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ABSTRACT
The secrets of the flapping of insects with two pairs of
wings, primarily dragonflies, have been revealed experimen-
tally and numerically. Although there exist many excellent
experimental studies, numerical study is limited due to the
highly demanding nature of the numerical approach to the
unsteady flapping problems. Recently, we have developed
a vortex-based method for the single-wing flapping pro-
blems in 2D. The simplicity and the accuracy of the method
developed have encouraged us to extend the method to
problems with two pairs of wings; the outcome is reported
in this paper. We consider the species with a long wing span
for which the flow field in the span direction is constant and
treated as 2D.
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1. Introduction

While birds and flying mammals use their wing muscles and bones to actively
morph the wing contour, insects use passivemechanisms that rely on the wing
structural design to achieve the optimal wing shape. The absence of an
additional control mechanism in insect wings makes them light and suited
for adaptation in the design of extremely lightweight micro-areal vehicles.

Another distinction between birds and insects is the number of wings; birds
have two wings while flying insects have four. According to Wigglesworth
(1972), in Orthoptera (grasshopper, cricket, katydid and locust), Neuroptera
(lacewing, mantidfly and antlion), Isoptera (termite) and Odonata (dragonfly
and damselfly), the fore and hind-wings move independently. Wigglesworth
compares the flight of Orthoptera and lower Neuroptera to that of Odonata
(dragonflies). While the upstroke and downstroke of the fore-wings for the
former group of insects are in advance of the hind-wings, dragonflies reverse
the order of the wing beat to ‘meet the oncoming air before it is troubled by
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the passage of the fore-wings’. In Hymenoptera (bee), Lepidoptera (butterfly
and moth) and Hemiptera (true bug), ‘fore and hind-wings are united by
various mechanisms to make a functional unit’ to avoid ‘the disadvantage of
the second pair of wings working in a region of turbulence produced by the
first pair’.

Although there exist many excellent experimental studies (Rival,
Widmann, & Tropea, 2012; Thomas, Taylor, Srygley, Nudds, &
Bomphery, 2004), there are few numerical studies of two pairs of wings,
including the blade element method (Azuma & Watanabe, 1988), the
upwind differencing scheme (Wang & Sun, 2005) and the immersed
boundary method (Wang & Russell, 2007), due to the highly demanding
nature of the numerical approach to the unsteady flapping problems. So
far, dragonflies have been studied almost exclusively, but it will be instruc-
tive to shed light to the flight of other insects.

The primary goal of this paper is to develop a simple but accurate
numerical method for analysing the unsteady fluid flow generated by the
pairs of fore and hind-wings moving independently. We consider insects
with a long wing span for which the flow field in the span direction is
constant and then reduce the problem to 2D, in which the original fore
and hind pairs (four wings) in 3D are modelled by two wings in 2D,
represented by one fore-wing and one hind-wing. The vortex-based
method used in this paper has been verified as simple but highly reliable
for the study of unsteady flapping aerodynamics for one pair of wings
(modelled by a single-wing in 2D) (Denda, Jujjavarapu, & Jones, 2016).
The flow observed in the flapping flight has a low Reynolds number for
which the viscous effects are important and the wake region is turbulent.
The proposed vortex approach that models the viscous boundary layers on
the wings and the turbulent wake region surrounding the wings is capable
of modelling the realistic viscous and turbulent flows. The method is
applicable regardless of the Reynolds number; for large Reynolds numbers,
the number of vortices increases and the problem of turbulence is reduced
to the many-wake-vortices problem in the inviscid fluid. In this paper, the
method, originally developed for the single pair of wings, is extended to the
two pairs of wings in 2D; for simplicity, the former is called the ‘single-
wing problem’ and the latter the ‘two-wing problem.’

2. Coordinate systems

For insects with a long wing span, the flow remains approximately con-
stant in the span direction. This justifies the two-dimensional (2D) model-
ling of wing motion. This paper considers such a class of 2D wing motions,
for which the flow field does not change in the out-of-plane direction. Two
infinitely long wings (in the span direction) are represented by their
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intersections with the two-dimensional plane as two thin chords of wings.
The wings are assumed rigid.

The position of each wing is described locally by the wing-fixed
system O� �η and globally by the space-fixed system ~O� ~�~η as
shown in Figure 1. Each wing undergoes two translational (lunge and
heave) and one rotational (pitch) motions (described below). We intro-

duce a third coordinate system for each wing, with its origin, Ô� �̂η̂,
placed at the centre of rotation of the wing, which is located at
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Figure 1. Space-fixed (~O� ~�~η), wing-fixed (O� �η) and wing-translating (Ô� �̂η̂) coordinate
systems along with the body-fixed system Ĉ � xCzC for a single wing.
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a distance a (the rotational offset) along the negative � axis. The axes, �̂
and η̂, of the last system are parallel to the global ~� and ~η axes,
respectively. While the wing-fixed system rotates and translates with

the wing, the system Ô� �̂η̂ only translates and is called the wing-
translating system.

For each wing, the trajectory of the translational wing motion, or
the trace of the origin Ô of the wing-translating system, is described
by a line called the stroke line. We introduce the body-fixed system

Ĉ � �̂Cη̂C, whose origin is located at the mass centre Ĉ with vertical
and horizontal axes. In addition, we introduce a straight axis (the
body axis) aligned with the body of the insect. The angle of the
body axis and the stroke line angle with respect to the body axis are
given by δ and β, respectively, such that the stroke line angle in the
space-fixed system is β� δ. Figure 2 shows two sets of wing-fixed and
wing-translating systems along with the common space-fixed system
~O� ~�~η and the body-fixed system Ĉ � �̂Cη̂C. Notice that subscripts F
and H in Figure 2 indicate quantities for fore and hind-wings. See
further details in Appendix A.
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Figure 2. Space-fixed (~O� ~�~η), wing-fixed (OF � �FηF , OH � �HηH), wing-translating
(ÔF � �̂F η̂F , ÔH � �̂Hη̂H), stroke line (F̂ � xFzF , Ĥ� xHzH) and body (Ĉ � xCzC) coordinate
systems. Subscripts F and H indicate the fore and hind-wings, respectively.
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3. 2D motion of insect wings

3.1. Motion of the single wing

3.1.1. Wing motion
The motion of the individual insect wing in three-dimensions consists of
three rotational components (roll, pitch and yaw) and three translational
components. In 2D, the roll is recast as a translational motion consisting of
the heave (up and down) and lunge (forward and back) components. The
pitch remains as the same in 3D and the yaw does not exist. Superimposed
upon these rotational contributions is the translational motion of the
insect in the negative space-fixed coordinate direction.

While the rolling of a finite length insect wing in 3D is described by the
rotation around the body axis, it is represented in 2D by a translational
motion (horizontal or lunge, L, and vertical or heave, H, components) of
an infinitely long wing along the stroke line. Additionally, the wing rotates
about the wing span axis to produce the pitch measured by the angle γ
(positive clockwise). The forward pitch (downstroke direction with γ< 0)
and backward pitch (upstroke direction with γ> 0) are called the pronation
and supination, respectively.

Consider a 3D rolling motion of an insect wing of the span length L ¼ 2l
over a stroke plane, which is the trajectory of the centre line of the wing span.
Let the upper and lower extents of the rolling motion be given by the upper
and lower stroke angles, ϕT and ϕB, as shown in Figure 3. These three
quantities, taken from the actual insect flight motions, are used to specify the
extent of the stroke line by the trajectory of the midpoint, l, of the span into
the 2D plane. Since the linear distance travelled by points along the wing
span increases from 0, at the base, to the maximum, at the wing tip, its
projection is taken at the midpoint, giving the average. The time variation of
the lunge and heave is expressed using the sinusoidal function.

l
φT

φB

stroke plane

l sinφT

l sinφB

Figure 3. The stroke plane view of the topmost (ϕT ) and bottommost (ϕB) positions of the
wing midpoint. Half wing spans on the left and right sides are shown, each at the extreme
positions.
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The pitch motion occurs as a sudden rotation, described by the step
function, of the wing at the extremes of each stroke (symmetric pitch), as
shown in Figure 4. It consists of the pronation in the downward direction
and the supination in the upward direction at the top and the bottom of
the stroke, respectively. The pitch motions that occur before and after
reaching the top or bottom are called advanced and delayed pitches,
respectively. Most insects do not have the capability to pitch instanta-
neously and the rotation is smoothed out throughout the stroke.
A smooth step function, as shown in Figure 5, is used.

The effect of the insect flight speed, ðU;VÞ, is incorporated by moving
the wing itself in the direction opposite to the air velocity under zero
ambient velocity. The non-zero ambient velocity can be superimposed over
this. For a constant air velocity, the total translational motion of the wing
is obtained by superimposing the contributions, L (lunge) and H (heave),
from the flapping motion and the air velocity to give ðL� Ut;H � VtÞ,
where t is the time.

All of the variables describing wing position are displayed in Figure 1.
Here, ðL� Ut;H � VtÞ gives the coordinates of the wing-translating sys-
tem origin Ô, α gives the slope of the �-axis of the wing-fixed system, and a
is the distance between the origins of the wing-fixed and wing-translating
systems. Notice that the coordinates of the body-fixed system origin Ĉ are
given by ð�Ut;�VtÞ. Additionally, the slope of the body axis is δ and the
location of the origin, B̂, of the stroke line coordinate system from the
body centre Ĉ is given by b. The details of the individual wing motion are
given in Appendix B.

tT0 T/2

γ

pronation

supination

pronation

+γm

γm-

Figure 4. Perfect pronation and supination.
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3.1.2. Wing velocity
The origin of the wing-translating system moves with velocity
( _L� U; _H � V), while the origin of the wing-fixed system moves
with combined translational ( _L� U; _H � V) and rotational ( _α) velo-
cities as shown in Figure 6. The origin Ô of the wing-translating
system is the centre of rotation. The velocity of an arbitrary point
P ¼ ð�; ηÞ on the wing is given, in terms of these wing velocity
parameters, by

V~� ¼ _L� U þ _αðηcosðαÞ � ðaþ �Þ sinðαÞÞand (1)

V~η ¼ _H � V � _αððaþ �ÞcosðαÞ þ η sinðαÞÞ

in the space-fixed coordinate system (Denda et al., 2016), where α is the
attack angle of the wing.

We consider a straight wing. The complex-valued unit normal vector is
given by

~n ¼ n~� þ in~η ¼ ie�iα (2)

γm

−γm

t0 T/2 T

Figure 5. Smoothed pitch motion with symmetric (solid), advanced (dashed) and delayed
(dotted) pitch.
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in the space-fixed system, where i is the imaginary number (Denda et al.,
2016). The normal velocity of the wing is given, from Equations (1) and
(2), by

V~n ¼ <ð�V~ζ~nÞ ¼ V~�n~� þ V~ηn~η; (3)

where <ðÞ is the real part of a complex variable. Although we are assuming
the straight wing in this paper, the camber of the wing can readily be
introduced by replacing i in Equation (2) by the complex valued unit
normal to the curved wing.

3.2. Motion of two wings

The motion of the second wing is described exactly in the same manner as
the first wing mentioned above. When two wings are present, parameters
for each wing are distinguished from those of the other wing by using the
subscripts F and H for the fore and hind-wings, as seen in Figure 2.
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Figure 6. Translational and rotational velocities of the wing-translating and wing-fixed
coordinate systems.
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4. Vortex equations

4.1. Single vortex

The vortices used in this paper are conveniently described in terms of
complex variables (Sears, 2011). Consider a line vortex with the circulation

Γ (positive counter-clockwise) located at ~ζ0 ¼ ~�0 þ i~η0. Its complex poten-
tial function is given by

ωð~ζÞ ¼ � iΓ
2π

logð~ζ � ~ζ0Þ; (4)

where ~ζ ¼ ~� þ i~η and ~ζ0 are complex position vectors in the space-fixed
system. The corresponding conjugate complex velocity is given by

vð~ζÞ ¼ dω

d~ζ
¼ � iΓ

2π
1

~ζ � ~ζ0
; (5)

where vð~ζÞ ¼ v~� þ iv~η and an overbar ð Þ indicates the complex conjugate.
To avoid an excessively high value of the velocity when it is evaluated in

the neighbourhood of the source point, we introduce the vortex core
model (Denda et al., 2016) for which Equation (5) is used outside the
core radius only. Within the core radius, the velocity changes linearly from
0 to a value, given by Equation (5), on the radius of the core.

4.2. Discretisation of the wing

For each wing, introduce m vortices Γj at ~ζ0j ðj ¼ 1; 2:::;mÞ, and m� 1

collocation points ~ζi ði ¼ 1; 2:::;m� 1Þ on the wing. The collocation
points are placed at the midpoints of vortex points. The number of vortices
for two wings, mF and mH, may differ (notice the subscript convention, F
and H, used for the two-wing system). We place vortices at the leading
(LE) and trailing (TE) edges and in between. The spacing of the vortex
points could be equidistant at the middle and gradually narrowed
towards the two end points, which are mathematically known singular
points. The details are given by Denda et al. (2016).

4.3. Influence coefficients

For the two-wing system, there are two types of influence coefficients
between vortices located on the two wings: self and cross-influence func-
tions. The complex conjugate velocity at the fore-wing collocation point ~ζFi
due to a fore-wing vortex ΓFj at

~ζF0j is given by
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�vFiFj ¼ � iΓFj
2π

1
~ζFi � ~ζF0j

: (6)

The normal component of this velocity at the fore-wing collocation point
is given, from Equation (3), by

v~nFFiFj ¼ <ð�vFiFj~nFiÞ ¼
ΓFj
2π

= ~nFi
~ζFi � ~ζF0j

 !
;V~nF

FiFjΓFj ; (7)

where ~nFi is given by Equation (2) at the fore-wing collocation point, = is
the imaginary part of a complex variable, and

V~nF
FiFj ¼

1
2π

= ~nFi
~ζFi � ~ζF0j

 !
(8)

is the self-influence coefficient for the fore-wing. Another self-influence
function for the hind-wing, V~nH

HiHj
, is obtained from Equation (8) by repla-

cing the subscript F by H. Two more cross-influence functions that

describe the interaction between the fore and hind-wings, V~nF
FiHj

and

V~nH
HiFj , are obtained similarly. For example, the former is the cross-

influence function for the normal velocity on a fore-wing collocation
point Fi due to a hind-wing vortex ΓHj .

5. System of equations for discrete vortices on two wings

5.1. Contribution from the bound vortices on two wings

In this subsection, we only consider bound vortices on the two wings; the
effect of the wake vortices is added in the next subsection. At the fore-wing
collocation point ~ζFi, calculate the normal velocity component contribu-
tions from the discrete bound vortices of the fore and hind-wings to get

v~nFFi ¼
XmF

Fj¼1

V~nF
FiFjΓFj þ

XmH

Hj¼1

V~nF
FiHj

ΓHj ; (9)

where V~nF
FiFj is given by Equation (8) and V~nF

FiHj
is one of cross-influence

coefficients between two wings. The non-penetration condition requires
that this normal velocity must be equal to the normal velocity of the fore-

wing, V~nF
Fi , at each collocation point,XmF

Fj¼1

V~nF
FiFjΓFj þ

XmH

Hj¼1

V~nF
FiHj

ΓHj ¼ V~nF
Fi ; (10)
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for collocation points Fi ¼ 1; 2; :::;mF � 1. An additional equation,
required to match the number of mF unknowns, ΓFi , for the fore-wing is
given by the conservation of the fore-wing vortices,XmF

Fj¼1

ΓFj ¼ 0: (11)

Similarly, the system of equations for the hind-wing is obtained by swap-
ping the subscripts F and H in Equations (10) and (11) with the resultXmF

Fj¼1

V~nH
HiFjΓFj þ

XmH

Hj¼1

V~nH
HiHj

ΓHj ¼ V~nH
Hi
; (12)

for collocation points Hi ¼ 1; 2; :::;mH � 1 and the hind-wing vortex con-
servation equation XmH

Hj¼1

ΓHj ¼ 0: (13)

Notice that the vortex conservation condition is applied for each wing
independently in order to provide two additional equations, thus securing
the sufficient number of equations and matching the total number of
bound vortices, mF þmH.

5.2. Contribution from the wake vortices

At each time step, a pair of fore-wing vortices, from the leading (Fj ¼ MF)
and trailing (Fj ¼ 1) edges, are shed from the fore-wing. This results in,
during the p th time period, 2ðp� 1Þ fore-wing wake vortices,

Γ½k�F1 and Γ½k�Fm (14)

located at

½p�~ζ ½k�F1 and ½p�~ζ ½k�Fm ; (15)

where the pre-superscript ½p�ðÞ indicates the current step ½p� and the post-

superscript ðÞ½k� (k ¼ 1; 2; :::; p� 1) indicates the originating time step.
Since the values of ΓF’s remain constant once the vortices are shed into
the flow, they do not have the pre-superscript. Following the procedure
used in the previous subsection for the calculation of bound vortex-
induced velocity, we can obtain (Denda et al., 2016) the normal compo-

nents, ½p�v~nFFiFp and ½p�v~nHHiFp , of fore-wing wake-induced velocity at the fore

and hind-wing collocation points ~ζFi and
~ζHi

, respectively.
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The effects of the wake vortices shed from the hind-wing can be treated
similarly to obtain the normal components, ½p�v~nFFiHp

and ½p�v~nHHiHp
, of hind-

wing wake-induced velocity at the fore and hind-wing collocation points
~ζFi and

~ζHi
, respectively.

Equations (10) and (12) are now augmented with the contributions
from the wake vortices, yieldingXmF

Fj¼1

V~nF
FiFjΓFj þ

XmH

Hj¼1

V~nF
FiHj

ΓHjþ½p�v~nFFiFpþ½p�v~nFFiHp
¼ V~nF

Fi (16)

and XmF

Fj¼1

V~nH
HiFjΓFj þ

XmH

Hj¼1

V~nH
HiHj

ΓHj þ ½p�v~nHHiFp þ ½p�v~nHHiHp
¼ V~nH

Hi
: (17)

Notice that for the first step, the wake is absent, and so are the augmented
wake vortex contributions in Equations (16) and (17).

6. Convection of wake vortices, shedding of bound edge vortices and
the Kutta condition

In our proposed method, the Kutta condition is not enforced at the LE and
TE of two wings (Belotserkovsky, Kotovskii, Nisht, & Fedorov, 1993;
Belotserkovsky& Lifanov, 2003; Denda et al., 2016). Instead the bound
vortices at these points are shed regularly at each time step. Right after
shedding, the two edges of each wing lose vortices to effectively satisfy the
Kutta condition momentarily until the new bound vortices are built up in
the next time step. All wake vortices are convected using the velocity
calculated at the wake vortices. The velocity contributions come from the
bound and wake vortices of the two wings.

7. Time marching solution procedure

In the time marching solution procedure, we prescribe the wing position
and velocity of two wings for each time step. Then, determine the magni-
tudes of the bound vortices using the non-penetration condition,
Equations (16) and (17), and vortex conservation equations, Equations
(11) and (13), for two wings. Next, calculate the induced velocity at the
TE and LE of two wings and wake vortex sites. Finally, shed the edge
vortices and convect the wake vortices. We repeat the whole process for
the subsequent time steps. For a detailed description of the time marching
solution procedure for the single wing, see Denda et al. (2016), which is
essentially the same for two-wing case in this paper.
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8. Impulses and force/moment

8.1. Space-fixed system

Denda et al. (2016) have shown that the linear and angular impulses of
a line vortex located at ~ζ ¼ ~� þ i~η with the circulation Γ are given by

� iρΓ~ζ (18)

and

� 1
2
ρΓj~ζj2; (19)

where Γ is a signed circulation with positive counter-clockwise orientation.
The time derivatives of the linear and angular impulses will provide the
force and moment exerted by the vortex onto the air. The force and
moment acting on the two wings are obtained by reversing the signs of
those obtained for the air. Notice that these are the resultants on the two
wings and the current approach cannot identify those acting on the
individual wing.

8.2. Wing-translating system

The linear and angular impulses must be calculated in the space-fixed
system. However, the angular momentum about the origin of the
space-fixed system is inapplicable in practical applications. Rather, it
should be calculated about the origin Ĉ of the body-fixed system (see
Figure 2). The problem, however, is that its origin is moving. To
resolve this issue, we introduce another space-fixed system that has
the same origin as the body-fixed system and calculate the angular
impulse in this coordinate system. Although this system needs to be
updated as the body-fixed system moves, each one of them in time
history is a space-fixed system and is the legitimate system for the
calculation of the impulses.

Consider, first, the original space-fixed system ~O� ~�~η and the body-

fixed system Ĉ� �̂cη̂c. The transformation between the two systems is
given by

~ζ ¼ r þ ζ̂C; (20)

where ζ̂C ¼ �̂C þ iη̂C and r ¼ �Ut � iVt. Substitute this relation into
Equations (18) and (19) and simplify to obtain

~I ¼ Î ; ~IA ¼ ÎA þ=ð�rÎ Þ; (21)

where
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Î ¼ �iρΓζ̂ and ÎA ¼ � 1
2
ρΓjζ̂j2: (22)

Now take the time derivative in Equation (21) to get the force and
moment,

~F ¼ ~I
:

¼ Î
:

;e ¼ _̂IA ¼ _̂IAþ=ð_�rÎ Þ þ =ð�r _̂IÞ: (23)

At this point, we switch from the original space-fixed system to the space-
fixed system that is placed on top of the body-fixed system, for which
r ¼ 0, giving the updated relations

~F ¼ _~I ¼ _̂I ;~¼ _~IA ¼ _̂IA þ=ð_�rÎ Þ; (24)

where _�r ¼ �U þ iV is the conjugate complex velocity of the coordinate origin

Ĉ of the body-fixed system due to the wing translational motion. Finally, the
force and moment acting on the two wings are obtained by reversing the signs.

In 2D, the force and moment are calculated per unit depth. Consider an
insect with the span length L ¼ 2l. In 3D, the wing undergoes a radial
flapping motion about the wing base. In the 2D adaptation of this flapping
motion, we determine its stroke line length d by projecting the 3D flapping
motion of the midpoint at l, rather than the wing tip at 2l, in order to
represent the average stroke line length of the 3D flapping wing.

Note that the programme inputs the half-span length l and obtains the
force and moment per unit span length. The total force and moment are
calculated by multiplying the span length L ¼ 2l. Counting wings on the
right and left, we further double the total force and moment.

9. Evaluation of numerical performance

The vortex method used in this paper is essentially the influence function
method, similar to the BEM (boundary element method), in comparison
to the domain methods such as the FVM (finite volume method) and FEM
(finite element method). The domain method, in the extension from the
single to multiple-wing analysis, must be carefully re-examined. The stra-
tegies working for the single-wing analysis may not work for multiple-wing
case any more. For example, when two wings get closer, the mesh between
them must be refined accordingly, which is not required for the single-
wing analysis.

The influence function method depends on the concept of closeness
between two points in the field or the distance between the source and
observation points. Because of this, the strategies developed for the single-
wing analysis remain valid for multiple-wing case regardless of the relative
position of the multiple wings. In other words, the strategies dealing with the
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closeness of multiple-wing case are already built in the single-wing analysis. If
they work for the single-wing analysis, then they also work for multiple-wing
case. This fact plays a key role in extending the vortex method from the single
to the multiple-wing case. There is no question that the verification must be
performed for the single-wing case against the established method such as the
FVM as in Denda et al. (2016). After this, however, there is not need to verify
the vortex method against the multiple-wing case.

In the following, we review the strategies developed to deal with the
closeness between two points in the single-wing analysis. Denda et al.
(2016) have evaluated the numerical performance of the proposed
vortex method for a single-wing problem in 2D. First, the closeness
between two bound vortices is explored. The spacial resolution is
determined by the number of bound vortices m, which determines the
spacing between bound vortices. The first candidate for the time incre-
ment, Δtd, depends on the heave motion and is determined by m and
the stroke line length d such that the distance covered by the heave
motion in a time increment is equal to the spacing between the bound
vortices. Another candidate, Δtp, is determined by the pitch speed p (see
Appendix B) such that the pitch event is fully contained within the time
increment. The smaller of the two is used for the actual time increment.
Notice that m is the only non-physical parameter that can be selected
independently from all other physical parameters, including d and p,
that define the problem. Denda et al. (2016) compared the solution with
results obtained by a Navier–Stokes solver, OpenFOAM (Weller, Tabor,
Jasak, & Fureby, 1998), based on the FVM. Second, the closeness
between the vortex source and the observation is explored when we
evaluate the velocity. Obviously, the velocity increases as we get closer
to a vortex. The strategy to avoid this type of singularity is employed by
introducing the vortex core model or Rankine vortex.

Next, the numerical performance for the single-wing case is sum-
marised. As m is increased, the solution has improved rapidly for
m ¼ 3; 5; 10; 15; 20. The solution stabilised and approached
towards the OpenFOAM solution around m ¼ 20; 25; 30; 35 but began
to deviate from the OpenFOAM solution after m ¼ 35. The solution
does not seem to converge to the viscous solution as we increase m. For
a large m, the wake is packed with vortices and, unless special techni-
ques such as lumping nearby vortices or allowing vortex decay, numer-
ical difficulties are expected even with the use of vortex core model
designed to avoid this problem. For m ¼ 35, the vortex method is
approximately 20 times faster than the OpenFOAM. Rather than
attempting to achieve the convergence to the reference solution
obtained by the Navier–Stokes solver, it would be wise to know the
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limit of the present method and use it in the range that gives the
optimal results. Our surprising discovery is that, although the results
using a small m are quantitatively inferior, they still preserve the
essence of the solution qualitatively. For a smaller mð< 35Þ, the vortex
method is significantly more than 20 times faster than the OpenFOAM.
We have found that for m> 35, the computational time increases expo-
nentially but the numerical results deteriorate as compared to the
OpenFOAM solution. The optimal value of m, determined by the
accuracy and the computation time, is therefore around 35. The above
observation gives us the best use of the proposed method as a quick
solver for unsteady flapping problems. Using a small m, such as m ¼ 5
and m ¼ 10, we can explore the unknown unsteady behaviour of the
flapping flight. Once we discover an interesting phenomenon or beha-
viour, we can increase m (up to m ¼ 35) for more accurate results. If
the phenomenon needs to be further scrutinised, then we switch to
a Navier–Stokes solver. We can remain confident that using this
method with a small m both captures the essential behaviour and yields
quick calculations.

We assume that the characteristics of the vortex method discovered for
the single-wing case remain true for the two-wing case considered here.
This assumption is quite safe since, in the transition from the single-wing
to two-wing case, no new elements in the numerical algorithm are intro-
duced. To complete the evaluation of numerical performance, we have
performed a convergence study for the two-wing problem which is speci-
fied by Table 1. The case of synchronous flapping (zero phase shit) was
considered. Figures 7 and 8 show the variation of the lift force Fy and the
drag force Fx over one period from the start for various values of m. Up
until m ¼ 20, the value of the forces jumped quickly until the variation
slowed down after m ¼ 20 to show the sign of convergence towards
m ¼ 35. The situation is very similar to the case of single-wing and we
expect the solution begins to diverge after m ¼ 35, indicating the optimum
value of m is between m ¼ 20 and m ¼ 35. Comparison of the vortex
method solutions with those by the Navier–Stokes solver for the two-wing
problem is in preparation.

Table 1. Flight parameters for the dragonfly, common to fore and hind-wings.
Translational velocity U ¼ 100cm=s, V ¼ 0cm=s

Wing half-span and chord lengths l ¼ 5cm, c ¼ 0:8cm
Distance of the stroke line from the body mass centre b ¼ 1:0cm
Top and bottom stroke angles ϕT ¼ 45� , ϕB ¼ �45�
Stroke line angle 30°
Flapping frequency f ¼ 30Hz
Pitching speed, amplitude, offset p ¼ 5, γm ¼ 30� , μ ¼ 0
Pitch axis offset a ¼ 0cm

The body axis angle δ ¼ 0� . See Figures 1 and 2.
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Figure 7. Variation of the lift force Fy over one period for various values of m.
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Figure 8. Variation of the drag force Fx over one period for various values of m.
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10. Preliminary study on the role of the second pair of wings in insect
flight

According to Wigglesworth (1972), in Hymenoptera (bee, wasp),
Tricoptera (caddisfly), Lepidoptera (butterfly, moth) and Hemiptera (true
bugs), ‘fore and hind-wings are united by various mechanisms to make
a functional unit’ to avoid ‘the disadvantage of the second pair of wings
working in a region of turbulence produced by the first pair’. In
Orthoptera (grasshopper, cricket, katydid and locust), Neuroptera (lacew-
ing, mantidfly and antlion), Isoptera (termite) and Odonata (dragonfly and
damselfly), the fore and hind-wings move independently. Wigglesworth
compares the flight of Orthoptera and lower Neuroptera to that of
Odonata (dragonflies). While the upstroke and downstroke of the fore-
wings for the former group of insects are in advance of the hind-wings, the
dragonflies reverse the order of the wing beat to avoid the difficulty.

Notice that the order of the hind-wing and the fore-wing beating is
relative in the cyclic beating situation and there is no absolute way to
specify which beats first. Rather, this issue should be addressed in terms of
the phase shift of the hind-wing beating relative to the fore-wing, which
ranges from 0° to 360°. Therefore, we first investigate the effects of the
phase shift in the two-wing flapping. The geometric (wing chord, wing
length, fore and hind-wing separation distance), kinematic (stroke plane
angle, stroke angles, pitch shift) and kinetic parameters (flapping fre-
quency, flight speed, pitch rate) are determined from a sample dragonfly
species and its high-speed flight video as listed in Table 1; the exact
identification of the dragonfly is not important in this study since we are
not investigating dragonfly flight itself.

10.1. The effects of phase shift

Using the parameters in Table 1 taken from a typical dragonfly, we have
performed flight analysis by varying the phase shift of the hind-wing
relative to the fore-wing. The initial position of the fore-wing is at its
maximum upper stroke angle (ϕT ¼ 45�). The initial position of the hind-
wing is shifted at various angles, relative to the fore-wing, ranging from 0°
(synchronised) all the way up to 360°. Notice that at 360°, we return to the
initial synchronised case of 0° phase shift. Figure 9 shows the average lift
force over a flapping cycle as the function of the phase shift. It also shows
the standard deviation of the lift force over the same cycle. The number of
the bound vortices used in all the cases in this paper is m ¼ 10. The results
have been confirmed by calculations using m ¼ 15.

Notice that the average lift force peaks at around 110° phase shift but
remains near the peak level for phase shift angle between 0° and 180°. For the
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phase shift larger than 180°, the lift force drops a little with the minimum lift
force at around 300°. While the average lift force remains practically con-
stant for all the phase shift angles, the standard deviation over the cycle
varies drastically. The standard deviation takes the maximum value at 0°
(and near 360°) phase shift and minimum at about 180° phase shift. The
standard deviation indicates the stability of the flight; the smaller the stan-
dard deviation, the stabler the flight. Therefore, taking into account the
relatively constant average lift force over the cycle, the 180° phase shit, with
its minimum standard deviation, provides the most stable flight.

10.2. Power versus stability in insect flight

Based on the results of the study of the phase shift effects obtained above,
we are singling out two cases: one is the synchronous flapping (phase shift
0°) and another is the asynchronous flapping (phase shift 180°) of the two-
wing problem. We now investigate the variation of the lift force over the
flapping cycle for each case.

Figure 10 shows the variation of the lift force for the synchronous flapping. In
contrast, Figure 11 shows the lift force variation for the asynchronous flapping.

Figure 9. The average lift force Fy and the standard deviation (SD) over the cycle as the
function of the phase shift.

EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 497



Figure 10. Lift force variation for the synchronous flapping.

Figure 11. Lift force variation for the asynchronous flapping (phase shift 180).
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Although the average lift force over the cycle may be comparable for the
asynchronous and synchronous flapping cases, their variations over the cycle
are drastically different. The value of the lift force for the asynchronous flapping
remains positive throughout the cycle. In comparison, the synchronous flapping
provides larger lift force than the asynchronous case in the downstroke; how-
ever, it suffers the severe loss of the lift force in the upstroke. Figure 12 shows the
wake vortex distribution for the synchronous flapping at a moment of low lift
force generation (step 50 in Figure 10). The corresponding velocity field is
shown in Figure 13. Figure 14 shows the wake vortex distribution at a low lift
generation (step 60 in Figure 11) for the asynchronous flapping. The corre-
sponding velocity field is given by Figure 15. The comparison of the wake vortex
distribution plot and the velocity field plot demonstrates the difference of the
two presentations. In the wake vortex distribution plot, we can identify the
pressure distribution in the air by looking at the population of the vortices
around the wings. According to the Bernoulli equation, the pressure is low
where the velocity is high. Therefore, if one side of a wing is populated by
vortices and the other side is not, the pressure on the side with more vortices is
lower than the other side and the force acts on the wing from the high-pressure
to low-pressure side. By looking at the wake vortex distribution plot, we can
visualise the force acting on the wings. Meanwhile, the velocity field plot does
not provide the insight on the force acting on the wings but can be used to
compare the results obtained with other methods.

Figure 12. Wake vortex distribution for the synchronous flapping at a low lift generation step.
The circle and cross represent vortices from the fore and hind-wings, respectively.
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Figure 13. Velocity distribution for the synchronous flapping at a low lift generation step
corresponding to the wake vortex distribution of Figure 12.

Figure 14. Wake vortex distribution for the asynchronous flapping at a low lift generation
step. The circle and cross represent vortices from the fore and hind-wings, respectively.
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Notice that for the synchronous flapping, the hind-wing is in the middle of
the cloud of wake vortices, resulting in low negative lift force. In comparison,
the hind-wing for the asynchronous flapping stays away from the wake
vortices generated by the fore-wing, avoiding the severe loss of lift force.
Overall, the asynchronous flapping provides the stable flight at the loss of
the lift, while the synchronous flapping provides more instant power at the
expense of the stability of the flight. Image sequences of the wake development
for the two cases for the entire cycle of one period are provided by Movie 1
(synchronous) and Movie 2 (asynchronous).

We have also provided three high-speed movies of dragonfly flight.
During the regular flight, dragonflies fly using asynchronous flapping to
achieve the stable level flight as shown in Movie 3. They also use the
asynchronous flapping during the natural takeoff as shown in Movie 4, but
when threatened they flap wings synchronously to gain the power to
escape quickly as shown in Movie 5.

YouTube links for the movies are provided below

Movie 1 https://youtu.be/oXsq1sUou74
Movie 2 https://youtu.be/OEWHxwPBHm8
Movie 3 https://youtu.be/pGpsvsDdqUg
Movie 4 https://youtu.be/qDZzLwfUExg
Movie 5 https://youtu.be/8a7MfqqFPmc

Figure 15. Velocity distribution for the asynchronous flapping at a low lift generation step
corresponding to the wake vortex distribution of Figure 14.
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10.3. Two-wing versus united single-wing flight

The following final analysis is motivated by a feeble flight of Neuroptera
(lacewing, mantidfly and antlion) whose hing-wings experience the diffi-
culty in comparison to dragonflies. In the context of our phase shift
analysis, the phase shift of the dragonflies is at around 180°, while that
of the Neuroptera is around 0°, which is synchronous flapping. Indeed, the
Neuroptera species flap their wings synchronously resulting in feeble and
vertically oscillating flight. This is explained by our earlier results for the
synchronous flapping. But what happens if the two wings (or two pairs of
3D wings) are combined into a larger single wing (one pair of 3D wings)?
Does the combined larger wing yield improved performance?

The first analysis has been performed using the two-wing programme
with the synchronous flapping as introduced earlier, in which the effects of
the separation distance between the two wings are observed. The para-
meters used are the same as before, except the separation distance, which is
defined as the sum bS ¼ bF þ bH of the separation distances of the fore and
hind-wings measured from the mass centre Ĉ as shown in Figure 2. At
a large separation distance, the two wings flap independently without
interaction; the lift calculated is 290 dyn/cm, which remains constant as
separation increases. As bS is decreased, the wings begin to interact and the
lift force increases up to a peak value of 320 dyn/cm . Then, the lift force
suddenly drops to 260 dyn/cm as two wings get extremely close. Notice
that the dropped value is smaller than the lift force achieved by a large
separation, indicating the destructive interaction of the wings. This is in
contrast to the constructive interaction observed at a moderate separation
distance, in which the lift force is greater than the force generated by
a large separation. In the second analysis for the single wing, all parameters
are kept the same as the two-wing case except the chord length is doubled,
indicating the unity or linking of the two wings. The maximum lift force in
the downstroke is 225 dyn/cm, as shown in Figure 16. In all the cases
considered, the maximum lift force is observed during the downstroke, at
about the same time in the flapping cycle. The shape of the lift force curves
remains almost identical for both the two-wing and the single-wing cases.

Although we have been expecting the combined single-wing to produce
more lift force than the two-wing synchronous flapping, it is not the case.
This means that the two wings flapping independently but synchronously
will produce more lift force than the single wing with the same surface area as
the two wings combined. Additionally, if the separation distance is properly
adjusted, then the synchronous two-wing flapping can achieve the construc-
tive interaction between the two wings to maximise the lift force. Finally,
whether wings are united or remain separated, as long as the wings move
synchronously, stability is lost and insects cannot achieve the level flight.
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11. Concluding remarks

We have developed a simple but efficient numerical technique for the
analysis of the flapping with two pairs of wings in 2D using the vortex
method. Using this technique, we have performed a preliminary study
on the effects of two pairs of wings in insect flapping flight.

Dragonflies manage to adopt two strategies in their flight. Regularly,
they use the asynchronous flapping for stability, but occasionally they
adopt the synchronous flapping for power. They can do this because
they keep the two pairs of wings separated. The majority of the other
insects unite their fore and hind-wings to provide more lift force in the
downstroke. However, flapping two pairs of wings synchronously seems to
produce more lift force than flapping with one pair of larger wings
obtained by combining the two.

Disclosure statement

No potential conflict of interest was reported by the authors.

Figure 16. Lift force variation for the united fore and hind-wing flapping.
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Appendices

Appendix A. Key coordinates in space-fixed system

The coordinates used in the description of the wing motion are all given in the space-fixed
system. The following formulas are applicable to both fore and hind-wings with additional
subscripts F and H, respectively. See Figures 1 and 2.

Ĉ: mass centre of the body

~�Ĉ ¼ �Ut; (A:1)

~ηĈ ¼ �Vt;

where U and V are constant velocity components of the air.

B̂: intersection of stroke line and body axis

~�B̂ ¼ ~�Ĉ þ b cosðδÞ; (A:2)

~ηB̂ ¼ ~ηĈ � b sinðδÞ;

where b is the body-axis coordinate of the attachment point, B, of the stroke plane

measured from the body centre, Ĉ, and δ is the angle of the body-axis.

Ô: origin of the wing-translating system

~�Ô ¼ ~�B̂ þ D cosðβ� δÞ ¼ �Ut þ b cosðδÞ þ D cosðβ� δÞ; (A:3)

~ηÔ ¼ ~ηB̂ þ D sinðβ� δÞ ¼ �Vt � b sinðδÞ þ D sinðβ� δÞ;

where β is the angle of the stroke line with respect to the body axis and D is defined by
Equation (A.8).
O: origin of the wing-fixed system

~�O ¼ ~�Ô þ acosðαÞ; (A:4)

~ηO ¼ ~ηÔ � asinðαÞ;

where a is the distance of the origins of the wing-translating, Ô, and wing-fixed, O,
systems and α is the attack angle of the wing.

P: a point on the wing

~�O ¼ ~�Ô þ ðaþ �ÞcosðαÞ; (A:5)

~ηO ¼ ~ηÔ � ðaþ �ÞsinðαÞ;

where (�, 0) is the coordinates of the point P in the wing-fixed system.

Appendix B. Wing motion

B1. Lunge and heave
In the following equations, the subscripts F and H, indicating the fore and hind-wing,

are omitted. For each wing, we obtain the hypothetical wing length l (half the actual wing
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length L ¼ 2l) and top and bottom stroke angles (ϕT and ϕB) from the insect specimen
considered. The stroke line length is given by

d ¼ dT þ dB; (A:6)

where dT ¼ l sinðϕTÞ and dB ¼ l sinð�ϕBÞ. The minus sign is required since the default

sign for ϕB is negative. As shown in Figure 1, the origin Ô of the wing-translating system,
located on the stroke line and moving along it, has its global position given by
ðL� Ut;H � VtÞ, in terms of the heave H and lunge L and the ambient air velocity
components, U and V, where

L ¼ b cosðδÞ þ D cosðβ� δÞ; (A:7)

H ¼ �b sinðδÞ þ D sinðβ� δÞ;
obtained from Equation (A.3) with

D ¼ 1
2

d cos
2πðt þ τÞ

T
þ e

� �
; (A:8)

where e ¼ dT � dB is the stroke length difference parameter between the top and bottom
strokes, τ and T are the phase shift and the period of motion and β is the stroke line angle.
The rates of lunge and heave are obtained by the time derivatives

_L ¼ � πd
T

sin
2πðt þ τÞ

T
cosðβ� δÞ; (A:9)

_H ¼ � πd
T

sin
2πðt þ τÞ

T
sinðβ� δÞ: (A:10)

B2. Pitch (Rotation)
As shown in Figure 1, the rotation (pitch) γ (positive clockwise) of the wing occurs

about the origin Ô of the wing-translating system. With a non-zero pitch, the attack angle
of the chord line is given by α ¼ π=2� ðβ� δ� γÞ. If the pitch occurs exactly at the top
or bottom of the stroke, then it is called symmetrical pitch. The timing of the pitch can be
either exactly at the top and bottom of the stroke (symmetric), before them (advanced
pitch) or after (delayed pitch), which is specified by an timing offset parameter μ (μ< 0 for
advanced and μ> 0 for delayed pitch).

Actual insects can never achieve the sudden pitch (Figure 4) and the pitch motion is
smoothed significantly. This smoothed pitch motion is described by the function

fti ¼
2

1þ e�2pðt�tiÞ ; (A:11)

which describes the step function (jump from 0 to 1 at t ¼ ti) when p ! 1. The
magnitudes of the supination and pronation are given by þ 2γm and � 2γm, respectively.
The entire series of smooth pitching in one period is given by the superposed smooth step
functions,

γ ¼ γmð1� f0 þ fT=2 � fTÞ: (A:12)

Figure 5 shows variations of smooth pitching with symmetric, advanced and delayed
pitching.

The pitch rate is given by
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_γ ¼ γmð�_f0 þ _fT=2 � _fTÞ; (A:13)

where

_fti ¼
4pe�2pðt�tiÞ

ð1þ e�2pðt�tiÞÞ2
: (A:14)

The parameter p controls the speed of pitch. Let Δtp be the time the smoothed step
function fti takes to complete the smooth increase of pitch by the amount 2γm. It is shown
by Denda et al. (2016) that p is given by

p ¼ 4
Δtp

: (A:15)
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