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ABSTRACT
This work first determines two axisymmetric fundamental
Magneto Hydrodynamic (MHD) flows induced, in
a conducting Newtonian liquid domain bounded by
a plane wall, by distributing either radial or axial points
forces on a circular ring located in a plane parallel with
the wall and normal to a prescribed uniform ambient mag-
netic field B ¼ Bez: This is achieved, for both a perfectly
conducting and an insulating wall, by using the fundamen-
tal flow due to a source point analytically obtained else-
where. Each resulting axisymmetric fundamental MHD flow
velocity components (radial and axial ones) and pressure is
then analytically expressed in terms of one-dimensional
integrals and of the so-called Hartmann layer thickness d ¼
ð ffiffiffiffiffiffiffiffi

μ=σ
p Þ= Bj j: These quantities are numerically calculated and
the wall–ring interactions are then discussed. Such interac-
tions are found to deeply affect the fundamental flows’
streamlines and pressure field prevailing in an unbounded
liquid. The derived fundamental flows are then employed to
investigate, using a boundary formulation, the drag experi-
enced by a solid sphere immersed in the liquid and translat-
ing normal to the wall.
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1. Introduction

It is of importance for many applications to get the flow about a solid
particle experiencing a prescribed rigid-body migration in a conducting
Newtonian liquid with uniform density ρl; viscosity μ and conductivity
σ > 0: Far from the body, the liquid is quiescent and subject to a prescribed
uniform magnetic field B ¼ Bez and no electric field. In the liquid, the
flow, with velocity u and pressure p; experiences the Lorentz body force
fL ¼ j ^ B0 with B0 the magnetic field and j the current density. For most
applications, this latter vector obeys the Ohm’s law j ¼ σð��ϕþ u ^ B0Þ;
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with ϕ the electric potential and E ¼ ��ϕ the associated electric field.
Accordingly, the flow ðu; pÞ is coupled (through the Lorentz body force)
with ðϕ;B0Þ and the determination of ðu; p;ϕ;B0Þ falls in the scope of the
so-called Magneto Hydrodynamics (Branover & Tsinober, 1970; Moreau,
1990; Tsinober, 1970). In the absence of additional assumptions, getting
ðu; p;ϕ;B0Þ is, even for a spherical body, a very involved task because these
quantities are governed by the coupled Maxwell and non-linear Navier-
Stokes equations. For a velocity with a typical magnitude V; a body with
length scale a and a liquid with a uniform magnetic permeability μm > 0;
the quantities ðu; p;ϕ;B0Þ depend upon the body shape and motion, but
also upon three dimensionless numbers: the magnetic Reynolds number
Rem ¼ μmσ Vj ja; the Reynolds number Re ¼ ρlVa=μ; and the Hartmann

number Ha ¼ a=d; where the length d ¼ ð ffiffiffiffiffiffiffiffi
μ=σ

p Þ= Bj j is the so-called
Hartmann layer thickness (Hartmann, 1937).

Assuming Rem � 1 and a body to admit the same uniform magnetic
permeability μm as the liquid yields B0 ¼ B (Tsinober, 1970). For a solid
asymmetric body translating parallel to both its axis of revolution and the
magnetic field, then E ¼ 0! (see, for instance, Gotoh, 1960) and one thus
ends up with only two unknown termed as the Magneto Hydrodynamic
(MHD) fields, namely u and p: The MHD flow ðu; pÞ depends upon
ðHa;ReÞ and its determination for arbitrary translating axisymmetric
bodies is still a cumbersome task. For a spherical body translating parallel
to the ambient magnetic field B; the solution was asymptotically obtained
by Chester (1957) for Ha � 1 and by Chester (1961) for Ha � 1 under the
assumption of negligible inertia effects, i.e. for Re � 1: In such circum-
stances, the MHD flow ðu; pÞ is termed as creeping or viscous flow.
Recently, Sellier & Aydin (2016) proposed a new boundary method to
treat, in the entire range Ha> 0; the case of the translating sphere
addressed by Chester (1957; 1961). The procedure appeals to the axisym-
metric fundamental MHD viscous flows obtained by Sellier & Aydin
(2016) and produced by putting a radial or axial distribution of source
points on a circular ring. This was actually made possible by using the
coupled fundamental MHD flow and electric potential, analytically deter-
mined by Priede (2013), induced by a point force.

All of aforementioned papers consider the case of an unbounded liquid
domain. However, bounded liquid domains are also encountered in appli-
cations. This strongly suggests extending (Sellier & Aydin, 2017) to the
case of a sphere translating still parallel with the ambient uniform mag-
netic field B; but in a conducting liquid bounded by a plane wall parallel to
B: Following Sellier & Aydin (2017), it is then necessary to determine the
axisymmetric fundamental flows produced by spreading a radial or axial
distribution of source points on a circular ring located in a plane parallel to
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the bounding wall (i.e. to extend (Sellier & Aydin, 2017) to the bounded
liquid case). This key issue is the object of the present work together with
its application to the determination of the drag experienced by a solid
sphere translating normal to the wall.

The paper is organised as follows. The governing MHD equations for
the coupled electric potential and flow about a solid body moving in
a conducting liquid near a solid plane wall, together with the relevant
fundamental axisymmetric MHD flows in the case of a problem of revolu-
tion, are presented in Section 2. These bounded fundamental flows,
obtained by putting on a circular ring a radial of axial force distribution,
are determined in Section 3 by appealing to the bounded fundamental flow
(and electrical potential) produced by a point force recently obtained
analytically by Sellier (2017). The numerical implementation is handled
in Section 4, together with the discussion of a few computed unbounded
and bounded fundamental flows patterns. Using the determined funda-
mental flows, the drag experienced by a solid sphere translating normal to
the wall is then investigated in Section 5. Finally, concluding remarks are
given in Section 6.

2. Motivating problem. Relevant bounded axisymmetric fundamental
MHD flows

This section presents a motivating axisymmetric problem and the two
associated fundamental and bounded axisymmetric MHD flows to be
determined in the present work.

2.1. Motivating bounded MHD problem

For applications, it is required to get the flow about a solid particle
experiencing a given rigid-body velocity field urb in a conducting
Newtonian liquid subject to a uniform ambient magnetic field B ¼ Bez
and bounded by a motionless and no-slip z ¼ 0 plane wall �: This
problem is illustrated in Figure 1 for a solid sphere translating near and
normal to the z ¼ 0 wall with velocity Uez:

As mentioned in Introduction, the liquid flow, with velocity u and pres-
sure p; is in general coupled to a non-uniform electric potential ϕ and the
magnetic field B0 prevailing in the liquid. The flow ðu; pÞ is subject to the
Lorentz body force fL ¼ j ^ B0; with j the current density. Moreover, j obeys
the widely employed Ohm’s law j ¼ σðu ^ B0 � �ϕÞ; where σ > 0 denotes
the fluid uniform conductivity. In summary, the problem consists of obtain-
ing in the entire liquid domain the coupled MHD fields, namely the flow
ðu; pÞ; the magnetic field B0 and the electric field E ¼ ��ϕ: In general, such
a task is tremendously involved since one has to simultaneously solve
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coupled and unsteady non-linear Navier-Stokes equations and Maxwell
equations. Of course, the required MHD solution ðu; p;B0;ϕÞ depends
upon the body shape, location and rigid-body motion urb:

Fortunately, adding a few assumptions to the problem Reynolds number
Re and magnetic Reynolds number Rem makes it possible to face a more
tractable issue. These numbers are based on the velocity u typical magni-
tude V > 0; the solid length scale a and also the Newtonian liquid uniform
density ρl; viscosity μ and magnetic permeability μm: More precisely, Re ¼
ρlVa=μ and Rem ¼ μmσVa: First, all inertial effects are neglected, i.e. Re �
1; and one speaks of viscous or creeping flow ðu; pÞ: Since for most
applications Rem � Re; note that Rem � 1: This latter property, together
with the assumption of a body having the same uniform magnetic perme-
ability μm as the liquid, shows that the ambient imposed magnetic field B is
not affected by the flow ðu; pÞ and the electric field E: Accordingly, B0 ¼
Bez in the entire bounded liquid domain D: Assuming a quasi-steady flow
and requiring the charge conservation �:j ¼ 0 in the liquid finally yields
for ðu; p;ϕÞ the coupled equations

μ�2u ¼ �pþ σB�ϕ ^ ez � σB2ðu ^ ezÞ ^ ez and�:u ¼ 0 inD; (1)

Δϕ ¼ B�:ðu ^ ezÞ inD: (2)

Equations (1) and (2) must be supplemented with relevant far-field beha-
viours and boundary conditions on S[� for ðu; p;ϕÞ: Henceforth, we
shall use Cartesian coordinates ðO; x; y; zÞ; with the origin O on the wall �
and associated unit vectors ðex; ey; ezÞ: Hence (see also Figure 1), x ¼
OM ¼ xex þ yey þ zez for an arbitrary point M: The origin O is taken so

that ðx2 þ y2Þ1=2 ¼ OðaÞ for any point M located on the body surface S:
Assuming a no-slip boundary S; a no-slip motionless wall � and a flow
quiescent far from the body, it is required that

r

r

Σ(z = 0)

D

(σ, ρl, μ)

B = Bez

•

•

z

z

O

S

a

ez er

n

n

x

O•

Figure 1. A solid sphere translating normal to the z ¼ 0 plane wall � in a conducting
Newtonian liquid.
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ðu; pÞ ! ð0; 0Þ as xj j ! 1; u ¼ urb on S; u ¼ 0 on�; (3)

where it is recalled that urb designates the prescribed rigid-body velocity.
There is no electric field far from the body. In addition, the surface S; with
the unit normal vector n pointing into the liquid, is insulating so that the
condition j:n ¼ 0 is required there (Moreau, 1990). Finally, the wall with
unit surface vector n ¼ ez; is either perfectly conducting (condition
j ^ n ¼ 0 as shown by Moreau, 1990; Tsinober, 1970) or insulating (con-
dition j:ez ¼ 0Þ: Taking into account both the Ohm’s law j ¼ σðu ^ B�
�ϕÞ and the velocity boundary conditions (Equation (3)) on �; yields the
following conditions:

�ϕ ! 0 as xj j ! 1; �ϕ:n ¼ Bðurb ^ ezÞ:n on S; (4)

ϕ ¼ 0 ðconducting Þ or �ϕ:ez ¼ 0 ðinsulatingÞ on �ðz ¼ 0Þ: (5)

As mentioned in Introduction, the solution ðu; p;ϕÞ to Equations (1)–(5)

depends upon the Hartmann number Ha ¼ a=d; where d ¼ ffiffiffiffiffiffiffiffi
μ=σ

p
= Bj j is

the so-called Hartmann layer thickness (Hartmann, 1937). Even for the
two previous types of walls (conducting or insulating) it remains very
difficult to gain ðu; p;ϕÞ for arbitrary Ha; body shape and rigid-body
motion because u and ϕ are coupled through Equation (2) and boundary
condition.

2.2. Axisymmetric case. Relevant bounded axisymmetric fundamental MHD
viscous flows

Considering, as illustrated for a sphere in Figure 1, a solid body of
revolution about the ðO; ezÞ axis translating normal to the wall at the
velocity Uez results in a much more tractable MHD problem! In such
circumstances, the cylindrical polar coordinates ðr; θ; zÞ are employed, with

r ¼ fx2 þ y2g1=2 � 0; θ 2 ½0; 2π�; and also x ¼ r cos θ; y ¼ r sin θ: The
associated local unit vectors, also shown in Figure 1, are erðθÞ ¼ cos θex þ
sin θey and eθðθÞ ¼ ez ^ er: Note that Equation (4) yields �ϕ:n ¼ 0 on S:
Thus, boundary conditions (Equations 3–5) on S[� become axisym-
metric ones. Accordingly, the flow ðu; pÞ is axisymmetric without swirl,
i.e. it reads as uðxÞ ¼ urðr; zÞer þ uzðr; zÞez and pðxÞ ¼ pðr; zÞ at point
Mðr; θ; zÞ in the liquid domain. Consequently, �:ðu ^ ezÞ ¼ 0 and ϕ
obeys the well-posed problem

Δϕ ¼ 0 in D;�ϕ ! 0 as xj j ! 1;�ϕ:n ¼ 0 on S; (6)

ϕ ¼ 0 ðconducting Þ or �ϕ:ez ¼ 0 ðinsulating Þ on �ðz ¼ 0Þ: (7)
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In the entire fluid domain D; the solution to Equations (6) and (7) is given
by ϕ ¼ 0 or �ϕ ¼ 0 for the conducting or insulating wall case, respec-
tively. Thus, for the axisymmetric MHD problem, there is no electric field.

For symmetry reasons, the axisymmetric flow ðu; pÞ with stress tensor
σ exerts on the body boundary S a surface traction f ¼ σ :n taking the
form f ¼ frðr; zÞer þ fzðr; zÞez: Therefore, the flow ðu; pÞ is obtained by
superposing the axisymmetric flows defined in the z > 0 domain, having
zero velocity on the z ¼ 0 wall and produced by distributing on a circular
ring located on S axisymmetric point forces. Denoting by δ the usual Dirac
pseudo-function, we then consider the fundamental flow produced by the
axisymmetric body force Fδðr � r0Þδðz � z0Þs distribution, with non-zero
force strength F and local unit vector s; spread on the circular ring with
radius r0 and location z0 > 0: This axisymmetric flow velocity usðxÞ and
pressure psðxÞ satisfy

μ�2us ¼ �ps � σB2ðus ^ ezÞ ^ ez � Fδðr � r0Þδðz � z0Þs for z > 0;
�:us ¼ 0 for z > 0;

(8)

ðus; psÞ ! ð0; 0Þ as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � r0Þ2 þ ðz � z0Þ2

q
! 1; us ¼ 0 on �: (9)

By superposition, we shall consider two so-called fundamental flows pro-
duced by putting at each point M0ðr0; z0; θ0Þ of the circular ring an axial
force (case s ¼ ezÞ or a radial force (case s ¼ er:Þ These flows are deter-
mined in the next section.

3. Adopted procedure and resulting fundamental flows

This section obtains analytically the required axisymmetric fundamental
flows from the knowledge of the fundamental and coupled MHD flow and
electric potential induced in the bounded z > 0 liquid domain by
a concentrated unit force, of strength Fez or Fex; placed at one point x0
in the liquid.

3.1. Fundamental bounded coupled MHD flow and electric potential

From Section 2.2, we build the axisymmetric fundamental flow ðus; psÞ by
superposing the fundamental flows produced by a concentrated force, with
strength Fs; located at a given arbitrary point x0 of the circular ring with
given radius r0 and location z0 > 0: The fundamental flow produced by
a concentrated point force with strength g located at a given point x0 has
velocity v and pressure q: Except for g parallel to the magnetic field B ¼
Bez; this flow is not asymmetric about the ðO; ezÞ axis and it is coupled to
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an electric potential ψ: For the conducting or insulating wall � the MHD
quantities ðv; q;ψÞ then obey (recall Section 2.1)

μ�2v ¼ �qþ σB�ϕ ^ ez � σB2ðv ^ ezÞ ^ ez � δðx� x0Þg for z > 0;

(10)

�:v ¼ 0 and Δψ ¼ B�:ðv ^ ezÞ for z > 0; (11)

ðv; q;�ϕÞ ! ð0; 0; 0Þ as x� x0j j ! 1 and v ¼ 0 on �; (12)

ψ ¼ 0 ðconducting Þ or �ψ:ez ¼ 0ðinsulating Þ on �ðz ¼ 0Þ: (13)

The above MHD problem (Equations 10–13) is linear in g:
Consequently, one can introduce the so-called second-rank Green velo-
city tensor Vðx; x0Þ; pressure vector Qðx; x0Þ and potential vector
Φðx; x0Þ; such that

μvðxÞ ¼ Vðx; x0Þ:g; qðxÞ ¼ Qðx; x0Þ:g; ΨðxÞ ¼ Φðx; x0Þ:g: (14)

The Cartesian components Vlt ¼ el:v:et;Qt ¼ Q:et and Φt ¼ Φ:et have
been recently derived analytically by Sellier (2017) by performing a two-
dimensional Fourier transform on variables x and y; for t ¼ x; z and l ¼
x; y; z: These components, available in the work by Sellier (2017) and not
reproduced here, have been found to solely depend upon ðx� x0; y�
y0; z; z0; dÞ; where it is recalled that length d ¼ ffiffiffiffiffiffiffiffi

μ=σ
p

= Bj j is the
Hartmann layer thickness and ðx; y; zÞ and ðx0; y0; z0Þ are the Cartesian
coordinates of points x and x0; respectively.

3.2. Derivation of the fundamental axisymmetric MHD flows

The required axisymmetric fundamental flow ðus; psÞ governed by Equations
(8) and (9) is built using the previous relations (Equation (14)). Dropping
henceforth the dependence in s; its axisymmetric velocity field u and pressure
field p read, at point x with cylindrical coordinates ðr; z; θÞ;

uðxÞ ¼ urðr; zÞer þ uzðr; zÞez; pðxÞ ¼ pðr; zÞ: (15)

The quantities urðr; zÞ; uzðr; zÞ and pðr; zÞ are here obtained by taking
θ ¼ 0 and, therefore, x ¼ r and y ¼ 0; while the points x0 on the
circular ring have the polar coordinates ðr0; z0; θ0Þ; with θ 2 ½0; 2π�
and x0 ¼ r0 cos θ0; y0 ¼ r0 sin θ0: The following cases are considered:

Case 1: The fundamental flow due to the axial force distribution (choice
s ¼ ezÞ: As shown by Sellier (2017), Φz ¼ 0 and thus there is no electric
field associated with the fundamental flow ðu; pÞ in that case. Moreover,
one readily arrives at the solution
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μurðr; zÞ ¼ F �
2π

0
Vxzðr � r0 cos θ0;�r0 sin θ0; z; z0; dÞdθ0; (16)

μuzðr; zÞ ¼ F �
2π

0
Vzzðr � r0 cos θ0;�r0 sin θ0; z; z0; dÞdθ0; (17)

pðr; zÞ ¼ F �
2π

0
Qzðr � r0 cos θ0;�r0 sin θ0; z; z0; dÞdθ0: (18)

Case 2: The fundamental flow due to the radial force distribution (choice
s ¼ erðθ0ÞÞ: Since erðθ0Þ ¼ cos θ0ex þ sin θ0ey; it follows that

μurðr; zÞ ¼ F �
2π

0
fcos θ0Vxxðr � r0 cos θ0;�r0 sin θ0; z; z0; dÞ

þ sin θ0Vxyðr � r0 cos θ0;�r0 sin θ0; z; z0; dÞgdθ0; (19)

μuzðr; zÞ ¼ F �
2π

0
fcos θ0Vzxðr � r0 cos θ0;�r0 sin θ0; z; z0; dÞ

þ sin θ0Vzyðr � r0 cos θ0;�r0 sin θ0; z; z0; dÞgdθ0: (20)

Similarly, the associated pressure reads,

pðr; zÞ ¼ F �
2π

0
fcos θ0Qxðr � r0 cos θ0;�r0 sin θ0; z; z0; dÞ

þ sin θ0Qyðr � r0 cos θ0;�r0 sin θ0; z; z0; dÞgdθ0: (21)

As shown at the end of Section 2.1, we expect the electrical potential Ψ to
be constant in the liquid. At that stage, we however obtain by super-
position Ψ as follows:

ψðr; zÞ ¼ F �
2π

0
fcos θ0Ψxðr � r0 cos θ0;�r0 sin θ0; z; z0; dÞ

þ sin θ0Ψyðr � r0 cos θ0;�r0 sin θ0; z; z0; dÞgdθ0: (22)

However, using the analytical form of Ψx given by Sellier (2017) and the
one of Ψy (easily obtained by repeating the procedure detailed by Sellier
(2017)) shows that, for symmetry reasons, the integral on the right-hand
side of Equation (22) vanishes. It follows that, as expected, ψ ¼ 0:

Identities (Equations 16–22) are analogous to the ones used by Sellier &
Aydin (2016) for the unbounded flow case, i.e. in the absence of the wall �:
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For convenience, we henceforth use for each above fundamental flow the
decompositions

ur ¼ u1r þ uwr ; uz ¼ u1z þ uwz ; p ¼ p1 þ pw; (23)

with ðu1r ; u1z ; p1Þ the flow obtained for the unbounded case and
ðuwr ; uwz ; pwÞ an additional flow due to the wall �:

3.3. Fundamental bounded flow produced by an axial force distribution

The solution ðu1r ; u1z ; p1Þ has been derived analytically by Sellier & Aydin
(2016). For the distance R and the function g defined as

R ¼ x� x0j j ¼ fr2 þ r20 � 2rr0 cos θ0 þ ðz � z0Þ2g1=2;
gðt; dÞ ¼ ½e�t=ð2dÞ�=t (24)

it is expressed as follows:

8πμ
F

� �
u1r ðr; zÞ ¼ sinh

z � z0
2d

� �
�
2π

0

gðR; dÞ
R

� �
1þ 2d

R

� �
ðr � r0 cos θ0Þdθ0;

(25)

8πμ
F

� �
u1z ðr; zÞ ¼ cosh

z � z0
2d

� �
�
2π

0
gðR; dÞdθ0

þ ðz � z0Þ sinh z � z0
2d

� �
�
2π

0

gðR; dÞ
R

� �
1þ 2d

R

� �
dθ0; (26)

8πd
F

� �
p1ðr; zÞ ¼ sinh

z � z0
2d

� �
�
2π

0
gðR; dÞdθ0

þ ðz � z0Þ cosh z � z0
2d

� �
�
2π

0

gðR; dÞ
R

� �
1þ 2d

R

� �
dθ0: (27)

Appealing to both Sellier (2017) and the above solution for the unbounded
fluid, the identities (Equations 16–18) now provide the following relations:

8πμ
F

� �
uwr ðr; zÞ ¼ � sinh

z � z0
2d

� �
�
2π

0

gðR0; dÞ
R0

� �
1þ 2d

R0

� �
ðr � r0 cos θ0Þdθ0

� 2ðz þ z0Þ sinh z
2d

� �
sinh

z0
2d

� �
�
2π

0

gðR0; dÞ
R02

� �
1þ 6d

R0 þ
12d2

R02

� �
ðr � r0 cos θ0Þdθ0;

(28)
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8πμ
F

� �
uwz ðr; zÞ ¼ � cosh

z þ z0
2d

� �
�
2π

0
gðR0; dÞdθ0

� ðz þ z0Þ sinh z þ z0
2d

� �
�
2π

0

gðR0; dÞ
R0

� �
1þ 2d

R0

� �
dθ0 þ 2 sinh

z
2d

� �
sinh

z0
2d

� �
�

�
2π

0
gðR0; dÞ 1þ 2d

R0 þ
4d2

R02 �
z þ z0
R0

� �2

1þ 6d
R0 þ

12d2

R02

� �� �
dθ0; (29)

8πd
F

� �
pwðr; zÞ ¼ � sinh

z þ z0
2d

� �
�
2π

0
gðR0; dÞdθ0

� ðz þ z0Þ cosh z þ z0
2d

� �
�
2π

0

gðR0; dÞ
R0

� �
1þ 2d

R0

� �
dθ0 þ 2 cosh

z
2d

� �
sinh

z0
2d

� �
�

�
2π

0
gðR0; dÞ 1þ 2d

R0 þ
4d2

R02 �
z þ z0
R0

� �2

1þ 6d
R0 þ

12d2

R02

� �� �
dθ0 (30)

in which R0 designates the distance between the point x and the symmetric
x00 of the point x0 with respect to the z ¼ 0 wall �: Hence, x00 has the
Cartesian coordinates ðx0; y0;�z0Þ and the cylindrical coordinates
ðr0;�z0; θ0Þ: Accordingly,

R0 ¼ x� x00
		 		 ¼ fr2 þ r20 � 2rr0 cos θ0 þ ðz þ z0Þ2g1=2: (31)

It is straightforward and useful to deduce, by inspecting Equations (25)–
(26) and (28)–(29), the following basic properties:

Property 1: As expected, both velocity components ur ¼ u1r þ uwr and
uz ¼ u1z þ uwz vanish on the no-slip z ¼ 0 plane wall (make use on this
surface of the equalities z ¼ 0 and R ¼ R0Þ:

Property 2: ur ¼ u1r ¼ uwr ¼ 0 on the r ¼ 0 axis. This is readily
obtained by noting that for r ¼ 0 both R and R0 become independent of θ0:

3.4. Fundamental bounded flow produced by a radial force distribution

For this case, the vector s ¼ erðθ0Þ depends on the point x0 located on the
ring and the solution ður; uz; pÞ is provided by Equations (19)–(21). In the
absence of the wall (unbounded liquid case), it has been found by Sellier &
Aydin (2016) that

8πμ
F

� �
u1r ðr; zÞ ¼ 2 cosh

z � z0
2d

� �
�
2π

0
gðR; dÞ cos θ0dθ0 þ 1

d
�
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�
2π

0
�T1

R
d
;
z � z0
d


 �
cos θ0 � r � r0 cos θ0

d


 �
r cos θ0 � r0

d


 �
�T2

R
d
;
z � z0
d


 �� �
dθ0;

(32)

8πμ
F

� �
u1z ðr; zÞ ¼ sinh

z � z0
2d

� �
�
2π

0

gðR; dÞ
R

� �
1þ 2d

R

� �
ðr cos θ0 � r0Þdθ0;

(33)

8πd
F

� �
p1ðr; zÞ ¼ cosh

z � z0
2d

� �
�
2π

0

gðR; dÞ
R

� �
1þ 2d

R

� �
ðr cos θ0 � r0Þdθ0

(34)

with the auxiliary functions �T1 and �T2 defined in Appendix A. For the
bounded liquid case, the fields ur; uz and p are obtained by applying
relations (Equations 19–21) with the components ðVxt;Vzt;QtÞ; for t ¼
x; y determined as recently achieved by Sellier (2017). More precisely, these
components are available in the work by Sellier (2017), for t ¼ x; for both
a conducting wall and an insulating wall (this latter case yielding a more
complicated solution). Because there is no electrical potential coupled to
the fundamental axisymmetric flow ður; uz; pÞ; it is possible in this section
to use the results for a conducting wall. In addition, the other components
ðVxy;Vzy;QyÞ are easily gained, still for a conducting wall, by mimicking
the procedure described by Sellier (2017), for t ¼ x: Curtailing the details
and some elementary manipulations, the desired additional quantities
ðuwr ; uwz ; pwr Þ then take the following forms

8πμ
F

� �
uwr ðr; zÞ ¼ �2 cosh

z þ z0
2d

� �
�
2π

0
gðR0; dÞ cos θ0dθ0 � 1

d
�

�
2π

0
�T1

R0

d
;
z þ z0
d


 �
cos θ0 � r � r0 cos θ0

d


 �
r cos θ0 � r0

d


 �
�T2

R0

d
;
z þ z0
d


 �� �
dθ0

� 2 sinh
z
2d

� �
sinh

z0
2d

� �
2d �

2π

0

gðR0; dÞ
R0

� �
1þ 2d

R0

� �
cos θ0dθ0

(

� �
2π

0
gðR0; dÞ 1þ 6d

R0 þ
12d2

R02

� � ðr � r0 cos θ0Þðr cos θ0 � r0Þ
R02 dθ0g; (35)
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8πμ
F

� �
uwz ðr; zÞ ¼ � sinh

z � z0
2d

� �
�
2π

0

gðR0; dÞ
R0

� �
1þ 2d

R0

� �
ðr cos θ0 � r0Þdθ0

þ 2ðz þ z0Þ sinh z
2d

� �
sinh

z0
2d

� �
�
2π

0

gðR0; dÞ
R02

� �
1þ 6d

R0 þ
12d2

R02

� �
ðr cos θ0 � r0Þdθ0;

(36)

8πd
F

� �
pwðr; zÞ ¼ � cosh

z � z0
2d

� �
�
2π

0

gðR0; dÞ
R0

� �
1þ 2d

R0

� �
ðr cos θ0 � r0Þdθ0

þ 2ðz þ z0Þ cosh z
2d

� �
sinh

z0
2d

� �
�
2π

0

gðR0; dÞ
R02

� �
1þ 6d

R0 þ
12d2

R02

� �
ðr cos θ0 � r0Þdθ0:

(37)

As for the axial distribution case examined in Section 3.3, the velocity
components u1r ; uwr ; u

1
z ; uwz and also ur ¼ u1r þ uwr and uz ¼ u1z þ uwz

given by Equations (32)–(33) and (35)–(36) obey the two properties stated
after Equation (31). In establishing Property 1 for the radial velocity
components, one should first notice from Appendix A the relations
�Tkðu; vÞ ¼ �Tkðu;�vÞ; for k ¼ 1; 2:

4. Numerical treatment and flow patterns

This section presents the numerical implementation and the velocity and
pressure patterns computed for a few values of the circular ring location
z0 > 0 and radius r0 > 0:

4.1. Dimensionless quantities. Computation of the encountered integrals

Following Sellier & Aydin (2016), we henceforth use the dimensionless vari-
ables �r ¼ r=d;�z ¼ z=d; �R ¼ R=d;R0 ¼ R0=d and also the normalised
quantities

�ur ¼ 8πμd
F

� �
ur; �uz ¼ 8πμd

F

� �
uz; �p ¼ 8πd2

F

� �
p: (38)

Similar relations are used to also define the normalised flows ð�u1r ; �u1z ; �p1Þ
and ð�uwr ; �uwz ; �pwÞ: Since discussed and implemented by Sellier & Aydin
(2016), the accurate computation of the quantities ð�u1r ; �u1z ; �p1Þ is not
addressed here. In contrast, special attention is paid to the calculation of
the additional dimensionless flow ð�uwr ; �uwz ; �pwÞ: For convenience, we intro-
duce for positive integers m and n; the integrals
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J0mn ¼ �
2π

0
½R0��me�R0=2ðcos θ0Þndθ0; (39)

J0 ¼ �
2π

0
f�T1ðR0;�z þ �z0Þ cos θ0

� ð�r � �r0 cos θ0Þð�r cos θ0 � �r0Þ�T2ðR0;�z þ �z0Þgdθ0: (40)

Such notations make possible to rewrite the results of Equations (28)–(30)
and (32)–(34). It is easily found that:

(i) For the additional flow obtained for the axial force distribution

�uwr ¼ � sinh
�z � �z0

2


 �
ðJ020 þ 2J030Þ�r � ðJ021 þ 2J031Þ�r0f g � 2ð�z þ �z0Þ �

sinh
�z
2


 �
sinh

�z0
2


 �
ðJ030 þ 6J040 þ 12J050Þ�r � ðJ031 þ 6J041 þ 12J051Þ�r0f g;

(41)

�uwz ¼ � cosh
�z þ �z0

2


 �
J010 � ð�z þ �z0Þ sinh �z þ �z0

2


 �
ðJ020 þ 2J030Þ

þ 2 sinh
�z
2


 �
sinh

�z0
2


 �
ðJ010 þ 2J020 þ 4J030Þ � ð�z þ �z0Þ2ðJ030 þ 6J040 þ 12J050Þ

� 
;

(42)

�pw ¼ � sinh
�z þ �z0

2


 �
J010 � ð�z þ �z0Þ cosh �z þ �z0

2


 �
ðJ020 þ 2J030Þ

þ2 cosh
�z
2


 �
sinh

�z0
2


 �
ðJ010 þ 2J020 þ 4J030Þ � ð�z þ �z0Þ2ðJ030 þ 6J040 þ 12J050Þ

� 
:

(43)

(ii) For the additional flow obtained for the radial force distribution

�uwr ¼ �2 cosh
�z þ �z0

2


 �
J011 � J0 � 2 sinhð�z

2
Þ sinh �z0

2


 �
�

fðJ032 þ 6J042 þ 12J052Þr r0 � ðJ031 þ 6J041 þ 12J051Þðr þ r0Þr

þ ðJ030 þ 6J040 þ 12J050Þ�r2 þ 2ðJ021 þ 2J031Þg; (44)
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�uwz ¼ � sinh
�z � �z0

2


 �
ðJ021 þ 2J031Þ�r � ðJ020 þ 2J030Þ�r0f g þ 2ð�z þ �z0Þ �

sinh
�z
2


 �
sinh

�z0
2


 �
ðJ031 þ 6J041 þ 12J051Þ�r � ðJ030 þ 6J040 þ 12J050Þ�r0f g;

(45)

�pw ¼ � cosh
�z � �z0

2


 �
ðJ021 þ 2J031Þ�r � ðJ020 þ 2J030Þ�r0f g þ 2ð�z þ �z0Þ �

cosh
�z
2


 �
sinh

�z0
2


 �
ðJ031 þ 6J041 þ 12J051Þ�r � ðJ030 þ 6J040 þ 12J050Þ�r0f g:

(46)

Accordingly, the numerical implementation must examine at which accu-
racy level the integrals J0 and Jmn; occurring in Equations (41)–(46), are
calculated. Setting α ¼ θ0=2; the integral J0 becomes

J0 ¼ 4 �
π=2

0
�T1ðu; vÞ cos 2α� ð�r � �r0 cos 2αÞð�r cos 2α� �r0Þ�T2ðu; vÞf gdα;

(47)

with v ¼ �z þ �z0 > 0 and u ¼ R0 � v since R02 � v2 ¼ ð�r � �r0Þ2 þ 2ð1�
cos 2αÞ: The integral J0 is computed in Fortran using, for α in ½0; π=2�;
a Gaussian-Legendre quadrature. A few Gauss points are needed whenever
�r � �r0j j is not too small. In contrast (recall the definitions of �T1 and �T2 given in
Appendix A), as �r approaches �r0 more and more Gauss points are needed and
the approximation of J0 becomes of poor quality even with a very large number
of Gauss points when v > 0 is of order unity or larger. This trend is illustrated,
taking �r ¼ �r0; in the third column of Table 1.

Actually, it turns out that u ! v when both �r � �r0 and α vanish. Then, the
first and third terms on the right-hand side of the definition (Equation (57))
of �T1ðu; vÞ become singular, while the sum of these terms remains finite (for
�T2ðu; vÞ a similar remark holds for three terms in Equation (58)). This
suggests resorting for �T1 and �T2 to the more suitable and equivalent forms
(Equations 59–60) built for v> 0: As illustrated in Table 1, using this trick for
the term �T1 makes possible to accurately compute the integral J0 even with
a double precision Fortran code. Even with the double precision code, there
is no need to take the equivalent form (Equation (60)) for the term �T2: This is
because it appears in Equation (47) with the regularising factor ð�r �
�r0 cos 2αÞð�r cos 2α� �r0Þ ¼ ð�r0Þ2ð1� cos 2αÞ2: Note that for the quadruple
precision Fortran code using Equations (57) and (58) yields accurate results.
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In implementing relations (Equations (41)–(46)), it is also necessary to
accurately compute the integrals J0mn defined by Equation (39), for m ¼
1; :::; 5 (taking n ¼ 0; 1 if m ¼ 0; 1 and n ¼ 0; 1; 2 if m ¼ 3; :::; 5Þ:
Definition (Equation (31)) of R0 ¼ dðR0Þ suggests that accuracy troubles
might occur in the evaluation of J0mn for points ð�r;�zÞ close to the normal-
ised trace ð�r0;��z0Þ of the symmetric of the ring with respect to the solid
z ¼ 0 plane wall. To investigate this issue, we mimick Sellier & Aydin
(2016) and introduce the auxiliary integrals I0mn as follows:

I0mn ¼ �
2π

0
½R0��mðcos θ0Þndθ0: (48)

When ð�r;�zÞ approaches ð�r0;��z0Þ; it becomes useful to recast J0mn in terms
of some integrals I0mn and of another extra integral easy to compute
accurately. For instance, J05n is rewritten as follows:

J05n ¼ �
2π

0
½R0��5 e�R0=2 � 1þ R0=2� R02=8þ R03=48� R04=384

n o
ðcos θ0Þndθ0

þ I05n � I04n=2þ I03n=8� I02n=48þ I01n=384; (49)

For m ¼ 1; :::; 4; a decomposition similar to Equation (49) for J0mn is also
easily obtained (it involves the integrals I0kn with k ¼ 1; :::;mÞ: Clearly,
there is no difficulty in computing accurately the first integral on the right-
hand side of Equation (49) when ð�r;�zÞ becomes close to ð�r0;��z0Þ: The task
then reduces to the accurate computation of each integral I0mn which,
taking ω ¼ ðπ � θ0Þ=2; also reads as

I0mn ¼
4k0m

ð4r r0Þm=2

ðπ=2
0

ð2 sin2 ω� 1Þndω
ð1� k02 sin2 ωÞm=2

; k0 ¼ 4r r0
ðr þ r0Þ2 þ ðz þ z0Þ2

" #1=2

:

(50)

Table 1. Computed integral J0 for �r ¼ �r0 ¼ 1 and a few values of v ¼ �z þ �z0 > 0: The last
column provides the results obtained using the Mathematica Sofware. For other columns of
results, the Fortran Code is used with an indication of the terms �Tk (taking k ¼ 1 and/or k ¼
2Þ for which the equivalent forms (Equations 59–60) are employed. The Fortran code
precision, either double (D) or quadruple (Q), is given in the second column.
v A None �T1 �T2 �T1; �T2 Mathematica

1 D −1.8270971208 −1.8270971120 −1.8270971202 −1.8270971120 −1.8270971120
1 Q −1.8270971120 −1.8270971120 −1.8270971120 −1.8270971120 −1.8270971120
5 D −0.1026961957 −0.1030576147 −0.1026961957 −0.1030576147 −0.1030576147
5 Q −0.1030576147 −0.1030576147 −0.1030576147 −0.1030576147 −0.1030576147
10 D 57,092.728231 −0.0212132027 57,092.728231 −0.0212132027 −0.0212132027
10 Q −0.0212132027 −0.0212132027 −0.0212132027 −0.0212132027 −0.0212132027
30 D −433,997.18829 −0.0019511366 −433,997.18829 −0.0019511371 −0.0019511371
30 Q −0.0019511371 −0.0019511371 −0.0019511371 −0.0019511371 −0.0019511371
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Note that 0< k0 < 1 for r r0�0:Moreover, by virtue of Equation (50), accuracy
troubles might arise for the calculation of I0mn when k02 ! 1: For given

ð�r0;�z0Þ; it appears that k02 reaches its largest value k0max
2 for �z ¼ 0 and

�r ¼ f�r20 þ �z20g1=2: As may be checked by the reader, k0max
2 solely depends

upon the ratio �γ ¼ �z0=�r0 and takes the value k0max
2 ¼ 2=½1þ ð1þ �γ2Þ1=2�:

In summary, accuracy troubles in the computation of the integrals I0mn and,
therefore, also the integrals J0mn from the definitions (Equation (39)) might

occur at �z ¼ 0 and �r ¼ �rcð�γÞ ¼ �r0½1þ �δ2�1=2 when �γ ¼ �z0=�r0 ! 0: This basic
issue has been investigated by computing the integrals J0mn for a few small
values of �γ and ð�r;�zÞ ¼ ð�rcð�γÞ; 0Þ: More precisely, it is achieved, using
Equation (39) and performing the change of variable ω ¼ ðπ � θ0Þ=2: The
numerical evaluation of the integral is then performed with either the
Mathematica Software or a quadruple precision Fortran code by choosing
NG Gauss-Legendre points in the interval ½0; π=2�:

The results are displayed in Table 2 for the most tricky case m ¼ 5; taking
�r0 ¼ 1 and n ¼ 0: The number NG of Gaussian points which is large enough
to reach a good accuracy, is given (NG has been found to be independent of the
value of n ¼ 0; 1; 2Þ: As seen in Table 2, it has been found that the results are
excellent for �γ ¼ �z0=�r0 ¼ z0=r0 � 0:001: This range of location z0 �
ð0:001Þr0; for a given circular ring of radius r0; is quite sufficient for the
intended future application of the present work to the motivating problem
presented in Section 2.1. Accordingly, in this work, each integral J0mn is
computed directly from its definition (Equation (39)), i.e. no use is made of
a decomposition analogous to Equation (49).

In view of the accuracy issues previously discussed in this subsection,
each encountered fundamental flow quantities (velocity components, pres-
sure) has been computed in the present work using a quadruple precision
Fortran code.

4.2. Flow velocity and pressure patterns

For comparison purposes, a few isolevel curves have been computed for the
dimensionless (recall Equation (38)) bounded fundamental flow ð�ur; �uz; �pÞ

Table 2. Computed integral J050 for �r0 ¼ 1 and different values of the normalised ring location
�γ ¼ �z0: The quantity J050 is calculated from its definition (Equation (39)), taking �z ¼ 0 and �r ¼
�r0½1þ �γ2�1=2 and applying the change of variable ω ¼ ðπ � θ0Þ=2: Use is made of the
Mathematica Software of a quadruple precision Fortran code spreading NG Gaussian points
over the domain ½0; π=2� in ω:.

�γ Mathematica Fortran Code NG

0.1 12,485.481502534 12,485.481502523 64
0.01 132,541,302.39429 132,541,302.39429 128
0.001 1,332,547,268,831.9 1,332,547,268,832.2 512
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and unbounded fundamental flow ð�u1r ; �u1z ; �p1Þ: The obtained results
obtained depend upon the circular ring force distribution (axial or radial
one), normalised radius �r0 and location �z0: For conciseness, the attention is
however restricted in this subsection to the choices �r0 ¼ �z0 ¼ 1: Accordingly,
the trace of the ring is located at the point ð�r;�zÞ ¼ ð1; 1Þ in the truncated
domain of the liquid displayed in the figures below.

The results for the axial velocity component are displayed in Figure 2. For
the axial force distribution, �u1z is slightly different from zero at �z ¼ 0:
Consequently, �uz (which vanishes on the �z ¼ 0 wall) is seen (compare
Figure 2(a) to Figure 2(b)) to be very different from �u1z in the entire reported
domain �z � 4: Not surprisingly, for the radial force distribution on the ring,
the axial velocity is much smaller than the one produced by the axial force
distribution. This property holds for both bounded and unbounded funda-
mental flows. As a consequence, for the radial force distribution, �uz and �u1z
are very close together for �r � Oð2Þ: In contrast, these quantities are very
different in the domain �r � Oð2Þ in which ring–wall interactions therefore
strongly affect the unbounded fundamental flow.

The counterpart of Figure 2 for the dimensionless radial velocity component
is shown in Figure 3. This quantity is seen to be deeply affected by the wall–ring
interactions for both force distributions (axial or radial). This is especially clear
when comparing for the unbounded and the bounded flows the domains in
which the radial velocity remains positive. Contrary to the case of the axial
velocity component illustrated in Figure 2, the wall–ring interactions are found
to quickly decay away from the wall (becoming here of small magnitude as soon
as �z � Oð2ÞÞ for both force distributions. Due to the requirement of a zero
velocity on the no-slip wall, the wall–ring interactions are strong near the wall,
i.e. here in the �z � Oð2Þ domain, whatever the force distribution on the ring.

Comparisons for the normalised fundamental pressure fields obtained
for the unbounded and bounded flows are given in Figure 4. Large wall–
ring interactions are seen to occur for the axial force distribution in the
entire liquid domain. This is also the case for the radial force distribution
except sufficiently away from the wall, i.e. here for �z � Oð2Þ: These trends
are again clear when comparing the location of the zero pressure contours
obtained for the different fundamental flows.

4.3. Flow streamlines

In the previous subsection, wall–ring interactions have been found to affect
the fundamental axial and radial velocity components, especially near the
�r ¼ 0 axis and for �z � Oð2Þ: However, each velocity component experiences
its own dependence and it is therefore useful to also investigate the velocity
streamlines when discussing each (axial or radial force distribution)
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fundamental flow field sensitivity to the liquid domain nature (unbounded or
bounded). Note that the fundamental flow u has the same streamlines as its
normalised counter-part flow with velocity components ð�ur; �uzÞ:

As in Section 4.2, we first take �r0 ¼ �z0 ¼ 1 and draw the associated
streamlines in Figure 5. Comparing the streamlines obtained for the
unbounded and the bounded fundamental flows reveals that wall–ring inter-
actions strongly affect the fundamental flows in the entire liquid domain
whatever the force distribution nature (axial or radial one) spread on the
ring. For instance, for the axial force distribution, the flow field u exhibits in
Figure 5(b) closed streamlines while it is not the case for u1 in Figure 5(a). As
a consequence of Figure 5(b), fluid particles located near both the no-slip wall
and the �r0 ¼ 0 axis are trapped. For the radial force distribution, only open
streamlines are found for u in Figure 5(d) while some closed streamlines exit
for u1 in Figure 5(c). In addition, one should note the occurrence in Figure 5
(d) of a stagnation point (i.e. where u ¼ 0Þ located at ð�r;�zÞ,ð2:2; 0:6Þ:

Finally, the �r0 ¼ 1 circular ring is approached to the wall taking hence-
forth �z0 ¼ 0:1: The streamlines computed for this new ring location are
given in Figure 6. Clearly, these streamlines strongly differ from those
obtained in Figure 5 for �z0 ¼ 1:
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Figure 2. Isolevel contours of the normalised axial velocity component for �r0 ¼ �z0 ¼ 1: �u1z (a)
and �uz (b) are for the axial force distribution while �u1z (c) and �uz (d) are for the radial force
distribution.
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5. Application to the case of a solid sphere translating normal to the
wall

This section deals with the problem of a solid sphere translating normal to
the wall. More precisely, it shows how to get the local traction applied on
the sphere boundary by resorting to a boundary approach in which the
previous fundamental flows play a key role.

5.1. Advocated boundary representations and related boundary-integral
equations

As shown in Figure 1, we consider a solid sphere, with radius a and surface
S; translating normal to the wall at the velocity Uez: There is no electric
field ϕ (see Section 2.2) and the axisymmetric flow about the sphere has
velocity uðxÞ ¼ urðr; zÞer þ uzðr; zÞez and pressure pðxÞ ¼ pðr; zÞ governed
by Equation (1) with ϕ ¼ 0 and Equation (3) with urb ¼ Uez: On the
sphere boundary, the surface traction f ¼ σ :n reads f ¼ frðr; zÞer þ
fzðr; zÞez: For symmetries reasons, the sphere experiences a zero torque
about its centre O0 and a force F given by
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Figure 3. Isolevel contours of the normalised radial velocity component for �r0 ¼ �z0 ¼ 1: �u1r
(a) and �ur (b) are for the axial force distribution while �u1r (c) and �ur (d) are for the radial force
distribution.

EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 461



F ¼ �
S
fdS ¼ ½2π �

C
fzðPÞrðPÞdlðPÞ�ez ¼ �6πμaλUez (51)

where C is the half-circle trace of S in the θ ¼ 0 half plane and λ > 0 the so-
called drag coefficient. Note that in Equation (51), each point P lies on C
and has cylindrical coordinates rðPÞ; zðPÞ and θðPÞ ¼ 0:

As done by Sellier & Aydin (2017) for the unbounded liquid, we can
actually resort to two different boundary formulations to get the traction f
on the sphere surface. The first one, further denoted M1, appeals to the
fundamental axisymmetric MHD flow produced in an unbounded liquid
by distributing on the ring with radius rP > 0 and location z ¼ zP point
forces with strength Frer þ Fzez and ðFr; FzÞ constant. This basic flow is
without swirl and its pressure qðxÞ ¼ qðr; zÞ and velocity vðxÞ ¼
vrðr; zÞer þ vzðr; zÞez have been analytically determined by Sellier &
Aydin (2016). Introducing points Mðr; zÞ and PðrP; zPÞ in the half θ ¼ 0
plane, taking indices α and β in r; zf g and adopting henceforth the usual
tensor summation convention yields

vαðxÞ ¼ 1
8πμ

� �
G1
αβðM;PÞFβ for M�P (52)

Figure 4. Isolevel contours of the normalised pressure for �r0 ¼ �z0 ¼ 1: �p1 (a) and �p (b) are for
the axial force distribution while �p1 (c) and �p (d) are for the radial force distribution.
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with so-called free-space Green velocity tensor components G1
αβðM; PÞ

expressed versus ðz � zP; r; rP; dÞ in the work by Sellier & Aydin (2017).
Mimicking the procedure worked out by Pozrikidis (1992) for the Ha ¼ 0
Stokes flow case then provides for the velocity u about the sphere the
integral representation

uαðxÞ ¼ � 1
8πμ

�
C [L

G1
αβðM;PÞfβðPÞrðPÞdlðPÞ for x 2 D[ S[�; (53)

where the unbounded straight line L denotes the trace of � in the θ ¼ 0
half plane.

In a similar manner, we can deduce from the previous sections the
fundamental axisymmetric MHD flow having a vanishing velocity on the z ¼
0 wall � and produced in the bounded z > 0 liquid domain by distributing on
the ring with radius rP > 0 and location z ¼ zP > 0 point forces with strength
Frer þ Fzez and ðFr; FzÞ constant. This second flow velocity and pressure
read as in Equation (52) with previous free-space components G1

αβ and

P1β ðM; PÞ replaced by components Gwall
αβ and Pwallβ ðM; PÞ obtained from

Section 3.3 and Section 3.4. As a result, Gwall
αβ ðM; PÞ ¼ Gwall

βα ðP;MÞ:
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Figure 5. Unbounded and bounded fundamental flows streamlines for �r0 ¼ �z0 ¼ 1: Both axial
force distribution (unbounded flow (a) and bounded flow (b)) and radial force distribution
(unbounded flow (c) and bounded flow (d)) on the circular ring are considered.
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Moreover, by essence Gwall
αβ ðM; PÞ ¼ 0 for z ¼ 0: Consequently, the counter-

parts of Equation (53) for this second boundary-approach, termed M2, is

uαðxÞ ¼ � 1
8πμ

�
C
Gwall
αβ ðM;PÞfβðPÞrðPÞdlðPÞ for x 2 D[ S[�: (54)

In summary, Equations (53) and (54) are single-layer boundary integral
representations of the required flow velocity u about the sphere for M1
(free-space fundamental flow) and M2 (wall-bounded fundamental flow),
respectively. Enforcing the velocity boundary conditions (Equation (3)) on
S[� now results in boundary-integral equations for the unknown traction
f ¼ frðr; zÞer þ fzðr; zÞez on C [L for M1 and on C for M2 (for which the
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Figure 6. Unbounded and bounded fundamental flows streamlines for �r0 ¼ 1 and �z0 ¼ 0:1:
Both axial force distribution (unbounded flow (a) and bounded flow (b)) and radial force
distribution (unbounded flow (c) and bounded flow (d)) on the circular ring are considered.
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condition u ¼ 0 at z ¼ 0 is already satisfied from Equation (54) in virtue of
the previously noticed property Gwall

αβ ðM; PÞ ¼ 0 for z ¼ 0Þ: Denoting by δ

the usual Kronecker symbol, these boundary-integral equations are

�
C [L

G1
αβðM; PÞfβðPÞrðPÞdlðPÞ ¼ �8πμUδαz for M 2 C[L in M1; (55)

�
C
Gwall
αβ ðM;PÞfβðPÞrðPÞdlðPÞ ¼ �8πμUδαzδðM; CÞ for M 2 C in M2 (56)

with δðM; CÞ ¼ 1 if M is belongs to C and δðM; CÞ ¼ 0 otherwise. In
summary, for M1 or M2 one obtains the traction f on C by inverting
Equation (55) or Equation (56).

5.2. Numerical results

As in Sellier & Aydin (2017), quadratic 3-node boundary elements are used
to discretise the half-circle contour C and also for M1 the truncated line L
(it is truncated beyond r ¼ LÞ: Equally sized elements are used on C while
both elements of equal or unequal lengths have been employed in M1 for
the truncated line L: The traction on the sphere surface is then obtained by
inverting either Equation (55) or Equation (56) and this permits one to
compute the normalised drag coefficient λ (see Equation (51)) versus the
sphere centre distance to the wall l and the Hartmann number Ha:

The convergence of the computed drag coefficient versus the method
ðM1 or M2Þ and the number N of nodal points on C for different Ha and
a close sphere with l=a ¼ 1:1 is reported in Table 3.

Clearly, for a given value of Ha the predictions of M1 and M2 converge
as N increases. Moreover, taking M2 with N ¼ 60 is sufficient to ascertain
a good accuracy level in the domain l=a � 1:1 and Ha � 10: Other values
2 � L=a � 5 have been tested and found to provide very close results.
From the previous results, the drag coefficient has been computed using
M2 with N ¼ 60 for different sphere normalised location l=a � 1:1 and
Hartmann number Ha � 10:

The results are displayed in Figure 7. Not surprisingly and as for the
Ha ¼ 0 pure Stokes flow case, the drag coefficient increases slightly for
a given Hartmann number as the sphere approaches the wall. Moreover,
for a given sphere location, increasing Ha (i.e. for a given liquid increasing
the magnitude of the ambient magnetic field) results beyond Ha,1 in
a large increase of the drag experienced by the translating sphere.
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6. Concluding remarks

Two different fundamental axisymmetric MHD flows of a conducting
liquid bounded by a no-slip motionless insulating or perfectly conducting
wall have been determined and computed in this work. More precisely, the
wall is normal to the ambient uniform magnetic field and the considered
flows, due to a radial or axial distribution of forces on a circular ring, are
built by appealing to the three-dimensional fundamental flow produced by
a source point obtained analytically by Sellier (2017). As a consequence,
the pressure and also both the axial and the radial velocity components of
each axisymmetric fundamental flow have been expressed in terms of one-
dimensional integrals. The accurate computation of these integrals makes
it possible to examine each fundamental flow pattern. As shown by
comparing the computed fundamental flows for the considered bounded
liquid case and for the unbounded liquid case treated by Sellier & Aydin

Table 3. Computed drag coefficients λ versus the number N of nodal points on C (indicated in
parenthesis) and the employed method for a close sphere with l=a ¼ 1:1: For M1 the
truncature length is L ¼ 5a whatever Ha.
Ha M2(20) M1(20) M2(40) M1(40) M2(60) M1(60) M2(80) M1(80)

0.1 11.483 11.502 11.472 11.480 11.469 11.473 11.468 11.470
1 11.742 11.762 11.730 11.740 11.727 11.733 11.726 11.730
10 24.818 24.915 24.791 24.855 24.783 24.837 24.779 24.828
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Figure 7. Computed drag coefficient λ versus l=a � 1 for Ha ¼ 0:01 (solid line), Ha ¼
0:5ð	Þ;Ha ¼ 1 (dashed line), Ha ¼ 3ð
Þ;Ha ¼ 5(□) and Ha = 10(∎).
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(2016), wall–ring interactions are found to deeply affect each fundamental
flow (i.e. for both the axial and the radial force distribution on the ring)
whenever the circular ring radius is larger or of order of the ring–wall gap.
This result clearly appears when paying attention to the streamlines. In
contrast and although not shown in the paper for conciseness reasons,
weak wall–ring interactions have been also, and not surprisingly, observed
for wall–ring gaps large compared to the ring radius.

The derived fundamental axisymmetric flows have also been used to deter-
mine the drag experience by a solid sphere translating normal to the wall. This
has been done by employing a boundary formulation in which those flows
play a key role. Our computations reveal that the drag exerted on the sphere is
deeply sensitive to the sphere–wall gap and the Hartmann number.

In future it would be nice to also cope with non-spherical translating
bodies of revolution (see Section 2.2) and to also investigate the resulting
MHD velocity and pressure fields in the bounded liquid. Such
a challenging task is postponed to another work.
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Appendix A. Auxiliary functions �T1 and�T2

The functions �T1 and �T2 are defined for u�0 and u2�v2 as follows (see Sellier & Aydin
(2016))

�T1ðu; vÞ ¼ 1
u

e�ðu�vÞ=2

u� v
þ e�ðuþvÞ=2

uþ v

� �
� 2
u2 � v2

; (57)

�T2ðu; vÞ ¼ 1
u2

uþ 2
2u

� �
e�ðu�vÞ=2

u� v
þ e�ðuþvÞ=2

uþ v

� ��

þ e�ðu�vÞ=2

ðu� vÞ2 þ
e�ðuþvÞ=2

ðuþ vÞ2
)

� 4

ðu2 � v2Þ2 : (58)

For v> 0 one can use, especially for u ! v; the equivalent forms

�T1ðu; vÞ ¼ 1
u

e�ðu�vÞ=2 � 1
u� v

þ e�ðuþvÞ=2

uþ v

� �
� 1
uðuþ vÞ ; (59)

�T2ðu; vÞ ¼ 1
u2

uþ 2
2u

� �
e�ðu�vÞ=2

u� v
þ e�ðuþvÞ=2

uþ v

� ��

þ e�ðu�vÞ=2 � 1

ðu� vÞ2 þ e�ðuþvÞ=2

ðuþ vÞ2
)

� 3uþ v
u2ðuþ vÞðu2 � v2Þ : (60)
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