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ABSTRACT
Consider uniform, steady flow past a circular cylinder at
Reynolds numbers 26, 36 and 40 before the flow becomes
unsteady. Model the flow by using eulerlets, new Green’s
functions for Euler flow. This is the first time this eulerlet
model has been used, introduced at the recent BETEQ 2017
International Conference. In addition, the far-field is also
obtained by matching with oseenlets. Unlike existing Euler
flow representations, the drag, wake eddies and far-field
wake profile are all captured, and compare favourably with
experiment.
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1. Introduction

The novelty in the paper is to demonstrate the use of two-dimensional
eulerlets in modelling bluff body flows. Eulerlets are the Green’s func-
tion solution to the Euler equations given for two-dimensional flow by
Chadwick and Kapoulas in Chadwick and Kapoulas (2015), Chadwick
(2013, 2015). Eulerlet models are different from usual Euler representa-
tions in that they model a wake, crucial for bluff body flows. Existing
Euler flow representations for separated flow use free streamline theory
(Goldstein, 1960), but it is evident that the flow physics and predictions
from these theories are poor (Kiya & Arie, 1977). In the present paper,
two-dimensional flow past a circular cylinder is considered, and also the
far-field is modelled by matching the near-field eulerlets to the corre-
sponding far-field oseenlets.

2. The two-dimensional eulerlets

The two-dimensional eulerlets are given by

uð1Þi ¼ 1
2π

½ln r�;i �Hðx1Þδðx2Þδi1
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uð2Þi ¼ 1
2π

�ij3½ln r�;i ¼ 1
2π

½�θ�;i (1)

where uðkÞi is generated by a unit point force at the origin in the kth
direction, for the Cartesian co-ordinates xi in Einstein tensor notation
such that a comma denotes a derivative. In two-dimensions the radius
and polar angle are given by r and θ respectively, and in three-dimensions
the radius is given by R. The Heaviside function is denoted by Hðx1Þ where
Hðx1Þ ¼ 0 for x1 < 0 and Hðx1Þ ¼ 1 for x1 > 0 and picks out the wake.

The Dirac delta function is denoted by δ with the additional property
that its derivative is zero (We note that this does not contradict the delta

function property x @δðxÞ
@x ¼ �δðxÞ, which still holds, and so this is is an

additional property to those that already apply.). Kronecker delta is given
by δij such that δij ¼ 1 for i ¼ j and δij ¼ 0 for i�j, and the Levi-Civita
symbol �ijk is given by �ijk ¼ 1 for ði; j; kÞ ¼ ð1; 2; 3Þ; ð2; 3; 1Þ; ð3; 1; 2Þ,
�ijk ¼ �1 for ði; j; kÞ ¼ ð1; 3; 2Þ; ð2; 1; 3Þ; ð3; 2; 1Þ, �ijk ¼ 0 otherwise.

These eulerlets are represented pictorially in Figures 1 and 2.

Potential outflow

wake inflow

Figure 1. Streamlines for the drag eulerlet.

Clockwise circulation

Figure 2. Streamlines for the two-dimensional lift eulerlet.
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3. Separated flow past a circular cylinder

Consider modelling separated rather than attached flow past a circular
cylinder of normalised radius 1 centred at the origin by a distribution of
eulerlets over the cylinder boundary producing a wake distribution.

The fluid velocity component ui is represented by two parts,
a velocity potential ϕ;i and a wake velocity wi such that ui ¼ ϕ;i þ wi.
The potential is given in terms of the potential parts of the eulerlets
which can then be represented by a harmonic expansion originating
from the origin such that

ϕ ¼ D
2π

ln r þ
X1
n¼1

an
cos nθ
rn

(2)

for coefficient D related to the drag, and for some unknown coefficients an,
from either use of the Taylor series expansion or complex potential theory.
The wake velocity is given in terms of a distribution of the wake velocity of
the drag eulerlets over the cylinder boundary, the terms of each wake
eulerlet lying on the infinite half line aligned to the x1-axis. So, this can
be represented as originating from a distribution along the line
� 1 � x2 � 1, x1 ¼ 0 such that

wiðxÞ ¼
ð1
�1

dðx20Þwð1Þ
i ðx� x0Þdx0

2

¼ �
ð1
�1

dðx02ÞHðx1Þδðx2 � x02Þδi1dx02 (3)

from (1). Therefore, the derivative of wi in the x2 direction, and so the
wake vorticity, is zero as the derivative of the Dirac delta function is zero.
So (3) represents an Euler slip wake, where fluid slips past each other in
layers. The total Euler drag is the wake inflow given by

D ¼ � �
@�

w1d@� ¼ �1�1 dðx2Þdx2, and from (1) the outflow is

�@� ϕ;inid@� ¼ D, and the inflow is �@� winid@� ¼ �D.

Euler flow and the eulerlet theory assume a vanishingly thin bound-
ary layer of thickness δ ¼ 0ð1= ffiffiffi

R
p

eÞ ! 0, where ‘0’ means ‘of the order
of’ and Re is the Reynolds number Re ¼ ρUl=μ for some near-field
length dimension l, density ρ, free stream velocity U and coefficient of
viscosity μ. However, for these problems the Reynolds number such as
Re ¼ 20 is so low that the boundary layer thickness δ ¼ 1=

ffiffiffi
2

p
0 is

sizeable. So this is a significant approximation which will significantly
limit the accuracy of the model.
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3.1. Euler drag profile for cosine distribution

Consider a cosine shaped profile for the drag eulerlet distribution such that

dðx2Þ ¼ D
2
ð1þ cosðπx2ÞÞ (4)

for x2j j � 1, and zero otherwise. Then the Euler drag is

D ¼
ð1
�1

dðx2Þdx2 ¼
ð1
�1

D
2 ð1þ cosðπx2ÞÞdx2 ¼ D. The cosine distribution

is chosen to mimic the form of the cosine-like far-field wake.

3.2. Boundary condition for cosine distribution

Assuming a boundary layer of negligible thickness over the body, then the
impermeability condition holds for the Euler velocity

uyi ni ¼ 0jr¼1

ðδi1 þ ϕ;i �Hðx1Þdðx2Þδi1Þni ¼ 0jr¼1

n1 þ ϕ;ini �Hðx1Þdðx2Þn1 ¼ 0jr¼1: (5)

Substituting in for ðn1; n2Þ ¼ ðcos θ; sin θÞ and the expression for the
potential (2) then gives for r ¼ 1, x1 < 0:

cos θþ D
2π

�
X1
n¼1

nan cos nθ ¼ 0; (6)

and for r ¼ 1, x1 > 0:

cos θþ D
2π

�
X1
n¼1

nan cos nθ� D
2
ð1þ cosðπ sin θÞ cos θÞ ¼ 0: (7)

It is noticed that at least one coefficient an does not linearly depend upon
the drag. However, from Abramowitz and Stegun (Abramowitz & Stegun,
1972) it can be shown that

cosðπ sin θÞ cos θ ¼
X1
n¼0

2ð2nþ 1Þ
π

J2nþ1ðπÞ cos½ð2nþ 1Þθ� (8)

from 9.1.42 p361, 4.3.32 p72 and 9.1.27 p361, where Jn is the Bessel
function of the first kind of order n. So for r ¼ 1, x1 > 0:
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cos θþ D
2π

�
X1
n¼1

nan cos nθ� D
π

X1
n¼0

ð2nþ 1ÞJ2nþ1ðπÞ cosð2nþ 1Þθ

� D
2
cos θ ¼ 0:

(9)

4. Fourier analysis to determine the coefficients for cosine distribution

In this section, we apply Fourier analysis to determine the coefficients an.
The boundary condition is

ðπ
0
θ cos θþ D

2π
�
X1
n¼1

nan cos nθ

( )
dθ

� D
2

ðπ=2
0

θ cos θþ 2
π

X1
n¼0

ð2nþ 1ÞJ2nþ1ðπÞ cosðð2nþ 1ÞθÞ
( )

dθ ¼ 0:

(10)

However, we have that

ðπ
0
θ cos nθdθ ¼

0 m�� n
π=2 m ¼ �n
π m ¼ n ¼ 0

8<
: (11)

and

ðπ=2
0

θ cos½ð2nþ 1Þθ�dθ ¼
0 m odd; m�� ð2nþ 1Þ

π=4 m odd; m ¼ �ð2nþ 1Þ
ð�1Þnþm=2ð2nþ1Þ
ð2nþ1Þ2�m2 m even:

8>><
>>:

(12)

So for m ¼ 0, (10) becomes

D
2
� D

2
� D

π

X1
n¼0

ð�1ÞnJ2nþ1ðπÞ ¼ 0; (13)

which is true since 2
P1

n¼0 ð�1ÞnJ2nþ1ðπÞ ¼ sinðπÞ ¼ 0 from Abramowitz
and Stegun (Abramowitz & Stegun, 1972) 9.1.48 p361. Furthermore, sub-
stituting in for m ¼ 1 into (10) gives

π

2
a1 ¼ π

2
� π

2
D
4
� π

2
D
2π

J1ðπÞ
a1 ¼ 1� D=4� ðD=2πÞJ1ðπÞ;

(14)

for m � 2 and even giving
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� π

2
mam ¼D

π

X1
n¼0

ð�1Þnþm=2J2nþ1ðπÞ
1� ðm=ð2nþ 1ÞÞ2 þ

D
2

ð�1Þm=2

1�m2

 !

am ¼ 2D
mπ2

X1
n¼0

ð�1Þnþm=2J2nþ1ðπÞ
ðm=ð2nþ 1ÞÞ2 � 1

þ D ð�1Þm=2

m2 � 1

 ! (15)

where we have used the result

JnðzÞ ¼ ðð1=2ÞzÞn
X1
k¼0

ð�ð1=4Þz2Þk
k!Γðnþ kþ 1Þ

with Γðnþ kþ 1Þ ¼ ðnþ kÞ! from Abramowitz and Stegun (Abramowitz
& Stegun, 1972) 6.1.6 and 9.1.10. Finally, for m � 3 and odd we get

� π

2
mam ¼mD

4
JmðπÞ

am ¼� D
2π

JmðπÞ:
(16)

4.1. Position and merging of near- and far-fields

Let L be the far-field length dimension, and l be the near-field length dimen-

sion. From the oseenlet ekx1K0ðkrÞ � e�kx22=2x1 in the far-field, where k ¼
ρU=2μ and K0 is the modified Bessel function of order zero. So the wake is
exited when η ¼ kl2=2L ¼ ðRe=4Þðl=LÞ ! 1 which also therefore defines
the boundary between the near- and far-fields. For Reynolds numberRe ¼ 26,
36 and 40, this occurs even close to the circular cylinder as the Reynolds
number is so small the far-field length L is not large. However, we must also
ensure that in the far-field, the Oseen velocity is a small perturbation of the
uniform flow field. By inspection of the numerical results in Figures 4 and 5
we see that this holds at radial distance r ¼ b ¼ 4 for Re ¼ 26 and r ¼ b ¼ 6
for Re ¼ 40. We note that the Oseen far-field has the effect of diffusing the
wake and consequently closing the eddies downstream; if instead only Euler
flow is considered, then the eddies remain open to infinity. The Oseen wake
diffusion originates from the modified Bessel function in two-dimensional
flow, and the eddy length is a distance of order Re downstream, as expected
from experimental observation.

To get a smooth transition between Euler and Oseen flow, a merging of the
two flow fields is proposed between the radial distances r ¼ a and r ¼ b and
represented in the Figure 3.

The graph in the lower left hand corner is reflected about the dotted lines of
symmetry to get the graphs in the other quadrants, and this graph itself has the
quadratic form y ¼ αðr � aÞ2, and so α ¼ 2

ðb�aÞ2 . In this merging region, the
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velocity is then given as umerged
i ¼ ð1� αÞuEuleri þ αuOseeni where uEuleri and

uOseeni are the Euler and Oseen velocities respectively.
We choose a ¼ 1 to get the greatest distance, and therefore most gradual

merging and smooth transition between the two flows. However, it is
noted that changing the values of a does not significantly affect either
the size or the position of the eddy in the wake or the wake structure and
flow itself. So the choice for a is not particularly crucial to the outcome of
the flow description.

Euler Oseen

Distance from circle

0

0.5

1

m
er

ge
 f

ac
to

r

r=a r=b

Figure 3. Merging of Euler and Oseen flow representations.

Figure 4. Flow field for Re ¼ 26.

Figure 5. Flow field for Re ¼ 40.
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4.2. Results

We consider two Reynolds numbers for the flow for which there are

known results, Re ¼ 26 with wake distribution strength

ð1
�1

dðx0
2Þdx

0
2 of

2:0, and Re ¼ 40 with wake distribution strength of 1:5. These strengths
are selected from the known values of the drag by experiment at these
Reynolds numbers. This produces the following flow patterns.

4.2.1. Laminar flow Reynolds number 26
Comparing with experiment (Coutanceau and Bouard, 1949), we note the
separation point is closely matched, and the size and shape of the eddies
are reproduced, although the experimental results suggest that the wake
tail should be curtailed sooner.

4.2.2. Laminar flow Reynolds number 40
Comparing with experiment (VanDyke, 1982), we note that the eddy position
is similar and the elongation of the eddies with higher Reynolds number is
captured. However, the separation point hasn’t moved as far upstream as
expected and the eddies are more flattened than expected from experiment.

4.2.3. Far-field decay of the laminar flow
We have experimental results for the far-field decay at Reynolds number
Re ¼ 36 from Kovasnzay (Kovasznay, 1949). From Figure 6, we note that

Figure 6. Far-field wake Re ¼ 36.
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the trend in diffusion is captured, and general wake profile is captured.
However, the rise at the lip of the wake is only partially captured, see for
example (Tordella and M.Belan, 2003).

5. Conclusion

Accuracy is limited because at a Reynolds number of 40 steady flow breaks
down. Even so, the streamlines compare well with flow visualisation, and
the far-field velocity distribution compares well to experiment; All the
essential flow physics and the far-field flow compares well to experiment.

It is noted that there are always two unknowns in the calculations: (1) the
strength of the wake distribution D and (2) the near-field boundary length.
Both of these are pre-determined by comparing the results with the experi-
mental data for any particular Reynolds number. This is straightforward in the
case of known experimental test problems, but presents a challenge for
extending the presented approach to other geometries and a wider range of
Reynolds number. One possible approach to overcome this would be to use
empirical correlation. From existing experimental results for particular geo-
metries and Reynolds numbers, empirical correlation could be use to predict
the strength of the wake distribution for the particular near-field boundary
length (and therefore Reynolds number). Then, from this the approach
presented in the paper could be then used to determine the flow character-
istics and pressure distribution.
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