverse GEM solutions are pre-
sented in Figure 4(a) and (b) at t = 6 and t = 36, respectively, and there is good 
agreement between the solutions.

Figure 3. Variation of error of the GEM predicted contaminant plume with time for Example 1 
with a single episode of pollutant injection at t = 0.
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4.1.2.  Multiple injection episodes
This case is similar to the previous one except that at t = 30 there is another episode 
of pollution injection into the aquifer at three points with strengths S1 = 45.0 at 
(x1 = 4.5, y1 = 6.0), S2 = 0.0 at (x2 = 13.0, y2 = 16.0), S3 = 95.0 at (x3 = 21.0, y3 = 8.0) 
and S4 = 35.0 at (x4 = 28.0, y4 = 11.0). It is only at source point 2 that there is no 
re-injection of pollutants. The analytical solution is

(a) 

(b) 

Figure 4. Contaminant plume of Example 1 with a single episode of pollutant injection at t = 0: (a) 
t = 6 and (b) t = 36; Exact on the left and GEM on the right.

Figure 5. Exact and inverse GEM solutions for instantaneous point source strengths of Example 1 
with injections at t = 0 and t = 30.
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Using the same simulation parameters as in the previous case, the pollution source 
strengths that are predicted by GEM are presented in Figure 5 alongside the exact 
solutions. The GEM formulation correctly captures the injections of pollutants 
at both times and, as in the previous case, there are residual sources which linger 
for a few time steps after the times of injections.

The variation of the error of the inverse GEM solutions for the contaminant 
plume in relation to the exact solutions, calculated by Equation (19), is presented 
in Figure 6. The error decreases exponentially till there is an episode of pollutant 
injection at the sources when a sharp increase in the error is observed and then 
decreases with time thereafter.

The contaminant plumes of the exact and the inverse GEM solutions are pre-
sented in Figure 7(a) and (b) at t = 36, respectively, and there is good agreement 
in the solutions. The contrasts in the contaminant plumes at t = 36, presented in 
Figures 4(b) and 7, underscore the impacts of a subsequent episode of pollution 

(21)

C(x, y, t) =
R

4�tD

⎧
⎪⎪⎨⎪⎪⎩

4�
j=1

Sj exp

�
−

R

4tD

��
x − xj −

ut

R

�2

−
�
y − yj

�2
��

+

4�
j=1

Sj exp

�
−

R

4tD

��
x − xj −

u(t − 30)

R

�2

−
�
y − yj

�2

��

⎫⎪⎪⎬⎪⎪⎭

Figure 6. Error variation of the GEM predicted contaminant plume with time for Example 1 with 
multiple episodes of pollutant injection at t = 0 and t = 30.
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injections on the aquifer. The values of the regularisation parameter that are used 
in the simulations range between 4.21 × 10−6 and 7.01 × 10−5 with an average 
value of 2.12 × 10−5.

4.2.  Example 2 of distributed pollution sources

4.2.1.  Single injection episode
This example is a case of instantaneous release of contaminants from three areas 
in the 2-D homogenous aquifer shown in Figure 8. The flow in the aquifer is in the 
x-direction with a uniform velocity u. The values of the aquifer and flow parame-
ters used in numerical simulations are: D = 400 m2/day, R = 1.0 and u = 6 m/day. 
The computational domain is rectangular [1200 m × 800 m], and it is assumed ini-
tially before the distributed spills that the concentration everywhere in the aquifer 
is .1 mg/l. The top and bottom boundaries are considered as no-flux boundaries, 
while the left boundary has a concentration of .1 mg/l and the right boundary 

(a) Exact 

(b) Inverse GEM

Figure 7. Contaminant plume at t = 36 of Example 1 with double episodes of pollutant injection 
at t = 0 and t = 30.
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is a Neumann one with a normal contaminant flux, q = .15 × t m.mg/l. There is 
no exact solution for this problem, so a direct GEM simulation of the problem 
is implemented with pollution source strength S1 = 80.0 mg/l, S2 = 550.0 mg/l 
and S3  =  180.0  mg/l. The domain is discretised into 384 uniform rectangular 
elements each [Δx = 50 m × Δy = 50 m], a uniform time step Δt = 2.0 days, and 
a weighting factor, θ = 1.0 are adopted in the simulations. The results from the 
direct GEM simulation are used as estimates of the concentration values at six 

Figure 8. Computational domain of Example 2.

Table 1. GEM solutions of the distributed instantaneous source strengths of Example 2 with single 
injection at t = 0.

Time, t (day) S1 (mg/l) S2 (mg/l) S3 (mg/l)
0 80.003 550.001 179.998
2 −.006 −.003 .004
4 .006 .000 −.004
6 −.004 −.004 .003
8 .004 .005 −.003
10 −.004 −.004 .003

Table 2.  True values and GEM solutions of the distributed instantaneous source strengths of 
Example 2 for various noise levels.

Sources
True values 

(mg/l)

φ = 0% φ = 2% φ = 5%

Strength
Relative 
error (%) Strength

Relative 
error (%) Strength

Relative 
error (%)

S1 (mg/l) 80.0 80.003 .0 79.889 1.1 79.717 .35
S2 (mg/l) 550.0 550.001 .0 546.078 .0 540.195 1.78
S3 (mg/l) 180.0 179.998 .0 179.493 .2 178.735 .70
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observation points at (200 m, 600 m), (350 m, 700 m), (750 m, 100 m), (800 m, 
250 m), (1000 m, 600 m) and (1000 m, 750 m).

The results of the inverse GEM simulations in predicting the distributed instan-
taneous sources are presented in Table 1, and they indicate accurate prediction of 
their strengths with no residual values at subsequent simulation times. Noise levels 
of 2 and 5% are introduced into the observed data, and the predicted distributed 
source strengths are compared to the true values in Table 2. It is observed that the 
maximum relative error in the prediction of the source strength is 1.78% at noise 
level of 5%, and this shows that introducing noise in the data has little influence 
on the source strength prediction.

The errors of the inverse GEM solutions for the contaminant plume in relation 
to those from the direct GEM simulations are calculated by Equation (19) and 
presented in Figure 9. The errors are very small, indicating that the inverse and 
direct GEM solutions are quite identical. The contaminant plumes of the GEM 
solutions are presented in Figure 10 at t = 6 days and 36 days. The range of values 
of the regularisation parameter used in the simulations is from 9.12 × 10−7 to 
4.47 × 10−5 with an average value of 1.72 × 10−5.

4.2.2.  Multiple injection episodes
This example is similar to that under Section 4.2.1, except that injections of the pol-
lutants into the aquifer at the three distributed locations occur at t = 0, t = 26 days 
and t = 44 days. The strengths of the pollutants being injected vary over the times 
of injections. At t = 0, the strengths of S1, S2 and S3 are the same as in the previous 
case, while at t = 26 days, S1 = 30.0 mg/l, S2 = 700.0 mg/l and S3 = 115.0 mg/l and 
at t = 44 days, S1 = 60.0 mg/l, S2 = 470.0 mg/l and S3 = 140.0 mg/l. These source 
strengths are used in the direct GEM formulation to generate the solution for the 

Figure 9. Error plots of the GEM predicted contaminant plume with time for single injection from 
distributed sources.
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concentration at the six observation points that are at the same locations as in the 
previous case. The computational domain, medium parameters remain the same, 
while the inverse formulation presented herein is used to predict the three source 
strengths. The results of the true values of the distributed source strengths and 
their simulated values are presented in Table 3 for the second and third episodes 
of pollutant injections into the aquifer at noise levels of 0, 2 and 5%. It should be 
noted that the results for the first episode of injection is the same as that in Table 

(a)

(b)

Figure 10. Contaminant plumes from the GEM simulations: (a) t = 6 days, (b) t = 36 days for single 
injection from distributed sources.
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2. With no noise in the observation data, the inverse GEM reproduced the true 
values of the source strengths, while the maximum relative error of 1.79% in the 
prediction of the source strength is observed for 5% noise level. The results do 
indicate that the GEM formulation is accurate and robust in predicting the source 
strengths of distributed sources with multiple pollutant injections.

The error variation with time for the inverse GEM solutions in comparison 
with the direct GEM solutions are presented in Figure 11, and it shows that 
that the errors are small for the noise levels of 0, 2 and 5%, indicating that the 
inverse and direct GEM solutions are essentially identical. The contaminant 
plume of the GEM solutions, presented in Figure 12 at t = 36 days, is signifi-
cantly different from the plume in Figure 10(b) when there is a single episode of 
pollution injection into the aquifer. The values of the regularisation parameter 
that are used in the simulations range between 9.21 × 10−7 and 2.90 × 10−5 with 
an average value of 1.32 × 10−5.

Table 3.  True values and GEM solutions of the distributed instantaneous source strengths of 
Example 2 with multiple injection episodes for various noise levels.

Injection 
Episodes Sources

True 
values 
(mg/l)

φ = 0% φ = 2% φ = 5%

Strength
Relative 
error (%) Strength

Relative 
error (%) Strength

Relative 
error (%)

Second 
injection 
at t = 
26 days

S1 30 30.004 .01 29.963 .12 29.898 .34
S2 700 700.02 .00 694.983 .72 687.471 1.79
S3 115 114.997 .00 114.705 .26 114.268 .64

Third injec-
tion at 
t = 44 days

S1 60 59.999 .00 59.917 .14 59.791 .35
S2 470 469.945 .01 466.661 .71 461.775 1.75
S3 140 140 .00 139.576 .30 138.947 .75

Figure 11. Error plots of the GEM predicted contaminant plume with time for multiple injection 
episodes from distributed sources.
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5.  Conclusion

The inverse Green element solutions of the advection-dispersion equation have 
been presented for the problem of predicting the source strengths when pollution 
is instantaneously injected from point and distributed sources into an aquifer. 
The numerical solutions were obtained for both a single episode of injection and 
multiple episodes of pollution injections into the aquifer. The over-determined, 
ill-conditioned global matrix generated in the numerical formulation is solved by 
the least squares method and regularised by the Tikhonov technique. Two numer-
ical examples are used to demonstrate the computational capabilities of the GEM 
formulation. The first example, which has an analytical solution, dealt with the 
estimation of the strengths of four instantaneous point pollution sources, while the 
second addressed the problem of estimation of three distributed pollution sources. 
The current formulation is capable of estimating the multiple instantaneous source 
strengths from concentration data of contaminant plumes. The capability of the 
method to estimate the source strengths when there are multiple episodes of 
pollution injections demonstrates its robustness. It is observed that GEM gives 
better prediction of distributed pollution sources than point sources, and this is 
due to the spatial and temporal discontinuities associated with the latter. Errors 
associated with measurement data at observation points do not have much influ-
ence on the prediction of the distributed instantaneous pollution source strengths. 
Although both examples addressed in this paper used uniform velocity flow fields 
in the numerical simulations, future work is being carried out to implement the 
current GEM formulation for non-uniform flow cases.

Figure 12. Contaminant plume from the GEM simulations at t = 36 days for multiple injection 
episodes from distributed sources.
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