
A boundary element implementation for fracture
mechanics problems using generalised Westergaard
stress functions
Ney Augusto Dumont a, Elvis Yuri Mamani b

and Marilene Lobato Cardoso a

aDepartment of Civil and Environmental Engineering, PUC-Rio – Pontifical Catholic University of Rio
de Janeiro, Rio de Janeiro, Brazil; bUniversidad Andina del Cusco, Urbanización Ingeniería, Cusco, Perú

ABSTRACT
In the traditional boundary element methods, the numerical
modelling of cracks is usually carried out by means of a
hypersingular fundamental solution, which involves a 1=r2

kernel for two-dimensional problems. A more natural pro-
cedure should make use of fundamental solutions that
represent the square root singularity of the gradient field
around the crack tip (a Green’s function). Such a representa-
tion has been already accomplished in a variationally based
framework that also addresses a convenient means of eval-
uating results at internal points. This paper proposes a
procedure for the numerical simulation of two-dimensional
problems with a fundamental solution that can be in part or
for the whole structure based on generalised Westergaard
stress functions. Problems of general topology can be mod-
elled, such as in the case of unbounded and multiply-con-
nected domains. The formulation is naturally applicable to
notches and generally curved cracks. It also provides an easy
means of evaluating stress intensity factors, when particu-
larly applied to fracture mechanics. The main features of the
theory are briefly presented in the paper, together with
several validating examples and some convergence
assessments.
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1. Previous developments and motivation

1.1. Introduction

Irwin (1957), Sneddon (1946), Westergaard (1939) and Williams (1957) are
some of the very first researchers to investigate the isotropic linear elastic
material behaviour ahead of a crack tip (see also Anderson, 1995). Since then,
a considerable effort has been done in the engineering community to under-
stand and model the phenomenon. Some of these contributions may be
worth mentioning: Ang and Telles (2004); Barenblatt (1962); Brown and
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Strawley (1966); Dugdale (1960); Eftis and Liebowitz (1972); Harmain and
Provan (1997); Jing, Khraishi, and Gorbatikh (2003); Sousa, Castro, Lopes,
and Martha (2013); Telles, Castor, and Guimares (1995); Xin, Hangong,
Xingwu, and Liangzhou (2010); and Zhang, Qiang, and Yang (2007). The
most accurate models rely on finite element simulations that require as a rule
very fine domain meshes, are time consuming and demand from the analyst
great discernment to adequately retrieve results.

Tada, Ernst, and Paris (1993, 1994) proposed a simple method for
the construction of Westergaard-type stress functions for the analysis
of fracture mechanics problems with either prescribed displacements
or stresses. Their developments were restricted to the mathematical
aspects of the formulation and to some analytical unfoldings. The
concept proposed by these authors is now generalised and used for
the construction of fundamental solutions in the hybrid boundary
element method (HBEM), which can be advantageously applied to
classical elasticity problems and specifically to fracture mechanics
(Dumont & Lopes, 2003; Dumont & Mamani, 2011a; b, 2013). This
formulation is directly applicable to notches as well as to internal or
external curved cracks and enables the adequate description of high
stress gradients: it is thus a simple means of evaluating stress intensity
factors. Moreover, it is possible to use such stress functions to obtain
the plastic zone around a crack tip in the frame of an iterative
procedure (Dumont & Mamani, 2013). This paper is a further general-
isation of the developments proposed by Dumont and Mamani (2011b)
towards the implementation of more accurate stress functions, as also
illustrated with a few basic, academical examples.

1.2. Previous developments

A superposition of cracks was proposed by Dumont and Lopes (2003)
to simulate cracks of general shape, as given on the top of Figure 1.
The illustrated five nodal parameters are related to tractions given by
Westergaard complex stress functions, applied as a succession of
straight crack elements along the curved crack. An improvement of
these developments could be obtained later on by Dumont and
Mamani (2011a, 2011b) in terms of superposed semicracks, as outlined
in Section 3 and illustrated on the bottom of Figure 1, not only to
better fit curved cracks but also to simulate cavities, corners and
notches. Based on these developments, Dumont and Mamani (2013)
also proposed the use of the model for the simulation of small plastic
zones that develop and propagate around cracks.
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1.3. Motivation

The primary motivation of the present theoretical developments is a better
simulation of the stress field around crack tips that may lead to accurate
stress intensity factors as well as to the adequate representation of plastic
zones. The elliptic semicrack proposed by Dumont & Mamani (2011a, b,
2013), which seems efficient for the description of the stress field around
crack tips, should be combined with crack elements of different shapes, so
that spurious stress singularities in regions along the crack face can be
avoided or minimised.

The present proposition consists in the use of semielliptic cracks to
represent crack tips only, with (Hermite) polynomial-shaped openings for
the simulation of the remaining of the crack face, as shown on the bottom
of Figure 1. It is a sequel of the works done by the first author with his
former students Lopes and Mamani and incorporates some unpublished
results by Mamani (2015) as well as from an MSc research that has just
been finished (Cardoso, 2017). It also uses and expands materials from two
previous conference articles (Dumont, Mamani, & Cardoso, 2017; Mamani
& Dumont, 2015). As developed in Section 5, this is still a work in progress
as the general combination of all features described in this paper and
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Figure 1. Illustration of the use of straight cracks to simulate generally curved cracks, on the
top (Dumont & Lopes, 2003), now improved with the use of kinked cracks of different shapes
(Mamani, 2015), on the bottom.
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mainly by Dumont and Mamani (2011b) demands a high degree of
mathematical understanding and unfoldings before it can be considered
accomplished.

2. Brief outline of the HBEM

The HBEM was introduced in 1987 on the basis of the Hellinger–Reissner
potential and as a generalisation of Pian’s hybrid finite element method
(Dumont, 1989; Pian, 1964). The formulation requires evaluation of inte-
grals only along the boundary and makes use of fundamental solutions
(Green’s functions) to interpolate fields in the domain. Accordingly, an
elastic body of arbitrary shape may be treated as a single finite macro-
element with as many boundary degrees of freedom as desired. In the
meantime, the formulation has evolved to several application possibilities,
including time-dependent problems (Dumont & De Oliveira, 2001), frac-
ture mechanics (Dumont & Lopes, 2003), non-homogeneous materials
(Dumont, Chaves, & Paulino, 2004) and strain gradient elasticity
(Dumont & Huaman, 2009).

The brief outline of Sections 2.1–2.3 is presented according to Dumont
and Mamani (2011b).

2.1. Problem formulation

An elastic body is submitted to body forces bi in the domain, tractions �ti
on part Γσ of the boundary Γ and to displacements �ui on the complemen-
tary part Γu . The task is to find the best approximation for stresses and
displacements, σij and ui, such that

σji;j ¼ bi in the domain Ω; (1)

ui ¼ �ui along Γu; (2)

ti ¼ σij nj ¼ �ti along Γσ (3)

in which nj is the outward unit normal to the boundary. Indicial notation
is used.

2.2. Stress and displacement assumptions

Two independent trial fields are assumed (Dumont, 1989; Pian, 1964).
The displacement field is explicitly approximated along the boundary
by udi , where ðÞd means displacement assumption, in terms of poly-
nomial functions uim with compact support and nodal displacement
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parameters d ¼ ½dm� 2 Rnd , for nd displacement degrees of freedom of
the discretised model. An independent stress field σsij, where ðÞs stands
for stress assumption, is given in the domain in terms of a series of
fundamental solutions σ�ijm with global support, multiplied by force

parameters p� ¼ ½p�m� 2 Rn� applied at the same boundary nodal points
m to which the nodal displacements dm are attached (n� ¼ nd), plus
some particular solution σpij due to body forces, for instance.

Displacements usi are obtained from σsij . Then,

udi ¼ uim dm on Γ such that udi ¼ �ui on Γu and (4)

σsij ¼ σ�ijm p
�
m þ σpij such that σ�jim;j ¼ 0 in Ω (5)

) usi ¼ u�im p
�
m þ uris Csm p

�
m þ upi in Ω (6)

where u�im are displacement fundamental solutions corresponding to σ�ijm .
Rigid body motion is included in terms of functions uris multiplied by in
principle arbitrary constants Csm (Dumont, 1989).

2.3. Governing matrix equations

The Hellinger–Reissner potential, as implemented by Pian (1964) on the
basis of the two-field assumptions of the latter section and generalised by
Dumont (1989), leads to two matrix equations that express nodal equili-
brium and compatibility requirements:

HTp� ¼ p� pp (7)

F�p� ¼ Hðd� dpÞ (8)

in which H ¼ ½Hnm� 2 Rnd�n� is the same double-layer potential matrix of
the collocation boundary element method (Brebbia, Telles, & Wrobel,
1984) and F� ¼ ½F�nm� 2 Rn��n� is a symmetric, flexibility matrix. The
force and displacement parameters p? and d, introduced in the previous

section, are the problem’s primary unknowns. Moreover, p ¼ ½pn� 2 Rnd

and pp ¼ ½ppn� 2 Rnd are nodal forces equivalent to applied boundary trac-

tions and body forces, respectively, and dp ¼ ½dpn� 2 Rnd are nodal displace-
ments corresponding to pp . The matrices H and F� may be compactly
defined as

Hmn F�mn

� � ¼ �
Γ
σ�ijmnjhuin u�inidΓ (9)
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Solving for p� in Eq. (7), one arrives at the matrix system

HTF�ð�1ÞHðd� dpÞ ¼ p� pp (10)

where HTF�ð�1ÞH;K is a stiffness matrix. The inverse F�ð�1Þ must be
evaluated in terms of generalised inverses as F� is singular for a finite
domain Ω (Dumont, 1989). Results at internal points are expressed in
terms of Eqs. (5) and (6) after evaluation of p� .

Since evaluating F and solving for p� in Eq. (8) is very time consuming,
a simplified hybrid boundary formulation has been developed (Dumont &
Aguilar, 2012) to completely circumvent the matrix operations described
in the latter paragraph. On the other hand, the present problem of fracture
mechanics is usually formulated for Neumann-type boundary conditions,
for which Eq. (7) is sufficient and then only the double-layer potential
matrix H must be evaluated.

Although initially proposed in the frame of the HBEM, the present
developments can be applied to the conventional, collocation boundary
element method (Cardoso, 2017):

Gðt� tpÞ ¼ Hðd� dpÞ (11)

with the single layer potential matrix Gm,;G and the vectors of traction
forces t,;t and tp,;tp that correspond to applied boundary and body
forces, respectively (Dumont, 2014).

3. Stress functions

As proposed by Tada et al. (1993, 1994), fundamental solutions (Green’s
functions) may be obtained for a prescribed crack opening of shape f ðxÞ in
the interval ½x1; x2� along the x axis – and symmetric with respect to this axis in
the Cartesian coordinate system ðx; yÞ – in terms of the potential functionΦðzÞ

ΦðzÞ ¼ � 1
2π

�
x2

x1

f ðxÞ
z � x

dx (12)

This procedure, which may be deemed a generalisation of the work done
by Crouch and Starfield (1983), has been further generalised by Dumont
and Mamani (2011b) for the composition of kinked cracks of any length,
as illustrated in Figures 1 and 2. To make calculations as simple as possible,
one defines the Green’s function ΦðZ1Þ for the shape function initially
given for a semicrack (numbered as 1, indicated by the subscript) with
length a1 ¼ 1 and the integration of Eq. (12) is carried out in the interval
½x1; x2�;½0; 1� . The generalisation for a semicrack of length a1 and rotated
by an angle θ1 is given by
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Z1 ¼ zT1;
z
a1

e�iθ1;
xþ iy
a1

e�iθ1;
r
a1

eiðθ�θ1Þ (13)

The next section applies the procedure just outlined to show that the
original proposition by Westergaard can be retrieved as a particular case.
The generalisation for elliptic and polynomial semicrack openings – as well
as for the introduction of the relative rotation of two adjacent crack faces –
is proposed subsequently.

3.1. Consistent formulation of the original Westergaard stress function for
an elliptic crack

The stress function Φ originally proposed by Westergaard may be obtained
from Eq. (12), for the elliptic crack shape illustrated on top right of
Figure 1. In fact, for a normalised semiwidth a1 ¼ 1, corresponding to
the integration interval ½x1; x2�;½�1; 1� and in terms of a local coordinate
system such that Z in Eq. (13) refers to an angle θ1 ¼ 0, Φ in Eq. (12) is
obtained as

f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
; �1 � x � 1;) Φ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 1

p

2

ffiffiffiffiffi
Z2

p

Z
� Z

2
(14)

The expression of f ðxÞ above is an ellipsis of length 2. The identity

csgnðZÞ;
ffiffiffiffiffi
Z2

p
=Z in the expression of Φ is software-independent and
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Figure 2. Semicracks of length a1 rotated by an angle θ1 : elliptic and polynomial openings at
x ¼ 0 (top), relative crack face rotations at x ¼ 0 (down) (Mamani & Dumont, 2015).
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convenient to implement (Dumont & Lopes, 2003). Using polar coordi-
nates centred at the crack tip (Z ¼ 1), such that Z ¼ 1þ reθi, one obtains
for the leading terms (terms that do not tend to zero as r ! 0) of the
expressions of Φ and its derivatives given in Eq. (14):

lim
r!0

Φ ¼
ffiffiffi
r
2

r
eθi=2 ; lim

r!0
Φ

0 ¼ 1

2
ffiffiffiffiffi
2r

p e�θi=2 � 1
2
; lim

r!0
Φ

00 ¼ �1

4r
ffiffiffiffiffi
2r

p e�3θi=2

(15)

Observe in the above as well as in the following expressions that some
constant terms automatically appear as r ! 0 . These terms are not part of
Westergaard’s original expressions, which have been proposed for a
remote biaxial stress field. In fact, the present and following formulations
correspond to traction forces applied to a crack opening, thus leading to a
stress field that vanishes at infinity. The present elliptic opening refers to
unit, constant traction forces, but this configuration varies considerably
depending on the prescribed crack opening, as shown in Figure 2. The
constant terms in Φ0 above and in the following developments correspond
to ‘T stresses’ (which cause transversal contraction of the cracked speci-
men), as already reported in the literature (Gupta, Alderliesten, &
Benedictus, 2015).

One should bear in mind that the ‘leading terms’ shown in the latter
equations as well as in the following equations for the limit r ! 0 only
contain the higher order terms and constants. As explained by Dumont
and Mamani (2011b), the hypersingular kernel r�3=2 in the expression of
Φ00 in Eq. (15) does not lead to any mathematical issues in the stress
expressions along a crack face – as developed in Section 4 – since the
corresponding terms cancel out when two cracks or semicracks are super-
posed independently from their relative orientation, as illustrated in
Figure 1. This remark is also valid for similar hypersingularities that
come out in the developments of the next section.

3.2. Generalised Westergaard stress functions for different types of
semicrack openings in the local, normalised interval½x1; x2�;½0; 1�
The expression of Φ in Eq. (12) for an elliptic semicrack opening at the
crack tip – the top-left opening configuration of Figure 2 and in terms of
the normalised, local coordinate system ½x1; x2�;½0; 1� – is given by

f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
) Φ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p

2π
ln

�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p

Z

 !
� 2þ Zπ

4π
(16)
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Observe that f ðxÞ; x 2 ½0; 1�; is a semiellipsis such that f ð0Þ ¼ 1; f 0ð0Þ ¼ 0
and f ð1Þ ¼ 0; f 0ð1�Þ ! �1 .

For a polynomial semicrack opening – corresponding to the top-right
configuration of Figure 2 – the expression of Φ in Eq. (12) is

f ðxÞ ¼ 2x3 � 3x2 þ 1 ) Φ

¼ 1� 3Z2 þ 2Z3

2π
ln

Z � 1
Z

� �
� 5þ 12Z � 12Z2

12π
(17)

The function f ðxÞ; x 2 ½0; 1�; above is a Hermitian polynomial, such that
f ð0Þ ¼ 1; f 0ð0Þ ¼ 0 and f ð1Þ ¼ f 0ð1Þ ¼ 0 .

On the other hand, the expression of Φ in Eq. (12) for the relative face
rotation of the semicrack that lies at the crack tip, as given on the bottom-
left opening configuration of Figure 2:

f ðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
) Φ

¼ Z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p

2π
ln

�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p

Z

 !
��π þ 4Z þ 2πZ2

8π
(18)

The function f ðxÞ; x 2 ½0; 1�; above is such that f ð0Þ ¼ 0; f 0ð0Þ ¼ 1 and
f ð1Þ ¼ 0; f 0ð1�Þ ! �1 .

Finally, one obtains the expression of Φ in Eq. (12) for the relative face
rotation of a semicrack along the crack face, as shown as the bottom-left
opening configuration of Figure 2, as

f ðxÞ ¼ x3 � 2x2 þ x ) Φ

¼ Z � 2Z2 þ Z3

2π
ln

Z � 1
Z

� �
� 1
12π

�2þ 9Z � 6Z2
� �

(19)

The function f ðxÞ; x 2 ½0; 1�; above is also a Hermitian polynomial, such
that f ð0Þ ¼ 0; f 0ð0Þ1 and f ð1Þ ¼ f 0ð1Þ ¼ 0 .

The leading terms of all four generalised Westergaard functions Φ given
above as well as of their derivatives both at the semicrack tip Z ¼ 1
(writing Z ¼ 1þ reθi) and at internal interface Z ¼ 0 (writing Z ¼ reθi)
are given in Table 1.

In the series expansions necessary to arrive at the leading term results of
Table 1, the transcendental parts are multiplied by

lim
r!0þ

csgn i 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1þ reiθð Þ2

q� �
= 1þ reiθ
� �� �

, whose evaluation may

become tricky. However, one may just compare these equations with the
corresponding terms in Eq. (15) and thus infer the correct sign to be assigned.
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4. The crack modelling problem

4.1 Basic developments

Independently from the proposed stress function, as shown in the previous
section, the mode I and mode II crack opening displacement and stress
expressions for plane strain are (Dumont & Mamani, 2011b; Mamani, 2011)

uIð0Þ ¼
1þ ν

E
ð1� 2νÞReΦ� y

a ImΦ
0

2ð1� νÞImΦ� y
aReΦ

0

( )
; σIð0Þ ¼

1
aReΦ

0 � y
a2 ImΦ

00

1
a1
ReΦ

0 þ y
a2 ImΦ

00

� y
a2 ReΦ

00

2
64

3
75
(20)

uIIð0Þ ¼
1þ ν

E
2ð1� νÞImΦþ y

aReΦ
0

�ð1� 2νÞReΦ� y
a ImΦ0

	 

; σIIð0Þ ¼

2
a ImΦ0 þ y

a2 ReΦ
00

� y
a2 ReΦ

00
1
aReΦ

0 � y
a2 ImΦ00

2
4

3
5

(21)

The subscript ðÞð0Þ in the above equations means that all quantities are
referred to the semicrack’s local Cartesian system, as ðx1; y1Þ in Figure 2,
and must be consequently rotated to the global system, according to
Eq. (13).

A general kinked crack is obtained by combining two semicracks, as
shown schematically in Figure 3 for two elliptic semicracks. In this figure,
mode I and II traction forces ðpI1; pII1 Þ and ðpI2; pII2 Þ are schematically
represented along the interfaces of semicracs 1 and 2 . They are brought
in dependence of nodal force parameters p?x and p?y in such a way that

Table 1. Leading terms and constants of the functions Φ defined in Section 3.2 and their
derivatives at either extremity of the defined semicracks.

Equation number lim
r!0

Φ lim
r!0

Φ
0

lim
r!0

Φ
00

Limit for Z ¼ 1þ reθi (16)
ffiffi
r
2

p
eθi=2 � 2þπ

4π
e�θi=2

2
ffiffiffi
2r

p � 4þπ
4π

�e�3θi=2

4r
ffiffiffi
2r

p

(17) � 5
12π

1
π

3 ln r eθið Þ
π þ 13

2π

(18)
ffiffi
r
2

p
eθi=2 � 4þπ

8π
e�θi=2

2
ffiffiffi
2r

p � 3þπ
2π

�e�3θi=2

4r
ffiffiffi
2r

p

(19) � 1
12π � 1

12π
ln r eθið Þ

π þ 5
2π

Limit for Z ¼ reθi (16) 1
2π ln

2
reθi
� �� iπþ1

2π
�e�θi

2πr � 1
4

e�2θi

2πr2 þ iπþ1
2π

(17) 1
2π ln

�1
eθi r

� �� 5
12π

�e�θi

2πr
e�2θi

2πr2

(18) 1
8

1
2π ln

�2
eθi r

� �� 1
π

�e�θi

2πr

(19) 1
6π

1
2π ln

�1
eθi r

� �� 5
4π

�e�θi

2πr
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displacement ðu; vÞ continuity at the common points of the combined
semicracks is assured. All mathematical developments including consis-
tency and continuity checks for two elliptic semicracks are given by
Dumont and Mamani (2011b). Although not developed in this paper, the
demonstrations given by Dumont and Mamani (2011b) for elliptic semi-
cracks are extensive to polynomial semicracks, as one infers by comparing
the limiting cases given in Section 3.2.

In fact, the 1=
ffiffi
r

p
behaviour of stresses, for r ! 0 at the crack tips, is

observed independently from size and orientation of the semicracks.
Although there is no singularity at the interface of the semicracks, a
lnð�Þ term (for � ! 0) indicates that a special numerical integration
scheme must be used in the vicinity of such interfaces when either
a1�a2 or θ2 � θ1�π (Dumont & Mamani, 2011b; Mamani, 2015).

Figure 4 schematically shows the combinations of two semicracks for
the crack opening expressions given in Eqs. (16)–(19) and illustrated in
Figure 3. Observe that two rotating crack shapes, when considered isolated,
lead to a partial overlap of the crack faces, which is mechanically not
feasible. However, this does not occur in a practical implementation as a
rotation is always superposed with an opening.

In the following developments, a combination of two elliptic semicracks,
as illustrated in Figure 3, will be called an elliptic element; the use of an
elliptic semicrack and a polynomial semicrack to model the crack tip
[shown as (b) in Figure 4] together with two polynomial semicracks for
the crack face [shown as (a) in the figure] will be referred to as a mixed
element; and the latter case with the additional rotating possibility, as
shown in the lower row of Figure 4 for a segment either inside the crack

Figure 3. Scheme of a general kinked crack obtained as an assemblage of two elliptic
semicracks (Mamani, 2015).
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(c) or at the crack tip (d) will correspond to a mixed element with rotation
and will require an additional degree of freedom to be described Mam15.
The illustrations of Figures 2 and 4 can be easily visualised for a mode I
crack opening, but are less intuitive in the case of Figure 3, for example,
when there is a contribution of the mode II stress state. In fact, the
illustrations of Figures 2 and 4 are equally valid for the mode II stress
configuration, as already inferred from Eqs. (20) and (21) and comprehen-
sively laid down by Dumont and Mamani (2011b) for the elliptic element.

4.2. An illustration of the combination of two semicracks

Dumont and Mamani (2011b) showed how to combine two semicracks, as
described in the last section, to lead to general superpositions for elliptic
and polynomial openings as well as for crack interface rotations. Although
the theoretical developments by Dumont and Mamani (2011b) only
address elliptic semicracks, it is in fact general as one obtains by comparing
the limiting cases of Φ in Eqs. (16)–(19) and derivatives, as given in
Table 1. As a matter of fact, Figure 5 illustrates a kinked crack opening
due to the superposition of an elliptic and a polynomial semicracks – the
relative angle between semicracks chosen to be 90° to make the three-
dimensional drawing simpler. The plot was generated by sequentially using
Equations (33), (62), (70), (74), (75), (78), (79), (80), (83), (84) and (85) of
the mentioned paper, when generalised to also take polynomial crack
openings into account. This figure is a three-dimensional representation
of the scheme shown on the top right of Figure 4. One observes that the
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Figure 4. Combined semicrack elements used to discretise a crack in terms of openings and
crack interface rotations (drilling) (Cardoso, 2017).
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cracked surface is always smooth on each side. Moreover, at most impro-
per integrals must be dealt with and it is indeed demonstrated – see
Equations (91) and (92) of that paper – that the resulting crack traction
forces are always finite. However, since one is dealing with notches, in
general, stress singularities may occur at points close to a notch (e.g. which
is consistent with the results obtained by Williams 1957), although actually
no traction force singularities occur.

4.3. Numerical evaluation of the crack opening

The simplest case of a horizontal crack in a continuous, isotropic and
infinite medium submitted to a mode I stress field, as illustrated on the left
in Figure 6, is investigated in order to numerically assess the formulation
proposed in the previous section. In fact, it is the authors’ experience that
the numerical issues related to any complicated cracked configuration

Figure 5. Three-dimensional illustration of a 90° kinked crack as an assemblage of a
polynomial semicrack, according to Eq. (17), and an elliptic semicrack, according to Eq. (16),
as schematically shown on top right of Figure 4.

Figure 6. Straight crack in the open domain submitted to a remote uniaxial stress field (left),
and modelling with crack elements using five nodes (right).
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(including multiple and curved cracks) and any domain topology can be
brought down to the stress description issues around a single, straight
crack’s tip (Dumont & Lopes, 2003; Dumont & Mamani, 2011b). The crack
under investigation has a length 2a ¼ 2:0 and the material properties are
such that E=ð1� ν2Þ ¼ 2 . Thus, the target, analytical solution of this
problem corresponds to an elliptic opening of unit value, as indicated on
the upper left in Figure 7. The crack is modelled with combinations of
elliptic and polynomial semicracks, as illustrated on the right in Figure 6
for a discretisation with five elements. All input and output quantities are
given in consistent unities. When not otherwise indicated, all assessments
are in terms of the HBEM.

The results for simulations with 16 nodes in terms of either elliptic
elements, mixed elements or mixed elements with crack interface rotation
are shown in Figure 7. Since this is a mode I problem, the former two cases
actually require only one degree of freedom per element, while in the latter
case there is a total of 32 degrees of freedom. The numerical results are
evaluated using Eq. (7) to solve for p� and then Eq. (6) to directly express
the opening displacements along the crack face, as given on the upper left
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Figure 7. Opening displacements (upper left and zoom on the right) and corresponding errors
(below) for the straight crack of Figure 6 discretised with 16 elements in an analysis with the
hybrid boundary element method.
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in Figure 7. The error differences can be better visualised in the bottom
graph in the figure using as error norm

� %ð Þ ¼ unum � uana
uanaðmaxÞ

����
����� 100% (22)

where, in the case, uanaðmaxÞ ¼ 1 . The results with mixed elements are a
significant improvement in comparison with the case of plain elliptic
elements (both analyses with 16 degrees of freedom). The best results are
by far the ones using mixed elements with rotation, although one should
bear in mind that they correspond to the double amount of degrees of
freedom. The graph on the upper right in Figure 7 is a zoom of the results
on the left for x 2 ð0:7; 1Þ, to show that the added rotational degrees of
freedom significantly contribute to smoothen the displacements and then
arrive at more accurate results.

Figure 8 shows on the top a convergence study for the problem of
Figure 6 using 4, 16 and 64 mixed elements with crack interface rotation,
as implemented in the HBEM. The crack opening results are visually of
excellent quality already for the case with four elements. The error analysis
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Figure 8. Opening displacements (left) and corresponding errors (right) for the straight crack
of Figure 6 using mixed elements with crack interface relative rotation in an analysis with the
hybrid boundary element method (top) as well as in the conventional boundary element
method (bottom).
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on the right shows that the convergence is not everywhere monotonic,
although this is observed globally.

4.3.1. Assessment in terms of the conventional boundary element method
The conventional boundary element method is also tested in this section.
The fundamental solutions (Green’s functions) proposed in Section 3 are
used in the matrix system

Hd ¼ Gtþ b (23)

where H is the same double-layer potential matrix defined in Eq. (9),
exactly as for the HBEM, and G is the single-layer potential matrix,
which uses the same functions of Eqs. (16)–(19) to interpolate the traction
forces (as implemented by Mamani 2015, although not strictly required).
Since the body-force term b in the above equation refers to a constant
stress state, it can be easily brought down to the crack boundary.

Figure 8 shows on the bottom the same kind of results of Figure 7
for opening boundary displacements interpolated from the evaluated
nodal data d . At least in this case, the results with the conventional
boundary element method are not as accurate as in the hybrid for-
mulation (on the top). However, convergence is everywhere mono-
tonic, as observed in the opening-error graph on the right
(Cardoso,2017; Mamani, 2015).

Although the results of this section are shown in the frame of the
conventional boundary element method, corresponding results for the
normal stress along the crack face are given in Figure 9 as obtained
using Eqs. (5) and (7) for the HBEM. On the left are the results for
elliptic crack openings, and on the right are results for polynomial
crack openings along the crack face.
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Figure 9. σyy results along the crack face for elliptic semicrack elements (left) and also using
mixed elements (right) in the hybrid boundary element method.
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4.4. Assessment of the stress field around the crack tip

The same problem on the left in Figure 6 is used to assess the stress field
around a crack tip. The normal stress σyy is plotted on the top left of
Figure 10 along the line segment ðx ¼ 0::1; y ¼ 0Þ, according to the
Cartesian system shown in Figure 6, for the crack modelled with different
numbers of elliptic elements. The results are visually almost indistinguish-
able from the analytic ones. However, an analysis along the line segment
ðx ¼ 0:0001::100; y ¼ 0Þ (top right of the figure) shows a pronounced
oscillation of the errors in the near field, even though they tend to zero
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Figure 10. Stress σyy values (left) and corresponding error diagrams (right) at points along the
dash line on the left of Figure 6 using elliptic elements (top), mixed elements (middle) or
mixed elements with crack interface rotation (bottom).
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for points far from the crack tip. This oscillation prevents the use of a
reliable method to arrive at an accurate stress intensity factor.

The same analysis is carried out for mixed elements, as shown on the
middle of Figure 10, and it is not possible to recognise an improvement in
the stress field, as compared with results of the previous figure.

Finally, similar results as in the previous simulations are given on the
bottom of Figure 10, but this time for simulations with mixed elements
including crack interface rotation. The results improve significantly both in
terms of accuracy and by presenting no oscillations as one takes into
account points increasingly far from the crack tip. Then, one is entitled
to conclude that this discretisation model shall lead to more robust and
reliable schemes for the evaluation of stress intensity factors as well as in
the estimate of the plastic zone around a crack tip.

4.5. Stress intensity factor evaluated from the force parametersp�

After solving Eq. (7) for the force parameters p�, the most immediate
means of arriving at a stress intensity factor estimate is from its definition

KI ¼ lim
r!0

ffiffiffiffiffiffiffi
2πr

p
σyyðr; θÞ (24)

for σyy obtained from the terms of p� referred to the crack tip. For the
mode I problem of Figure 6 (see Mamani 2015 for the general mode I and
mode II expression), one obtains

KIðnÞ ¼
ffiffiffiffiffiffiffiffi
πan

p
2an

p�yðnÞ þ p�ryðnÞ
� 

(25)

where an is the semicrack length at the crack tip (it would be a1 on the
right in Figure 4) and p�yðnÞ and p�ryðnÞ are the force parameters correspond-

ing to the opening shapes – relative displacement and crack interface
rotation – on the right of the same Figure 4. The results for 1, 4, 16, 64
and 256 elements are given on the left in Figure 11. Although the results
have been shown to converge for stresses in the vicinity of the crack tip, as
in the previous figures, absolute convergence cannot be observed in this
case – and cannot be demonstrated by any theorem, since this is a localised
behaviour (how the stress goes locally to infinity) for which no energy
norm can be given (Dumont & Lopes, 2003). It is even surprising that the
results for elliptic elements do converge better than in the case of the
generally more accurate implementation with mixed elements with crack
interface rotation (6% accuracy against 8%). Also, observe that, in the
present case, the result for just one crack element trivially coincides with
the analytic solution.
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4.6. Stress intensity factor evaluated from the crack tip opening

The stress intensity factor may be obtained from the crack tip opening
displacement:

KI ¼ 2G
κþ 1

lim
r!0

ffiffiffiffiffi
2π
r

r
uyðr; πÞ (26)

where κ ¼ 3� 4ν for plane strain and κ ¼ ð3� νÞ=ð1þ νÞ for plane stress.
Such results are usually more accurate than in terms of the stress field, as
shown on the right in Figure 11 for uy evaluated at a distance of 0:01 from the
crack tip using the hybrid as well as the conventional boundary element
methods. Although no convergence can be demonstrated also in this case, the
results (errors � 3%) are better than the ones reported by Anderson (1995)
for a finite element mesh with 2000 nodes (errors � 5%).

4.7. Stress intensity factor evaluated from stresses

For the crack of Figure 6, a simple and direct estimate of the stress
intensity factor is by using Eq. (24), where in practice r is given a very
small value, also with θ ¼ 0 . The analytical solution for the crack problem
of Figure 6 is KI ¼

ffiffiffi
π

p
. The graph on the left in Figure 12 shows the

relation between numerically evaluated stress intensity factors for
r ¼ 0:001, 0:01 and 0:1, using Eq. (24), and the analytical, target one.
Another possibility would be the extrapolation of the above values to
obtain results at r ¼ 0 . However, there is an oscillation as r ! 0, which
renders such a procedure not reliable.

An alternative to estimate the stress intensity factor is by comparison
with the Williams’ series, as explored, for instance, by Lopes (2002). As
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Figure 11. Stress intensity factors for the straight crack of Figure 6 obtained (left) from Eq.
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displacement.
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first shown by Williams (1957), the stress expression around a crack tip is,
in polar coordinates,

σrr ¼ 1
4
ffiffi
r

p s1 �5cos
θ

2
þ cos

3θ
2

� �
þ t1 �5sin

θ

2
þ 3sin

3θ
2

� �� �
þ 4s2cos

2θ:::

(27)

σθθ ¼ 1
4
ffiffi
r

p s1 �3cos
θ

2
� cos

3θ
2

� �
þ t1 �3sin

θ

2
� 3sin

3θ
2

� �� �
þ 4s2sin

2θ::: (28)

σrθ ¼ 1
4
ffiffi
r

p s1 �sin
θ

2
� sin

3θ
2

� �
þ t1 cos

θ

2
þ 3cos

3θ
2

� �� �
� 2s2sin2θ:::

(29)

The constants s1 and t1 are related to mode I and mode II stress intensity
factors by

s1 ¼ � KIffiffiffiffiffi
2π

p and t1 ¼ KIIffiffiffiffiffi
2π

p (30)

Then, it is possible to evaluate σyy at a series of points departing from as
close as possible to r ¼ 0 along the x axis and fit using least squares the
series given according to Eqs. (27)–(29).

The graph on the right in Figure 12 displays the stress intensity factor results
for five terms of the Williams’ series (the first term is the one of actual interest)
obtained from 10 numerical values σyy for r 2 ð0:001; 0:01Þ, r 2 ð0:01; 0:1Þ
and r 2 ð0:01; 0:1Þ along the x axis. Observe that the analytic solution is
trivially obtained for one single crack element.
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5. Concluding remarks

The implemented crack tip elements provide a simple and efficient means
for the description of the stress field around crack tips. Although the
combination of generalised Westergaard functions and Kelvin’s fundamen-
tal solutions has shown to be efficient in terms of the global behaviour of a
cracked elastic body (Dumont & Lopes, 2003; Dumont & Mamani, 2011b,
2013; Lopes, 1998, 2002; Mamani, 2011, 2015), some improvements have
become mandatory from the preliminary investigations as regarding the
very local phenomenon of stresses going to infinity. In fact, the elliptic
semicracks, which seem efficient for the description of the stress field
around crack tips, must be combined with crack elements of different
shapes, so that spurious high stress gradients along the crack face can be
avoided or minimised, as shown by means of several numerical assess-
ments. The numerical examples of Section 4 have been analysed for biaxial
stress states, as well, with similar results as the ones displayed. The present
developments for a single straight crack in the open domain lead to a
better understanding of the more complex cases of multiply connected and
multiply cracked, irregularly shaped domains under complicated load
combinations. Evaluations of the stress intensity factor in terms of the J
integral have already been carried out by Lopes (2002) and Mamani (2011,
2015) using only elliptic elements. Evaluations for the J integral using the
proposed improved elements, not given in this paper, show improvements,
which are however not significant. The general conclusion is that no
monotonic convergence can be demonstrated for evaluations of stress
intensity factors since there seems to be no energy theorem related to
this local phenomenon. A code for general applications is available and
some results have already been published (Dumont & Lopes, 2003;
Dumont & Mamani, 2011b). The code for the simulation of plastic zones
around crack tips, as developed by Dumont and Mamani (2013), is now
being implemented with the more general shapes proposed in this paper.
Although all theoretical and computational developments for the two-
dimensional analysis of fracture mechanics have already been carried out
in the present framework, one is still missing a general purpose code that
combines all kinds of fundamental solutions as Kelvin’s fundamental
solution cannot be matched when the aim is to represent far field effects
(Lopes, 2002; Mamani, 2015). One interesting investigation would be the
comparison of stress results coming from the Somigliana’s identity with
the direct results obtained according to this paper. Such evaluation of high
stress gradients arbitrarily close to nodal points using Somigliana’s identity
has been made possible by the numerical evaluation procedure proposed
by Dumont (1994, 2018)).
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