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ABSTRACT
A method is proposed to solve an inverse problem in two-
dimensional linear isotropic elasticity. The inverse problem
consists of the determination of both the entire displace-
ment field and the boundary conditions inaccessible to the
measurement from the partial knowledge of the displace-
ment field. The algorithm is based on a fading regularization
method (FRM) and is numerically implemented using the
method of fundamental solutions (MFS). The inverse techni-
que is first validated with synthetic data and is then applied
to the interpretation of experimental measurements
obtained by digital image correlation (DIC).
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1. Introduction

Numerous mechanical problems can be considered as inverse problems in
the sense that the geometry of the domain, the equilibrium equations, the
constitutive equations, the boundary conditions on the whole boundary of
the domain and potentially the initial conditions are not all given.
According to this definition, many mechanical problems, for example,
identification of material parameters, identification of unknown bound-
aries, identification of residual stresses, identification of inaccessible
boundary conditions can be considered as inverse problems. Such inverse
problems are in general ill-posed, in the sense that the existence, unique-
ness and stability of their solutions are not always guaranteed, see e.g.
Hadamard (Hadamard, 1923). There are numerous important contribu-
tions in the literature for inverse boundary problems in elasticity, which
are characterized by incomplete boundary conditions. The lack of com-
plete boundary conditions is usually overcome by supplying additional
information in the form of either internal displacements, strain or stress
measurements, or over-specified boundary conditions on the accessible
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part of the boundary. Many authors are interested in recovering the
missing data on some part of the boundary of a domain from over-
specified data on the other part. This problem is known as a Cauchy
problem.

There are many regularization techniques, like Tikhonov-type regu-
larization methods (Koya, Yeih, & Mura, 1993, Maniatty, Zabaras, &
Stelson, 1989, Marin & Lesnic, 2002, 2003, 2004, Tikhonov & Arsenin,
1977, Yeih, Koya, & Mura, 1993) and iterative methods (Andrieux &
Baranger, 2008, Baranger & Andrieux, 2008, Marin, Elliott, Ingham, &
Lesnic, 2001, Marin, Hào, & Lesnic, 2002, Marin & Lesnic, 2005), used
to obtain stable approximated solution of inverse boundary value pro-
blems in elasticity. Cimetière et al. (Cimetière, Delvare, Jaoua, & Pons,
2001, Cimetière, Delvare, & Pons, 2000) introduced the so-called fading
regularization method to solve the Cauchy problem associated with the
Laplace equation. This regularization procedure consists of an iterative
fixed-point process. This approach reduces the resolution of the Cauchy
problem to that of a sequence of optimization problems subject to an
equality constraint.

At each step of this iterative procedure, Cimetière et al. (Cimetière et al.,
2001, 2000) look, among all solutions of the equilibrium equations, for the
one that fits at best the over-specified data and the previously computed
optimal element. This is the reason why the functional, to be minimized in
the space that characterizes the solutions of the equilibrium equations,
consists of two terms: a relaxation term which allows to minimize the gap
between the optimal element and the over-specified boundary data, and
a regularization term which controls the gap between the actual optimal
element and the previous one. In the case of compatible data, Cimetière
et al. (Cimetière et al., 2001, 2000) proved that the sequence converges to
the solution of the given Cauchy problem and that the additional regular-
ization term tends to zero as the iterative procedure is continued. This is
the reason why this method is named the fading regularization
method (FRM).

The FRM was numerically implemented, in two dimensions, in the case
of the Cauchy problem for the Laplace equation, using both the boundary
element method (BEM) and the finite element method (FEM) by Delvare
et al. (Delvare, Cimetière, & Pons, 2002) and Cimetière et al. (Cimetière,
Delvare, Jaoua, & Pons, 2002), respectively. It was later extended to solve
Cauchy problems in linear isotropic elasticity in conjunction with the FEM
(Delvare, Cimetière, Hanus, & Bailly, 2010, Durand, Delvare, & Bailly,
2011) and the method of fundamental solutions (MFS) (Marin, Delvare,
& Cimetière, 2016). The FRM was also numerically implemented using the
MFS to solve Cauchy problem for the Helmholtz equation (Caillé, Delvare,
Marin, & Michaux-Leblond, 2017).
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This paper represents a contribution to the study of less academic problems.
Indeed, numerous inverse boundary value problems arise from the limits of
experimental instrumentation. In experimental solid mechanics, due to the
progress in the field of computer vision applied to experimental measure-
ments, field measurements on a part of the specimen surface are now com-
mon. Among the different non-contact optical methods, the Digital Image
Correlation technique, initially started in 1980s, has become increasingly
popular, especially in 2D problems, to determine the displacement field
(Grédiac & Hild, 2012, Sutton, Orteu, & Schreier, 2009). However, the com-
plete measurement chain introduces an important number of error sources:
the quality of the camera, regularity and uniformity of the lighting system,
spatial contrast of the random speckle pattern, DIC algorithm, etc. The main
consequence is that the displacement field must be considered as disturbed by
noise and the inverse problem should be solved by limiting the influence of
displacement errors on the identification results. For this reason, the inverse
problem should be solved in a stable manner by preventing amplification of
measurement errors (Dennis, Dulikravich, & Yoshimura, 2004), especially
when the amount of noise is significant (Arai, Nishida, & Adachi, 2000).

This paper investigates such an inverse problem in linear isotropic
elasticity. It consists, from the knowledge of both the displacement field
measured in a restricted area of the domain and the stress vector on
a part of the boundary, of reconstructing simultaneously the elastic
displacement field in the whole domain and the boundary conditions.
Due to the noise that affects measurements, this problem is ill-posed and
is numerically solved, in a stable manner, by combining a FRM with
a MFS numerical method. The paper is organized as follows. In Section
2 we present the inverse problem under investigation. The combination
of a fading regularization technique and of the MFS numerical method
is described in Section 3. In Section 4, the proposed method is applied
to two examples with synthetic numerical data. Then, in Section 5, the
proposed method is applied to an experimental diametral compression
where the partial displacements data are obtained from experimenta-
tions using the Digital Image Correlation technique and therefore are
noisy. Finally, some concluding remarks and ideas for future works are
presented in Section 6.

2. Inverse problem formulation

We consider an isotropic linear elastic material which occupies an open
bounded domainΩ � R

2 and assume thatΩ is bounded by a piecewise smooth
boundary Γ;@Ω, such that Γ ¼ Γd [ Γu, where Γd; Γu�; and Γd \ Γu ¼ ;. We
also define Ωd which is a part of Ω (Ωd � Ω and Ωd�Ω) (Figure 1).

In the absence of body forces, the equilibrium equations are given by
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div ðσðMÞÞ ¼ 0; "M 2 Ω (1)

where σðMÞ denotes the Cauchy stress tensor.
This tensor is related to the strain tensor ε through the constitutive law

(Hooke’s law), namely:

σðMÞ ¼ E
ð1þ νÞ εðMÞ þ νE

ð1þ νÞð1� 2νÞ trðεðMÞÞI (2)

where E is the Young’s modulus and ν the Poisson’s ratio.
The strain tensor εðMÞ is related to the displacement gradient tensor �u

by the kinematic relations:

εðMÞ ¼ 1
2

�uðMÞ þ �TuðMÞ� �
; "M 2 Ω (3)

By substituting relations (2) and (3) into the governing Equations (1), the
Lamé’s equations are obtained:

LðuðMÞÞ ¼ E
2ð1þ νÞΔuðMÞ þ E

2ð1þ νÞð1� 2νÞ�ðdiv uðMÞÞ ¼ 0;

"M 2 Ω
(4)

Let nðMÞ be the outward unit normal vector at a point M 2 Γ and TðMÞ ¼
σðMÞ:nðMÞ be the stress vector at the point M 2 Γ.

Displacements are supposed to be measured in Ωd and the stress vector
is supposed to be either null or imposed on Γd. This leads to the mathe-
matical formulation of a problem consisting of Equation (4) and the
known displacements data and boundary conditions:

Figure 1. Domain.
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uðMÞ ¼ udðMÞ; M 2 Ωd (5a)

TðMÞ ¼ T dðMÞ; M 2 Γd (5b)

where ud and T d are prescribed vector functions.
In the above formulation (1), the displacement field is known in Ωd and

the stress vector is known on Γd. As a consequence, the boundary Γu is
underspecified since both the displacement u and the stress vector T are
unknown.

In the following, we will assume that the boundary conditions on Γd lead
to reliable stress vector quantities while the displacement field, evaluated
for example by DIC, in Ωd is considered unreliable due to noisy images or
DIC errors.

The Lamé’s Equation (4) and the prescribed boundary conditions (5)
lead to the formulation of the inverse problem in linear isotropic elasticity:

LðuðMÞÞ ¼ 0 "M 2 Ω
uðMÞ ¼ udðMÞ "M 2 Ωd

TðMÞ ¼ T dðMÞ "M 2 Γd

8<
: (6)

This problem is difficult to solve since it is ill-posed. When it admits
a solution, this solution is unique, but it is unfortunately sensitive to
small perturbations of the data. Therefore, a regularization method is
required in order to solve accurately problem (6).

3. Fading regularization method

3.1. Notations and equivalent formulation of the inverse problem

Let H1ðΩÞ be the Sobolev space of real valued functions in Ω endowed with
the usual Sobolev norm. The restrictions of the functions belonging to
H1ðΩÞ to the subset Ωd � Ω define the space H1ðΩdÞ. The space of traces
functions from H1ðΩÞ to Γ is denoted by H1=2ðΓÞ, while the restrictions of
the functions belonging to H1=2ðΓÞ to the subset Γd � Γ define the
space H1=2ðΓdÞ.

Herein, we use the following notation H1ðΩÞ :¼ H1ðΩÞ �H1ðΩÞ, as well
as similar notations for the other function spaces employed, i.e.
H1ðΩdÞ :¼ H1ðΩdÞ �H1ðΩdÞ, H1=2ðΓÞ :¼ H1=2ðΓÞ �H1=2ðΓÞ and
H1=2ðΓdÞ :¼ H1=2ðΓdÞ �H1=2ðΓdÞ. Finally, we denote by H�1=2ðΓÞ the dual
space of H1=2ðΓÞ and by H�1=2ðΓdÞ the dual space of H1=2ðΓdÞ.

We define the space of solutions of the Lamé’s Equation (4) by
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HðΩÞ ¼ fu 2 H1ðΩÞjLðuðMÞÞ ¼ 0 ;M 2 Ω ; in a weak senseg (7)

HðΩÞ is a closed subspace of H1ðΩÞ. We define the space of restrictions in
Ωd of the space of solutions of the Lamé’s equations HðΩÞ, denoted by
HðΩdÞ, which is endowed with the usual H1ðΩÞ scalar product and its
induced norm k �kHðΩdÞ.

We define ujΓ to be the traces of elements u 2 HðΩÞ on Γ and their
associated stress vector TðuÞ on Γ where TðuÞ :¼ σðuÞ:n.

Next, we generate the space of solution functions:

HðΓÞ ¼ fU ¼ ðv; u;TðuÞÞ 2 H1ðΩÞ �H1=2ðΓÞ �H�1=2ðΓÞjv 2 HðΩÞ ; vjΓ
¼ u ; TðvÞjΓ ¼ TðuÞg

(8)

and it can be shown that the space of solution functions HðΓÞ is a closed
subspace of H1ðΩÞ �H1=2ðΓÞ �H�1=2ðΓÞ with respect to the scalar product
hU;U0iHðΓÞ (Equation (9)) and its induced norm k �kHðΓÞ.

hU;U 0iHðΓÞ ¼
1

measðΩÞ < v; v0 > H1ðΩÞ þ 1
measðΓÞ < u; u0 > H1=2ðΓÞ

þ l20
measðΓÞ

1
E2

<T;T0 > H�1=2ðΓÞ;

" U ¼ ðv; u;TÞ;U0 ¼ ðv0; u0;T0Þð Þ 2 HðΓÞ �HðΓÞ

(9)

where l0 is a characteristic length of the considered domain Ω.
An equivalent formulation of the inverse problem (6) reads as

Find U ¼ ðv; u;TÞ 2 HðΓÞ such that vjΩd
¼ ud andTjΓd ¼ T d: (10)

An idea for solving problem (6) consists of seeking the best solution
satisfying the measurement data (5a) on the accessible domain Ωd, pro-
vided that the equilibrium Equation (4) and the boundary conditions (5b)
on the boundary part Γd are fulfilled. This leads to defining the solution of
the inverse problem (4), (5a) and (5b) in terms of an approximate solution
which solves the following optimization problem:

Givenðud;T dÞ 2 HðΩdÞ �H�1
2ðΓdÞ ; find U ¼ ðv; u;TÞ 2 HðΓÞ such that

JðUÞ � JðVÞ ;"V ¼ ðv0; u0;T0Þ 2 HðΓÞ
under the equality constraint TjΓd ¼ T d;

where Jð�Þ : HðΓÞ ! ½0;1½ ; JðVÞ ¼k v0jΩd
� ud k2HðΩdÞ :

����������
(11)
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3.2. Continuous formulation of the fading regularization algorithm

Problem (11) remains also ill-posed even if it admits a unique solution.
Therefore, an iterative regularizing method is introduced to solve it. The
method chosen is a generalization of the inverse technique introduced by
Cimetière et al. (Cimetière et al., 2001, 2000) to solve the Cauchy problem
for the Laplace equation. It can be considered as an iterative Tikhonov-
type regularization method.

Given c> 0 and U0 2 HðΓÞ the iterative algorithm reads as:

Find Ukþ1 ¼ ðvkþ1; ukþ1;Tkþ1Þ 2 HðΓÞ such that :
Jkc ðUkþ1Þ � Jkc ðVÞ " V ¼ ðv0; u0;T0Þ 2 HðΓÞ; with
Jkc ðVÞ ¼k v0jΩd

� ud k2HðΩdÞ þc k V � Uk k2HðΓÞ;

under the equality constraintT0 ¼ T d on Γd:

����������
(12)

In this iterative process, the Lamé’s Equation (4) is taken into account
exactly since at each step the search for the optimal element is performed
in space HðΓÞ. The boundary conditions concerning the stress vectors T on
Γd are also taken into account exactly due to the equality constraint. The
functional in (12) is composed of two terms which play different roles. The
first one acts only in Ωd and represents the gap between the optimal
displacement field vkþ1 and the given data. It relaxes the data which can
be possibly perturbed by measurement noises (relaxation term).
The second one acts in the whole domain Ω and on the boundary Γ and
not only where the information are to be completed. This term is
a regularization term, that controls the distance between the new optimal
solution and the previous optimal one, and tends to zero as iterations
go on.

So, at each step kþ 1, the optimal element Ukþ1 obtained is an exact
solution of the Lamé’s Equation (4), which satisfies the boundary condi-
tions (5b) on Γd and is close to the data ud in Ωd.

3.3. Discrete formulation of the fading regularization algorithm using the
MFS

Solving (11) for any geometry and boundary conditions requires to dis-
cretize the space HðΓÞ of solutions. In this paper, it is accomplished in
finite dimension with a meshless method, namely the MFS.

The main idea of the MFS consists of approximating the unknown
displacement vector on �Ω ¼ Ω[ Γ by a linear combination of fundamental
solutions of the Lamé’s Equation (4). In the two-dimensional case,
a fundamental solution is given by Berger and Karageorghis (Berger &

514 L. CAILLÉ ET AL.



Karageorghis, 2001) at a point M, inside the domain, as a function of
a singular point Q, outside the domain, i.e.:

ujðP;QÞ ¼ uij ðP;QÞei; P 2 Ω; Q 2 R
2nΩ; j ¼ 1; 2 (13)

with

uijðP;QÞ ¼ � 1
8πGð1� �νÞ ð3� 4�νÞ ln rðP;QÞδij �

ðxiP � xiQÞðxjP � xjQÞ
r2ðP;QÞ

� �
;

i; j ¼ 1; 2

where e i, i ¼ 1; 2, is the unit vector along the xi-axis and δij is the

Kronecker delta tensor. rðP;QÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1P � x1QÞ2 þ ðx2P � x2QÞ2

q
represents

the Euclidean distance between the point P and the source point Q, G ¼
E

2ð1þνÞ is the shear modulus and �ν is introduced to distinguish the plane

strain state (�ν ¼ ν) and the plane stress state (�ν ¼ ν
1þν ).

With respect to N source points located outside the physical domain,
Ql 2 R

2n�Ω; 1 � l � N, the displacement field at a point M is approxi-
mated by:

uðPÞ � uða; b;Q; PÞ ¼
XN
l¼1

al u
1ðP;QlÞ þ bl u

2ðP;QlÞ; M 2 Ω; (14)

where a ¼ ða1; :::; aNÞ, b ¼ ðb1; :::; bNÞ and Q is the 2N-vector containing
the coordinates of the source points Ql; 1 � l � N.

On taking into account the kinematic relations (3), the constitutive
Equation (2), the definitions of the components of the stress vector
TðMÞ, and the fundamental solution (13), then traction vector is approxi-
mated on Γ by:

TðPÞ � Tða; b;Q;PÞ ¼
XN
l¼1

al T
1 ðP;QlÞ þ bl T

2 ðP;QlÞ; P 2 Γ (15)

where

TjðP;QÞ ¼ TijðP;QÞei; P 2 Γ; Q 2 R
2nΩ; j ¼ 1; 2

with
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T1jðP;QÞ ¼ 2G
1� ν

1� 2ν

@u1jðP;QÞ
@x1

þ ν

1� 2ν

@u2jðP;QÞ
@x2

� �
n1ðPÞ

þG
@u1jðP;QÞ

@x2
þ @u2jðP;QÞ

@x1

� �
n2ðPÞ; j ¼ 1; 2;

T2jðP;QÞ ¼ G
@u1jðP;QÞ

@x2
þ @u2jðP;QÞ

@x1

� �
n1ðPÞ

þ 2G
ν

1� 2ν

@u1jðP;QÞ
@x1

þ 1� ν

1� 2ν

@u2jðP;QÞ
@x2

� �
n2ðPÞ; j ¼ 1; 2:

Further, according to the fading regularization algorithm, at each step
k � 0 of the minimization problem (12), one has to approximate both the
known data ud in Ωd, the known boundary condition Td on Γd, the
unknown displacement u in �ΩnΩd and the unknown boundary condition
T on Γu, at the same time accounting for the given perturbed data. To do
this, we collocate the data at a set of Md points: MΩd points are located
inside the domain (Pl 2 Ωd; 1 � l � MΩd) and MΓd points are located at
the boundary (Pl 2 Γd; 1 � l � MΓd). We also express the MFS approxima-
tions (14) and (15) for the unknown data at a set of Mu points: MΩnΩd

points inside the domain where the displacement field is unknown and MΓu

points at the boundary where the stress vector is unknown. Consequently,
at each step k � 0, the minimization problem (12) is reduced to a linear
minimization problem with respect to the corresponding unknown MFS
constants.

Remarks:
i It can be noticed that the use of the MFS numerical method induces

regular C1ðΓÞ piecewize approximations for the traction vector T and
allows us to replace the H�1=2ðΓÞ norm by the L2ðΓÞ norm.

ii The equivalence of norms in finite dimension allows us to replace the
different norms involved in the functional (12) by their corresponding L2

norms.

4 Numerical results and discussion

We present the numerical results obtained using the MFS-fading regular-
ization algorithm described in the previous section. First, various relatively
simple cases are considered, for which an analytical solution uan is known,
allowing us to generate the data (5) on the grid Ωd and the boundary
part Γd.

The following control quantities are used to estimate the accuracy of the
proposed algorithm and the convergence of the iterative process:
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(i) the relaxation term of the functional (12):

JΩdðukþ1Þ ¼k ukþ1jΩd
� ud k2HðΩdÞ; (16)

(ii) the regularization term of the functional (13):

Jkreg:ðUkþ1Þ ¼ c k Ukþ1 � Uk k2HðΓÞ; (17)

(iii) the value JkðUkþ1Þ ¼ JΩdðUkþ1Þ þ Jkreg:ðUkþ1Þ of the functional (12) for
the optimal element Ukþ1;

(iv) the L2-relative error for v in Ω

uΩerror ¼
k v� uankL2ðΩÞ
k uankL2ðΩÞ

; (18)

(v) the L2-relative error for u on Γ

uΓerror ¼
k u� uankL2ðΓÞ
k uankL2ðΓÞ ; (19)

(vi) the L2-relative error for T on Γ

Terror ¼
k T � TankL2ðΓÞ
k TankL2ðΓÞ

: (20)

Three properties of the functional terms in the minimizing sequence can be
established without the assumption that the data ud is compatible, namely

(a) JΩdðUkþ1Þ is monotonically decreasing, i.e.

JΩdðUkþ1Þ � JΩdðUkÞ; "k � 0: (21)

(b) The second one Jkreg:ðUkþ1Þ is monotonically decreasing as soon as
c> 0, i.e.

Jkreg:ðUkþ1Þ � Jk�1
reg: ðUkÞ; "k � 0: (22)

(c) The sequence defined by the values of the functional J for each optimal
element ðUkþ1Þ is also monotonically decreasing as soon as c > 0, i.e.

JkðUkþ1Þ � Jk�1ðUkÞ; "k � 0: (23)

4.1. Unconfined uniaxial compression test of a rectangular specimen

As a first example, an unconfined compression test is selected (Figure 2). The
analytical solution for the displacement field uan ¼ ðuan1 ; uan2 Þ is the following:
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uan1 ðx1; x2Þ ¼ ν σ0
E x1; ðx1; x2Þ 2 Ω;

uan2 ðx1; x2Þ ¼ � σ0
E x2; ðx1; x2Þ 2 Ω;

(24)

in the domain Ω ¼ fx ¼ ðx1; x2Þ j0 � x1 � 1 and 0 � x2 � 2g with E ¼ 1
N.m�2, ν ¼ 0:2, and σ0 ¼ 0:1 N.m�2.

The data grid Ωd is defined by parameter ζ such that measðΩdÞ ¼
ζmeasðΩÞ and Γ is the boundary defined by Γ ¼ Γd [ Γu with Γd ¼ fx 2
Γ jx1 ¼ 0 and 0 � x2 � 2g [ fx 2 Γ jx1 ¼ 1 and 0 � x2 � 2g and Γu ¼
fx 2 Γ j0 � x1 � 1 and x2 ¼ 0g [ fx 2 Γ j0 � x1 � 1 and x2 ¼ 2g.
The corresponding MFS parameters have been set as N ¼ 90 on ~Γ ¼
x ¼ ðx1; x2Þ 2 R

2jx21 þ x22 ¼ d2
� 	

and d ¼ 10, whilst Md ¼ 100
and Mu ¼ 50.

Figure 2. Compressed pavement.
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If it is not specified, the data grid Ωd is defined by the parameter ζ ¼ 1
4 ,

which means that Ωd is four-times smaller than Ω. The domain Ω is
discretized with (30� 60) points.

4.1.1. Exact data
In the present case, the data in Ωd are generated from the analytical
solution for the displacement field uan (24) and the boundary conditions
for its associated stress vector on Γd are generated from Tan and both are
not blurred. As expected, the proposed algorithm allows one to reconstruct
the displacement field on the data grid Ωd and retrieve the displacements
in the entire domain Ω. Figure 3(a,b) shows the reconstructions of the
vertical component of the displacement u2 in Ωd (u2) and in Ω (uΩ2 ), for
c ¼ 10�1 and 67 iterations, respectively.

Figure 4(a,b) shows the perfect reconstructions of the vertical compo-
nent of displacement u2 and the vertical component of the stress vector T2

on Γ, respectively.1

In these figures the results are displayed on the whole boundary Γ thanks
to the use of a curvilinear abscissa s, growing, respectively, from 0 to 1 as

M describes cAB, from 1 to 3 as M describes cBC, from 3 to 4 as M describescCD, and from 4 to 6 as M describes cDA (Figure 2).

4.1.1.1 Stopping criterion. For both exact and noisy data, a stopping cri-
terion is needed to end the iterative process before the noise enters
significantly the numerical solution and hence the latter becomes oscilla-
tory/unstable.

Figure 3. Reconstruction of the vertical component of the displacement, (a) u2 in Ωd , and (b)
uΩ2 in Ω, for c ¼ 10�3.
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Figure 5 represents the evolution of the control quantities JΩdðUkþ1Þ,
Jreg:ðUkþ1Þ and JðUkþ1Þ versus the number of iterations k for the parameter

c ¼ 10�1. We note that for k � 67 the quantities JΩdðUkþ1Þ, Jreg:ðUkþ1Þ and
JðUkþ1Þ, as well as the errors uΩerror, uΓerror and T error, remain constant. We
also observe that the method converges.

The iteration at which the iterative process is stopped, is determined by
using the quantity Jreg:ðUkþ1Þ, where Ukþ1 is the optimal element obtained

Figure 5. Evolution of the control terms with respect to the number of iterations, k, for
c ¼ 10�1.

Figure 4. (a) Analytical, uan2 , and numerical vertical components of displacement, u2, and (b)
analytical, Tan2 , and numerical vertical components of stress vector, T2, retrieved on the
boundary Γ for c ¼ 10�3.
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at the ðkþ 1Þth step. As expected, the control quantity Jreg: decreases when
k< 67 and then becomes constant with only a few oscillations caused by
numerical approximations, for k> 67. We search the step kopt for which the

regularization term Jreg: increases, i.e Jreg:ðUkþ1Þ> Jreg:ðUkÞ and hence the
iterative process is stopped at k ¼ kopt ¼ 67. It must be emphasized that
this stopping criterion is blind because, when calculating the quantity Jreg:,
we do not need to know the analytical solution. Indeed, it is sufficient to
know two successive optimal elements and compare them.

We observe that oscillations occur in the term Jreg: because of numerical
approximations; however, this term becomes negligible compared to JΩd

and tends to zero. This proves that the algorithm converges actually. The
residual error JΩd (relaxation term) and the term J decrease during the
iterative process. After convergence is achieved, the relaxation term JΩd

remains constant and this corresponds to a numerical approximation
error.

4.1.1.2 Influence of parameter c. It is also necessary to investigate the
influence of parameter c, which defines the relative weight of the regular-
ization term Jreg: compared to the relaxation term JΩd . Figure 6(a,b)
shows the reconstructions of the vertical component of displacement u2
and the vertical component of the stress vector T2 on Γ, for various values
of c, respectively.

It can be seen from Table 1, that the value of parameter c affects the
number of iterations k required to obtain convergence. Table 1 lists the
results, obtained for a wide range of regularization parameter c, by specify-
ing the number of iterations necessary to achieve convergence and the
corresponding errors uΩerror, u

Γ
error and Terror. We note that the errors in u

Figure 6. (a) Analytical, uan2 , and numerical vertical components of displacement, u2, and (b)
analytical, Tan2 , and numerical vertical components of the stress vector, T2, retrieved on the
boundary Γ for various values of c.
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and T are identical for each value of the parameter c listed in Table 1. This
confirms that the algorithm converges to the same solution, regardless of
the value of c.

Figure 7 shows the evolution of the control quantities introduced in
Equations (16) and (17) versus k

c , for three values of c. We notice that, for
each c, these quantities become negligible as the number of iterations
required to achieve convergence is reached.

Figure 7. Evolution of the norms (a) JΩd , and (b) Jreg:, as functions of k
c , for various values of c.

Figure 8. Evolution of the errors (a) uΩerror , and (b) Terror , as functions of k
c , for various values of

c.

Table 1. Influence of the regularization parameter c on the number of iterations,
k, required to achieve convergence, and on the errors uΩerror , u

Γ
error and Terror .

c k uΩerror uΓerror Terror

10�10 2 2:07� 10�21 3:68� 10�21 3:40� 10�20

10�8 4 9:93� 10�21 1:69� 10�20 4:24� 10�20

10�6 6 2:32� 10�21 4:02� 10�21 9:24� 10�21

10�4 7 2:84� 10�21 7:55� 10�21 2:40� 10�20

10�3 11 5:31� 10�20 8:86� 10�20 1:53� 10�19

10�2 18 2:65� 10�20 4:66� 10�20 1:22� 10�19

10�1 67 3:41� 10�21 6:34� 10�21 6:88� 10�20
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Analogously and for comparison purposes, Figure 8 shows the evolution
of the relative errors introduced by Equations (18) and (20), as functions of
k
c for various values of c. Each quantity reaches very small values, see
Figure 8(a,b). This again confirms that the algorithm converges to the same
solution, regardless of the value of c, which acts only on the convergence
rate.

4.1.2. Reconstruction from a displacement field disturbed by a rigid body
motion
During real experiments, the displacement field data may be disturbed by
a rigid body motion. It is thus necessary to investigate how the reconstruc-
tions are influenced by this kind of perturbations.
A rigid body motion urig is the composition of a translation and a rotation.
Characterizing the rigid body translation by its two components a and b

and the rigid body rotation by the angle α, the components urig1 and urig2 of
the displacement can be written as follows:

urig1 ¼ aþ xM cos α� yM sin α� xM
urig2 ¼ bþ xM sin αþ yM cos α� yM

(25)

where ðxM; yMÞ are the coordinates of a point M in Ω and the origin O is
considered as the centre of rotation.

Figure 9(a,b) present the deformable part of the displacement compo-
nents udef1 Ω and udef2 Ω obtained by the MFS-FRM algorithm in Ω, when
data ud in Ωd are disturbed by the rigid body motion defined by (25),
where a ¼ 0:02, b ¼ 0:05 and α ¼ 0:1	.

Figure 9. (a) Deformable part of the horizontal displacement, udef Ω
1 , and (b) deformable part

of the vertical displacement, udef Ω
2 , in Ω, for c ¼ 10�1.
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The vertical components of the boundary conditions u2 and T2 on Γ,
obtained by the MFS-FRM algorithm, are represented on the Figure 10(a,b),
respectively.

We remark that the reconstructed displacements always contain the
rigid body motion, however, as expected, stress vectors are not influenced
and correspond to the exact solution. With a post-processing, using a non-
linear optimization procedure, we determine the parameters a ¼ 0:0201,
b ¼ 0:0499 and α ¼ 0:1081	 which characterize the rigid body displace-
ment. Hence, we are able to retrieve the deformable displacement field, see
also Figure 9(a,b).

4.1.3. Reconstruction with noisy data
Next, we investigate how the reconstructions are influenced by noisy data.
We assume that the given exact data eu Ωdj ¼ uan Ωdj have been perturbed as:

eu1εðxÞ ¼ uan1 ðxÞ þ v� δmaxðuan1 ðxÞÞρ; x 2 Ωd;eu2εðxÞ ¼ uan2 ðxÞ þ δmaxðuan2 ðxÞÞρ; x 2 Ωd
(26)

where δ is the level noise added to eu Ωdj ¼ uan Ωdj and ρ is a pseudo-random
number drawn from the standard uniform distribution in ½�1; 1
. In this
way, the noise is proportional to each component of the displacement data.

The reconstructions of the components u2 and T2 on Γ, obtained with
different noise levels (1%, 3%, 5% and 10%) are represented in Figure 11(a,b),
respectively.

The reconstructions obtained are very accurate. Table 3 tabulates the
results obtained for various levels of noise and various values of c, by
specifying the number of iterations necessary to achieve convergence and
the errors uΩerror, u

Γ
error and Terror. For each fixed noise level, the errors, for u

Figure 10. (a) Analytical, uan2 , and numerical, u2, vertical displacements and (b) analytical, Tan2 ,
and numerical, T2, stress vector vertical components, retrieved on the boundary Γ , when the
data are perturbed by a rigid body motion, for c ¼ 10�1.
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and T respectively, remain fairly identical regardless of the value of the
parameter c. This shows that even for noisy data, the numerical recon-
structions are independent of c. Therefore, the combined fading regular-
ization method-MFS algorithm is accurate and robust with respect to noisy
data.

Figure 12(a–c) shows the noisy vertical displacement data ud2 given in
Ωd, the reconstruction of the vertical displacement component u2 in Ωd

and the residual term ud2 � u2
�� �� in Ωd, respectively, obtained for data with

10% noise on eu Ωdj and c ¼ 10�1. We retrieve a residual term (Figure 12(c))
which corresponds to the 10% added noise. This result shows that the
proposed MFS-FRM algorithm allows for the denoising, i.e the filtering in
a mechanical sense, of the data. This property is due to the definition of
functional (12), which is composed of different terms with different roles.
As in most inverse iterative methods, there are regularization terms which
tend to zero as the number of iterations increases. However, in the present
FRM algorithm, there is also a relaxation term that allows for the data
blurred by noise to be taken into account. Therefore, we seek for a solution
which is close to the data but does not exactly fits the data. In fact, the
algorithm recomputes, at each step, a solution on the whole domain and
not only a solution where the data are lacking.

4.1.4. Influence of the parameter ζ
Next, we discuss the sensitivity of the numerical algorithm with respect to
the size of the data grid Ωd, characterized by the parameter ζ. We used
noisy displacement field data which is generated for Ωd ¼ Ω (ζ ¼ 1) and,
for each value of ζ, we keep only the part of data which belongs to Ωd and
hence the algorithm works with comparable data, regardless the parameter
ζ. The errors uΩerror, u

Γ
error and Terror are compared in Table 3.

Figure 11. (a) Analytical, uan2 , and numerical, u2, vertical displacements, and (b) analytical, Tan2 ,
and numerical, T2, vertical stress vector components, retrieved on Γ , for different noise levels
and c ¼ 1.
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Figure 13(a–c) shows the vertical displacement data, ud2, and the recon-
structions of the vertical displacement u2 in Ωd and uΩ2 in Ω, obtained
when applying the MFS-FRM algorithm and the stopping criterion intro-
duced in Section 4.1.1.1. For these figures, the different values of the
parameters are δ ¼ 5%, c ¼ 10�2 and ζ ¼ 1

9 .
Figure 14(a,b) shows the reconstructions of the displacement compo-

nents u1 and u2, on Γ, respectively, for various values of ζ. It can be
observed from these figures that the numerical solution are little affected
by the size of the data grid. For some values of ζ, the reconstructions are
less accurate, however, they remain still good (see also Table 3). This is
explained by the fact that the displacements are very small near the centre
of Ω, so that for small data grid (ζ � 1

9 ) the noise component becomes
larger than that of the displacements.

Figure 12. (a) Vertical displacement data, ud2, (b) reconstruction of the vertical displacement,
u2, in Ωd and (c) residual term ud2 � u2

�� �� in Ωd , for c ¼ 10�1 and 10% noise level.
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4.2 Unconfined compression test with non-uniform prescribed forces

A similar study is further performed for the same analytical displacement
field solution as in the first example, but with a different loading condition.
The solution domain represented in Figure 15 is a subdomain of the initial
one (Figure 2). This particular configuration allows one to apply the
proposed algorithm to a geometry that causes a non-constant stress vector
component T2 on Γu.

The MFS parameters have been set as N ¼ 90 on ~Γ ¼
x ¼ ðx1; x2Þ 2 R

2 x21 þ x22 ¼ d2
��� 	

and d ¼ 10, whilst Md ¼ 80 and
Mu ¼ 60. The data grid Ωd is defined by the parameter ζ ¼ 1

4 and the
domain Ω is discretized with 1552 points.

Figure 13. Known vertical displacement data ud2 (a) and reconstructed vertical displacement
u2 (b) in Ωd and reconstructed vertical displacement uΩ2 (c) in Ω for ζ ¼ 1

9 , c ¼ 10�2 and 5%
noise level.
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Figure 16(a,b) shows the reconstructions of the displacement compo-
nents u1 and u2 on Γ, respectively, and Figure 17(a,b) shows the recon-
structions of the stress vector components T1 and T2 on Γ, respectively, for
a noise level of 1%, 3%, 5% and 10% and c ¼ 10�1. In these figures the

Figure 14. Analytical, uan1 , and numerical, u1, displacements (a) and analytical, uan2 , and
numerical, u2, displacements (b) retrieved on Γ for different parameters ζ, δ ¼ 5%, and
c ¼ 10�2.

Figure 15. Compressed pavement with rounded shape.
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results are displayed on the whole boundary Γ thanks to the use of
a curvilinear abscissa s, growing respectively from 0 to 1 as M describescAB, from 1 to 2.56 asM describes cBC, from 2.56 to 3.56 asM describes cCD,
and from 3.56 to 5.12 as M describes cDA (Figure 15).

These curves reveal the accuracy of the reconstructions on Γ as well
as the ability of the fading regularization-MFS algorithm to deblur
noisy data in Ωd and to retrieve the displacement field in Ω (see also
Figure 18(a,b)).

Table 4 summarizes, for various levels of noise, the number of iterations
necessary to achieve convergence and the corresponding errors. It exhibits
the same characteristics as those obtained for the previous example
(Table 2).

Figure 16. (a) Analytical, uan1 , and numerical u1, horizontal displacements and (b) analytical,
uan2 , and numerical u2, vertical displacements, retrieved on Γ , for various noise levels and
c ¼ 10�1.

Figure 17. (a) Analytical, Tan1 , and numerical, T1, stress vector horizontal components, and (b)
analytical, Tan2 , and numerical, T2, stress vector vertical components, retrieved on Γ for various
noise levels and c ¼ 10�1.
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Figure 18. (a) The reconstruction of the horizontal displacement component, u1, and (b) the
reconstruction of the vertical displacement component, u2, in Ω for c ¼ 10�1 and a noise level
δ ¼ 10%.

Table 2. Influence of noise level δ and parameter c on the number of iterations, k, required to
achieve convergence, and on the errors uΩerror , u

Γ
error and Terror .

δ c k uΩerror uΓerror Terror
1% 10�2 33 2:87� 10�7 3:93� 10�7 1:10� 10�7

10�1 187 2:87� 10�7 3:93� 10�7 1:10� 10�7

10 3008 2:51� 10�7 3:33� 10�7 9:49� 10�8

3% 10�2 35 2:69� 10�6 3:53� 10�6 9:91� 10�7

10�1 199 2:59� 10�6 3:53� 10�6 9:91� 10�7

10 3924 2:42� 10�6 3:27� 10�6 9:24� 10�7

5% 10�2 37 7:18� 10�6 9:82� 10�6 2:75� 10�6

10�1 204 7:19� 10�6 9:82� 10�6 2:75� 10�6

10 4572 6:92� 10�6 9:37� 10�6 2:64� 10�6

10% 10�2 37 2:87� 10�5 3:93� 10�5 1:10� 10�5

10�1 216 2:87� 10�5 3:93� 10�5 1:10� 10�5

10 5495 2:82� 10�5 3:84� 10�5 1:08� 10�5

Table 3. Influence of the data grid size (parameter ζ) on the number of
iterations, k, required to achieve convergence, and on the errors uΩerror , u

Γ
error ,

and Terror .

ζ k uΩerror uΓerror Terror
25
36

10 7:51� 10�6 1:26� 10�5 1:35� 10�5

4
9

13 1:50� 10�5 2:51� 10�5 2:88� 10�5

1
4

37 7:19� 10�6 9:82� 10�6 2:75� 10�6

25
121

49 7:86� 10�6 8:54� 10�6 4:98� 10�6

4
25

86 6:66� 10�6 9:23� 10�6 8:86� 10�6

1
9

210 4:38� 10�5 6:42� 10�5 6:32� 10�5

1
16

1205 9:73� 10�5 1:44� 10�4 5:65� 10�5
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5. Application of the MFS-FRM algorithm to the analysis of
a diametral compression test

The displacement fields at the surface of solids can be evaluated using full-field
kinematic measurements (Sutton, McNeill, Helm, & Chao, 2000). The main
techniques for tracking motion and deformation are photo-elasticity, Moiré,
holographic and speckle interferometry, grid method and digital image cor-
relation (DIC). DIC was proposed at the beginning of the 1980s (Burt et al.,
1982, Sutton, Wolters, Peters, Ranson, &McNeill, 1983). The principle of DIC
is to compare two recorded images and determine the displacement field that
optimizes a cross-correlation. A random speckle pattern is applied on the
surface to measure the displacement field based on the assumption that the
surface texture passively follows the displacement of the analyzed solid. The
matching in greyscale intensity values is realised by zones of interest which are
small windows of the considered domain of interest. This type of approach
will be referred to as local (Hild & Roux, 2012).

The objective now is to apply the proposed algorithm to experimental
displacement fields measured by DIC. We are interested in a particular
contact problem, already analysed numerically by Delvare et al. (Delvare
et al., 2010). In this paper, we deal with a diametral compression test on
a polyethylene cylinder. This case was selected because we face several
common characteristic issues: the displacement field cannot be measured
near the contact area and is affected by noise, the extension of the contact
area and the pressure distribution are unknown, and a rigid body motion
may appear at the beginning of the test.

5.1. Experimental set-up

A polyethylene cylinder (ν ¼ 0:46) is compressed between two parallel
rigid plane supports, see Figure 19(a). The cylinder has a radius R ¼ 61:6
mm and a length e ¼ 2� R. The compression load is generated by an
imposed vertical displacement u 0 of the upper hardened steel loading plate
while the lower support remains motionless.

A Photron Fastcam SA5 camera, with a frame rate of 7000 images/
second and a 1024� 1024 pixels resolution, is used to record images in

Table 4. Influence of the noise level, δ, on the number of iterations, k, required
to achieve convergence and on the norms uΩerror , u

Γ
error and Terror for c ¼ 10�1.

δ k uΩerror uΓerror Terror
0% 51 3:80� 10�20 7:70� 10�20 1:23� 10�18

1% 99 2:55� 10�7 3:33� 10�7 1:09� 10�7

3% 109 2:30� 10�6 3:00� 10�6 9:78� 10�7

5% 112 6:38� 10�6 8:33� 10�6 2:72� 10�6

10% 120 2:55� 10�5 3:33� 10�5 1:09� 10�5
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digital form. In order to obtain images having a good distribution of
greyscale, the surface of the cylinder is prepared beforehand with the
realization of a speckle. The two-dimensional displacement fields in Ωd

are provided from DIC using Icasoft software (Touchal, Morestin, &
Brunet, 1996).

5.2. MFS-FRM post-processing and results

Due to the thickness of the cylinder, a two-dimensional study with a plane
strain assumption is performed (Figure 19(b)). To avoid a bias due to the
initial mechanical slack adjustment, the analysis is performed between
images 500 and 2000 for which a force transducer measures an intensity
force equal to 15120 N on the top plate. Due to the DIC, the displacement
field is known in a central part of the specimen Ωd and the stress vectors
are considered to be equal to zero on the free-force edges Γd, see Figure 19
(b). The real sizes of Γu and Γd remain unknown. To fully define the
mechanical problem, the Γu extent is chosen greater than the real one
and is set to β ¼ π

20 .
Note that Γ ¼ Γd [ Γu with Γd ¼ fx 2 Γj0 � θðxÞ � π

2 � β
2g[fx 2 Γj π2 þ

β
2 � θðxÞ � 3π

2 � β
2g[fx 2 Γj 3π2 þ β

2 � θðxÞ � 2πg and Γu ¼ fx 2 Γj π2 � β
2

< θðxÞ< π
2 þ β

2g[fx 2 Γj 3π2 � β
2 < θðxÞ< 3π

2 þ β
2g, where θðxÞ is the angular

polar coordinate of x.
We present the reconstruction of the displacement fields in the whole

domain Ω and the identification of the missing boundary conditions
computed by applying the proposed MFS-FRM algorithm presented in
Section 3 to displacement fields measured in Ωd. The analysis is performed

Figure 19. (a) Compressed polyethylene cylinder (b) 2D modelling.
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in two steps. Firstly, a dimensionless problem (i.e. E ¼ 1 N.m�2) is ana-
lyzed and, secondly, the Young’s modulus is identified.

The corresponding MFS parameters have been set as N ¼ 120 on ~Γ ¼
x ¼ ðx1; x2Þ 2 R

2jx21 þ x22 ¼ d2
� 	

and d ¼ 65, whilst Md ¼ 120 and
Mu ¼ 40. The domain Ωd is defined by its 630 points defined by ðxd; ydÞ
such that � 30:1 mm< xd < 31:3 mm and � 43:5 mm< yd < 45:6 mm,
which corresponds to a parameter ζ � 1

2 .
Figure 20(a,c) represents, in Ωd, the displacement component uDIC1 ,

obtained by DIC and the reconstruction uΩd
1 obtained when applying the

FRM-MFS algorithm and using the stopping criterion introduced in
Section 4.1.1.1 and c ¼ 10�1, respectively. Figure 20(b,d) shows the same
quantities for the vertical displacement component u2.

Figure 20(a,b) highlights the presence of a rigid body motion during the
test. It can be remarked from the comparison of the numerical results
against experimental ones, the accuracy of the reconstructions in Ωd and

Figure 20. DIC experimental (a) horizontal displacement component uDIC1 , and (b) vertical
displacement component uDIC2 , and FRM-MFS reconstructed (c) horizontal displacement com-
ponent uΩd

1 , and (d) vertical displacement component uΩd
2 , in Ωd .

EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 533



the capability of the FRM-MFS algorithm to deblur the noisy data in Ωd.
The noise level can be estimated by analyzing the residual terms

uΩd
1 � uDIC1

�� �� and uΩd
2 � uDIC2

�� ��, respectively, shown in Figure 21. It is
found to be about 10% for u1 and u2.

With a post-processing, using a non-linear optimization procedure, we are
able to eliminate the rigid body displacement component. According to the
notations used in Section 4.1.2, we identify the following parameters which
characterize the rigid body displacement to be a ¼ 0:1212, b ¼ �1:0509 and

α ¼ 0:0405	. The deformable displacement components, udef
Ω

1 and udef
Ω

2 , are
represented in the whole specimen in Figure 22(a,b), respectively.

Figure 23(a,b) shows the reconstruction of the displacement boundary
conditions on Γ. Figure 24(a,b) shows the reconstruction of T1 on Γ and
the reconstruction of T2 near the upper contact zone, respectively.

Figure 21. Residual components, (a) uΩd
1 � uDIC1

�� ��, and (b) uΩd
2 � uDIC2

�� ��, in Ωd .

Figure 22. Reconstruction of the deformable displacement components, (a) udef
Ω

1 , and (b)
udef

Ω

2 , in Ω.
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The reconstructions of the displacements and the stress vectors, obtained
on Γ, are accurate and allow to identify a posteriori the extension of the
contact zones. Due to the reconstruction of T2 near the upper contact area,
we identify the Young’s modulus to be E ¼ 907 MPa by connecting the
contact pressure distribution to the force applied to the top plate.

Due to the discretization using the MFS, we can compute by a post-
processing the analytical deformations in the entire domain Ω. Two strain
components, ε11 and ε22, are represented in Figure 25(a,b), respectively.

6. Conclusion

The aim of this article is to present a method for solving an inverse
problem in isotropic and two-dimensional linear elasticity. This inverse
problem consists of, from the knowledge of the displacement field on
a part of the sample and of the stress vector on a part of the boundary,

Figure 23. Numerical components (a) u1, and (b) u2, of the boundary displacement conditions
retrieved on Γ .

Figure 24. (a) Numerical stress vector horizontal component T1 retrieved on Γ and (b) a zoom
on the stress vector vertical component T2 retrieved near the upper contact area (upper part
of Γu).
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finding the isotropic linear elastic solution over the entire domain, as well
as the boundary conditions, that are inaccessible to measurements. The
proposed method is based on a fading regularization algorithm and is
numerically implemented using the MFS.

This approach reduces the resolution of the inverse problem to an
iterative process composed of a sequence of optimization problems,
where the functional to be minimized contains two terms. The first one
is a relaxation term which represents, on the part of the domain where the
displacement field is available/measured, the difference between the opti-
mal displacements (solution of the Lamé equation) and the measurements.
The second term is a regularization term, which tends to zero as the
iterative process continues. It represents the difference between two suc-
cessive optimal elements. Several examples, first using synthetic data and
then using experimental DIC data, revealed the accuracy, convergence,
stability and efficiency of the proposed inverse method, and its ability to
denoise noisy measurements and to manage parasite rigid body displace-
ments. The use of the MFS also allows us to analytically compute the
components of the strain tensor over the entire domain.

For future works, we plan, on one hand, to implement the fading regular-
ization algorithm using the finite element method and on the other hand, to
apply the current method for other materials in order to show the ability of
the method to detect anelastic or microscopic phenomena.

Note

1. The reconstructions of the horizontal component of displacement u1 and the
horizontal component of the stress vector T1 are not presented because the results
are similar to those obtained for the u2 and T2.

Figure 25. Numerical strain components, (a) ε11, and (b) ε22, retrieved in Ω.
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