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ABSTRACT
Contact mechanics of rough surfaces is becoming increasingly 
important in understanding the real behaviours of machine 
elements in contact. Due to the complicated physical, chemical 
and mechanical phenomena occurring at surfaces, especially 
in boundary lubrication, a multiphysics numerical model is 
essential to capture the behaviour. Boundary Element Method 
is a well-known numerical approach to model such a problem 
because of several advantages. Firstly, it is far faster than Finite 
Element Method since only the boundaries of the solids are 
discretised. In addition, there is no problem of remeshing 
the contacting bodies due to plastic deformation and wear. 
Conventional Boundary Element models simulate movement 
of contacting surfaces by shifting matrices of numbers in one 
direction. In this new proposed approach, the big matrices of 
surfaces are cut into small matrices which indicate the part 
of surfaces that are in contact. The influence matrix is also 
cut into a smaller square matrix corresponding to the size of 
surface matrices. This approach enables matrix implications in 
smaller sizes than the original big surfaces and reduces the 
computational time.

1.  Introduction

Contact mechanics which explains the behaviour of materials in contact is of 
great importance since it occurs almost in all mechanical machine elements. In 
computational mechanics, Finite Element Method is a widely used approach to 
solve the contact problem. Robust formulations for contact and deformation of 
the solids are big advantages of FEM. Since the contact of solids is multiscale in 
nature, a multiscale computational analysis of the contact problem is essential.

Contact mechanics studies go back to nineteenth century when Hertz (1881) 
developed a model for a simple elastic contact. Hertz calculated contact pressure 
and deformation of an elastic contact. For this purpose, a load was applied to 
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surfaces and contact mechanics analysis started. As a result of load, each surface 
is deformed by ui (x1, x2). A gap between surfaces was considered and Equation 
(1) should be satisfied in the contact:

 

Hertz calculated the contact pressure of p(x1, x2) in the case of satisfying the above 
equation.

Surfaces are rough in reality and contact of rough surfaces is more compli-
cated than the Hertzian contact of flat surfaces. Because of the small scale of the 
roughness of the surfaces in comparison to the bulk of the solids, Finite element 
Analysis of such a problem becomes cumbersome. One of the first attempts to 
mathematically solve the contact of rough surfaces was the work of Greenwood 
and Williamson (1966). They used the probabilistic approach to predict the contact 
between surface asperities and determined the real area of contact. That model 
of contact mechanics was a starting point for understanding the real stochastic 
behaviour of surface asperities in contact. Despite the abilities of the model, it had 
no deterministic capabilities for measured surface topography.

Deterministic contact mechanics models have been the subject of many stud-
ies in the past few years to consider the true interaction of surface asperities in 
contact. Attempts were made on simulating the contact of surfaces using Finite 
Element Method. Bortoleto, Rovani, Seriacopi, Profito, and Zachariadis (2012) 
simulated a single ball-on-disc experiment by the finite element method and used 
Archard’s wear equation to simulate wear. They validated the simulation results 
with experiments and showed good agreement. Öqvist (2001) also used a finite 
element model to simulate a contact and implemented Archard’s wear to calculate 
wear using an updated geometry with different step sizes.

Hegadekatte, Hilgert, Kraft, and Huber (2010) developed a multi-time-scale 
model for wear prediction in micro gear application. They used commercial codes 
for determining their contact pressure and deformations and then used Archard’s 
wear equation for calculating wear. The problem of meshing size and remeshing 
the geometry was addressed in that work, especially for the case of macro compo-
nent wear calculations. Sellgren, Björklund, and Andersson (2003) incorporated 
random rough surfaces into Finite Element analysis and calculated the true area 
of contact. They concluded that Finite Element method can predict the real area 
of contact for rough surfaces. This prediction depends on the amplitude and 
wavelength properties of the interacting surfaces.

Boundary Element Method is also widely used for simulating the contact 
mechanics problem due to its efficiency. Sfantos and Aliabadi (2006a, 2006b, 2007), 
developed boundary element simulations to calculate wear in sliding wear con-
ditions. They reported that BEM is an efficient method for contact calculation of 
surfaces. They also used BEM for simulating the three-dimensional sliding wear 
and validated the model with an artificial hip joint wear simulator.
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Ilincic et al. (2011, 2013); Ilincic, Vorlaufer, Fotiu, Vernes, and Franek (2009) 
used the Boundary Element Method and also a combined boundary-finite element 
method to simulate wear in tribometers using localised Archard’s wear. They pre-
dicted the shape of the wear track of a flat surface in a reciprocating pin-on-disc 
tribometer using BEM. Andersson, Almqvist, and Larsson (2011) used a wear 
model and implemented FFT-based contact mechanics simulations to calculate 
contact pressure and deformations. They simulated a ball-on-disc wear experiment 
and validated their simulation results with experiments.

There are several other works that simulate contact mechanics of rough surfaces 
using the Boundary Element Method for predicting wear and micropitting in roll-
ing and rolling–sliding conditions (Bosman & Schipper, 2011a, 2011b; Morales-
Espejel & Brizmer, 2011). All these numerical procedures confirm that BEM is a 
suitable method for simulating contact mechanics.

Movement of surfaces are essential parts of any contact mechanics model that 
simulates sliding, rolling or sliding–rolling of contacting surfaces. In this work, a 
new numerical approach for movement of surfaces in contact mechanics simula-
tions in Boundary Element Method is introduced. Instead of shifting the matrices 
containing the surface asperity height values, those parts of surfaces that come 
into contact are selected for contact mechanics simulation. The influence matrix 
is also modified with respect to the size of the part of the surfaces that are in 
contact. This approach helps to have smaller influence matrices and will increase 
the computational efficiency by several times. The details of the contact mechan-
ics used in the Boundary Element simulation are also reported in this work. 
The contact mechanics model introduced in this work was used to investigate a 
boundary lubricated contact and tribochemistry in other works by the authors 
(Ghanbarzadeh, Wilson, Morina, Dowson, & Neville, 2016; Ghanbarzadeh, 
Parsaeian, et al., 2016; Ghanbarzadeh, Piras, et al., 2016) and the predicting capa-
bility of the model was tested. In this paper, firstly, the components of the contact 
mechanics model are introduced in Section 2. The new strategy for the movement 
of the surfaces based on the new mathematical algorithm is presented in Section 
2.5.1. Then some examples of the results of the evolution of the asperity contact 
pressure are shown in Section 3.

2.  Components of the model

2.1.  Rough surface generation

To study the contact of rough surfaces deterministically, digitised surfaces should 
be used as inputs into the model. There are two different ways of digitising sur-
faces. The first way is to use surface microscopes such as Atomic Force Microscope 
which can give a three-dimensional digitised map of the surface topography. 
Alternatively, surfaces can be generated using mathematical methods. The method 
used to generate surfaces is introduced by Tonder and Hu (1992).
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For generation of three-dimensional rough surfaces, a specific autocorrela-
tion factor and also height distribution should be defined. Two-dimensional 
digital filters are used for generating the three-dimensional surfaces. By using 
random number generators, it is possible to generate the filter inputs as Gaussian-
independent random numbers. The output would be obtained through the filtering 
operation and will give the sequence with certain autocorrelation function. It is 
mathematically proved that if the input numbers are Gaussian random numbers, 
the distribution will remain Gaussian after the filtering. The filtering coefficient 
for generating the rough surfaces is plotted in Figure 1. An example of three- 
dimensional digitised rough surface is shown in Figure 2.

This method enables varying surface roughness for studying the effect of rough-
ness on contact of surfaces. As discussed before, surface roughness is very impor-
tant in contact of surfaces in different scales; therefore, this generation method 

Figure 1. Filter coefficient for a circular digital low-pass filter.

Figure 2. Three-dimensional digital rough surface generated using low-pass filter and random 
Gaussian numbers.
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gives the flexibility to generate different desired surfaces and investigating the 
surface effects in boundary lubrication.

2.2.  Contact of rough surfaces

There have been many attempts at simulating the contact of rough surfaces in 
contact mechanics (Almqvist, Sahlin, Larsson, & Glavatskih, 2007; Bhushan, 
1998; Borri-Brunetto, Chiaia, & Ciavarella, 2001; Conry & Seireg, 1971; Ilincic 
et al., 2009, 2011, 2013; Kalker & Van Randen, 1972; Lai & Cheng, 1985; Poon 
& Sayles, 1994; Ren & Lee, 1993; Sellgren et al., 2003; Thomson & Bocchi, 1972; 
Webster & Sayles, 1986). The contact mechanics model developed by Tian and 
Bhushan (1996) which considers the complementary potential energy will be used 
in this work. By applying the Boussinesq method (Johnson, 1987) and relating 
the contact pressures to surface deformations, the problem would be to solve the 
contact mechanics only for finding contact pressures at each node and then the 
related contact deformations can be calculated. For this model, surfaces should 
be discretised into small nodes and it is assumed that the nodes are small enough 
and the contact pressure is constant at each node.

The problem is to minimise the complementary potential energy as follows:
 

where p is the contact pressure and V*, ūz and ū∗

z are complementary potential 
energy, surface deformation and prescribed displacement, respectively.
The Boussinesq solution for relating contact pressure and surface deformation 
usually considers only normal forces and the solution is:
 

in which E* is the composite elastic modulus of two surfaces. (x, y) and (s1, s2) are 
two different surface points. It shows the relationship for the deformation of the 
surface on point (x, y) when the load is applied on the point (s1, s2).
 

 
here, v1, v2, E1 and E2 are the Poisson ratio and Elastic Modulus of surfaces 1 and 
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For solving the double integrals of Equation (3) the surfaces should be discretised 
into small nodes. The nodes should be small enough to assume that pressure is 
constant at each node. It should be noted that only boundary of solids (surfaces) 
are meshed in this method which can improve numerical efficiency.

An example of the surface discretisation is shown in Figure 3.
N and M are the number of nodes in two dimensions of the surface plane and 

a and b are the half length of each element which is the difference between the 
nodes. For simplicity, a and b are assumed to be equal and in this work, they are set 
to .5 μm. Therefore, the full length of each element is 1 μm which is a reasonable 
length for computational studies of rough surfaces (Andersson, Larsson, Almqvist, 
Grahnb, & Minami, 2012).

To solve the integral equation for the discretised surfaces, the integral equations 
should first be discretised.
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Figure 3. Surface discretisation in Boundary Element Method (Reprinted from Tian and Bhushan 
(1996).
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where Ckl is the influence matrix and is calculated by solving the double integral:
 

The solution for the influence matrix in discretised form is as follows:
 

in which a and b are the half length of each small element and M is the total 
number of nodes.
Equation (2) describes the potential energy for a frictionless contact and the 
normal force is the only force applied on the surfaces. The potential equation for 
a frictional contact would be modified to the form below:
 

in which t is the full surface stress vector including the in-plane tractions and u 
is the full surface deformation.
 

 

qx and qy are the in-plane traction forces and ex, ey and ez are the Cartesian unit 
basis vectors. ux, uy and uz are the surface deformations in x, y and z directions, 
respectively.
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By applying the same discretising procedure, the Boussinesq solution for the 
fully coupled deformation–traction relationship can be expressed as:

 

In the matrix form:
 

The elements of the influence matrix can be obtained from the complete solution 
of the Boussinesq problem. Then the problem would be minimising the potential 
energy for the fully coupled contact. The solution procedure is the same as fric-
tionless contact and can be carried out by direct quadratic mathematical solution 
(Tian & Bhushan, 1996; Willner, 2008).

For the case of two identical materials in contact, the equivalent shear modulus 
of Equation (5) becomes zero and the Equation (9) reduces to Equation (3).

2.3.  Direct quadratic mathematical programming

Because the total complementary potential energy is a quadratic function of the 
contact pressure, it can be expressed as quadratic mathematical equations. Hence, 
the energy can be written in quadratic form of Equation (14):
 

here pT is the transpose matrix of pk and C and u are influence matrix and gap 
between surfaces, respectively.
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And for the complementary potential energy to have a minimum at the point p*, 
the solution is as:
 

 

And all the values in Equation (17) should satisfy the restriction criteria pk ≥ 0. 
The summation of all contact pressures must be equal to the applied load on the 
surfaces and the following equation should be satisfied:
 

The elastic deformation is then calculated corresponding to the pressure of con-
tacting asperity using the equation below:
 

The deformation is then used to check the deformation criteria of the contact 
problem. It should be noted that Equation (18) will be valid for the whole contact. 
In order to find the true area of contact and the corresponding contact pressures, 
Equations (18) and (20) should be solved at the same time iteratively.

The rigid body movement (r) is the movement of the bodies in normal direction 
of contact and is given by:

 

 in which (Z2 – Z1) = g is the gap between asperities and u is the elastic defor-
mation of contacting asperities. The above formulations are valid for every single 
asperity in contact. Therefore, they can be solved for a set of asperites and Figure 
4 can be a representative of a single node in the contact mechanics formulation 
of the problem explained in Figure 3.
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2.4.  Elastic–perfectly plastic contact model

The contact mechanics model used in this work is an elastic–perfectly plastic 
model. To consider the plastic part in the simulation, a modelling approach which 
was reported by Sahlin, Larsson, Almqvist, Lugt, and Marklund (2009) was used 
in this work. It is assumed that the asperities can undergo pressures between 0 
and hardness of the materials:
 

The contact pressure of the asperities that experience pressures higher than the 
hardness of the materials will be set to H (hardness of the material).

These asperities become plastically deformed. It is assumed that the points 
with pressures equal to the hardness of the material will be truncated out of the 
calculation for elastic deformation because they can freely float. The steps for 
elasto-plastic contact simulation are explained as below:

• � First step is to guess the initial pressure to satisfy Equation (18).
• � Set the negative pressures to zero and the pressures above the hardness to H
• � Check the calculated pressures again and compare it with Equation (18). If 

the pressure is now equal to load, pressures should be shifted up or down

(21)0 < p
(
x, y

)
< H

Figure 4. Single asperity model – Schematics of rigid body movement.
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• � Truncate the pressures p = 0 and p = H. Then calculate the elastic deforma-
tion of Equation (19).

• � Calculate the body interferences and check if the points of contact will sat-
isfy Equation (20).

• � The plastic deformation is then calculated by subtracting the elastic defor-
mation from the body interferences.

2.5.  Movement of the contacting surfaces

The influence matrix of Equation (15) shows the influence of surface points on 
deformation of other points in presence of load. The term g which is a two-di-
mensional matrix of gaps between single asperities of contacting surfaces, shows 
the potential of asperity–asperity contact by moving surfaces in normal direction 
of surface planes. In this case, Equation (20) defines the possibility of contact to 
happen.

In most of the tribologically loaded contacts, surfaces have relative movements 
tangentially, so this must be taken into account. Conventionally, movement of 
surfaces are applied by shifting the matrices that contain the surface asperity height 
numbers. This is a very simple way to simulate the movement of surfaces. In this 
method, controlling the shifting speed of both contacting surfaces is essential for 
applying the rolling–sliding condition on the tribosystem.

The influence matrix does not change in this method and the size is still  
(N * M) × (N * M) which in the case of square contacting area becomes N2 × N2.

2.5.1.  New surface movement strategy
It is important to know how the influence matrix works before explaining the 
new procedure for moving the surfaces. The elements of an influence matrix 
correspond to the influence of a node of surface on other nodes of the surface if 
the load is applied on that point.

Imagine a surface with N × N nodes. If the load is applied to a point, it influ-
ences N × N points on the surfaces including the point itself. Therefore, a matrix 
of N2 × N2 can explain the influence matrix of the whole surface. Each element of 
this matrix is responsible for the influence of a point on another point (Figure 5). 
If the load is applied on point p, it will affect the deformation on point k.

It can be interpreted from Equation 8 that the elements of this matrix are 
dependent on the distance of the points on the surface (distance between points 
p and k). Therefore, this matrix would have identical values for the points that 
have similar distances.

Now imagine two surfaces coming into rolling–sliding contact. One of the 
surfaces should enter the contact from one side and will exit the contact on the 
opposite.
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If the upper surface enters the contact from the left, its rightmost part would 
be in contact with the leftmost part of the lower surface (Figure 6(b)). Then the 
contact problem reduces to the contact of two one-dimensional matrices of two 
surfaces with size (N × 1). When the movement continues, more points of surfaces 
come into contact. For example, two columns of the rightmost points of upper 
surface come into contact with two columns of the leftmost points on the lower 
surface (Figure 6(c)). This process continues until the surfaces fully come into 
contact and the upper surface exits the contact from the other side. A schematic 
of this contact process is shown in Figure 6.

For the beginning of the contact, one column of each surface comes into con-
tact. In this case, the influence matrix needs to cover the contact of N points on 
one surface with N points on another surface. Therefore, the influence matrix only 
needs to be the first N × N matrix of the big N2 × N2 influence matrix. It is shown 
in Figure 7 that how this N × N matrix is selected.

The true influence matrix elements should satisfy Equation 8. As stated before, 
these elements are dependent on the distance of the points of the surface so the 
selection shown in Figure 7 is valid.

If the movement continues and more points of the surfaces come into contact, 
the influence matrix will get bigger and becomes 2N × 2N, 3N × 3N, … and N2 × N2 
at the end when surfaces are completely in contact.

The problem of contact becomes faster because the size of matrices of surfaces 
and influence matrices are much smaller in this case. The maximum size of the 
influence matrix is when two surfaces are in complete contact and it is the same 
size as conventional shifting of surfaces. It should be noted that the rigid body 

Figure 5. Discretised surface and influence matrix definition.
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(a)

(b)

(c)

(d)

(e)

Figure 6. Movement of surfaces in contact. The shaded area shows the area of contact between 
two surfaces. The red dotted lines show the area of the upper surface that enters the contact from 
the left. (a) Two surfaces not in contact yet, (b) Start of the contact (rightmost part of a surface in 
contact with leftmost part of another surface), (c) Two surfaces come into contact by more areas 
of both surfaces, (d) More evolution in the contact area of surfaces, and (e) Entire surfaces are in 
contact.
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movement (r) is set as constant in one entire step of the contact calculation (from 
when the surfaces come into the contact up until the surfaces exit the contact). 
The average of the surface contact pressures are taken in one step and this value 
is used to satisfy Equation (18). In this case, upper surface is passed relative to 
the lower surface and the average of the contact pressure is calculated on surface 
asperities and the calculation is iterated until it satisfies Equations (18) and 20.

Then the contact pressures and surface deformations are stored for every step 
and can be averaged for one loading cycle. Plastic deformations are applied to the 
surface asperities and the geometries of the surfaces are changed for next steps. 
This process of two rough surfaces coming into contact is repeated to the end 
of the simulation. Therefore, a rolling–sliding motion can be easily modelled by 
this contact mechanics simulation. It should be noted that the contact mechanics 
model in this work is quasi-static.

3.  Results and discussion

Results for influence matrix and contour of contact pressure for movement of 
surfaces are reported in this section.

3.1.  Influence matrix

As explained before, influence matrix is N2 × N2 when the surfaces are N × N. An 
example of influence matrix for a 20 × 20 surface is shown in Figure 8.

If load is applied to a point of this surface, the deformation on all the other 
points is shown in Figure 9.

It is noticeable that if a load is applied to a certain point on the surface, the 
highest deformation happens at the same point and this deformation decreases 
as the distance from that point increases. It is in agreement with the definition of 
the influence matrix.

Figure 7. Influence matrix selection in the case of moving surfaces.
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Figure 8 shows the elements of influence matrix and it approves the fact that 
selection of matrix elements based on Figure 7 is valid. By selecting the first N × N 
matrix of the large N2 × N2 influence matrix, the influence of one point of the 
surface on the 20 points of the same column is selected. That is for the case that 
surfaces are only at the beginning of the contact.

It can be also noted that the influence matrix of Figure 8 is diagonal which 
means that the influence element of all points are the same on themselves and 
is reduced by the distance of the points from each other. It is also symmetric 
diagonally which means that the same distance between the points results in the 
same influence value.

Figure 8. Influence matrix element values.

Figure 9. The deformation of surface due to load applied in the centre.
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3.2.  Movement of the surfaces

As explained in Section 2.5 matrices of surfaces are selected in a way that move-
ment can be simulated. An example of this movement is shown in Figure 10. 
The contour of contact pressure which shows the asperity–asperity interaction is 
demonstrated in the figure. The evolution of contacting asperities in the sliding 
direction can be noticed from the figure.

The upper surface comes into contact with lower surface from the left (see 
Figure 10(a)) and moves towards the sliding direction. Both surfaces are entirely 
in contact in Figure 10(d). The upper surface then exits the contact from the other 
side (Figure 10(f)).

The influence matrix is smaller in the beginning of the contact (Figure 10(a)) 
and increases in size whilst more surface points come into contact. It gets the 
size of the original influence matrix whilst two surfaces are completely in contact 
(Figure 10(d)) and then reduces in size as the upper surface start to exit the contact.

3.3.  Application in non-linear contact problems

Non-linear contact problems have been the subject of many studies. Models 
focused on incorporating non-linear behaviour in finite element methods, bound-
ary element methods and combination of them two (Andersson, 1981; Ezawa & 
Okamoto, 1995; Kosior, Guyot, & Maurice, 1999; Landenberger & El-Zafrany, 
1999; Liu, Zhu, Yu, & Wang, 2001; Man, Aliabadi, & Rooke, 1993a, 1993b; 
Olukoko, Becker, & Fenner, 1993; Oysu & Fenner, 1998; Yamazaki, Sakamoto, 
& Takumi, 1994).

(a) (b) (c)

(d) (e) (f)

Figure 10.  Contour of contact pressure showing the asperity contact pressures in surface 
movement. The upper surface enters the contact from the left (a) and exits from the right (f ). The 
contour indicates the pressures on the lower body.
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Any contact problem will be no longer a linear one due to yielding of the 
materials in contact. The stress can be calculated at any loading increment as the 
following:

  

where [∆ε] is the strain increment and [Dep] is the elasto-plastic influence 
matrix. It is shown numerically that the stress fields and the contact deformations 
in an elasto-plastic non-linear problem can be calculated using the influence 
matrices used for elastic problems with a more complicated numerical algorithm 
(Liu et al., 2001). Results show that calculation of non-linear problems need the 
influence matrix or the stiffness matrix for pressure/deformation calculations. 
However, these numerical results are for the contact of material in a normal 
loading without any tangential movements. Therefore, the movement method-
ology shown in Section 2.5.1 is applicable for movement of surfaces in the case of 
non-linear contact problems. The only change in the numerical approach would 
be adapting the influence/stiffness matrices to account for the part of the surfaces 
that are in contact.

4.  Conclusion

Boundary Element Method is an efficient approach for simulating the contact 
mechanics especially in the case of rough surfaces. Tribological contacts are 
dynamic and surfaces are in relative motion in contact. These dynamic condi-
tions will result in modification to geometry and physics of the contacting bodies. 
Modelling such a problem needs a robust and efficient algorithm for movement 
of surfaces. A new algorithm for movement of surfaces in Boundary Element 
Method was reported in this work. In this approach, parts of the surfaces are 
selected out of the bigger real area of contact and the corresponding influence 
matrix is extracted from the original influence matrix. A big advantage of this 
approach is the smaller sizes of influence matrix for contacts. The computation 
time of a contact mechanics simulation is directly proportional to size of the influ-
ence matrix. The contact mechanics results shown in this work are similar to the 
ones reported in the literature. This approach can be also used for the non-linear 
contact problems by adapting the influence/stiffness matrices in a way that only 
account for the part of the surface that are in contact. Influence/stiffness matrices 
can be modified for each loading increments in the non-linear problem. Smaller 
matrices can increase the efficiency of the non-linear problems by several times.
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