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ABSTRACT
In this paper, we present two four-node multilayered hybrid-
mixed shell elements for the static and free vibration analyses
of plate and shell composite structures. Their formulation is
based on the first shear deformation theory of Reissner/Mindlin
without transverse shear correction factors. Linear and quadratic
variations of the local in-plane and transverse shear stresses
across the thickness, respectively, are supposed. To reduce
the total number of variables in these models, transverse
shear stresses are directly related to bending stresses by using
two equilibrium equations. The performances of the proposed
elements are assessed by means of two known numerical
benchmarks and their results are found to agree globally well
with the reference solutions.
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1. Introduction

To model thin and moderately thick plate and shell-like laminated composite
structures, multilayered plate and shell finite elements have been developed
for years (Carrera, 2002). The majority of these numerical tools adopt the
first order shear deformation theory (FSDT) with transverse shear correction
factors or higher order shear deformation theories (HSDT) without the need
of these correction factors. The FSDT-based elements have the advantage to
be simple to formulate and not too expensive in computing cost thanks to
the first-order approximations commonly associated with the Reissner/Mindlin
theory (Ayad, Talbi, & Ghomari, 2009; Brank & Carrera, 2000; Rolfes & Rohwer,
1997; Schürg, Wagner, and Gruttmann, 2009). Besides, the FSDT gives globally
satisfactory results even for moderately thick laminates and is considered as the
best compromise between accuracy and computing cost (Rohwer, 1992; Schürg
et al., 2009). However, it is not always straightforward to calculate the shear
correction factors which probably lead to erroneous results in some situations.
To avoid using shear correction factors and obtain more accurate predictions of
the stress field (especially transverse shear stresses), HSDT have been developed
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(Dhatt, 1969; Gay, 2005; Reddy, 1984, 1989; Topdar, Sheikh, & Dhang, 2003).
For instance, Reddy (1984) considers a parabolic variation of the transverse
shear strains across the thickness of the plate. Despite its accuracy, the main
drawback of this type of formulation is the large number of variables per node
which leads to highly computing costs especially when nonlinear problems are
considered.

On the other hand, several mixed plate and shell finite elements have been
also proposed to study multilayered composite structures as an alternative to
displacement-based elements (Ayad et al., 2009; Bouabdallah, 1992; Carrera,
1996; Cen, Long, and Yao, 2002; Gruttmann & Wagner, 2006; Tafla, Ayad, and
Sedira, 2010). For example, Carrera (1996) developed mixed multilayered plate
elements that deliver accurate predictions of shear stresses within the laminate.
Gruttmann and Wagner (2006) proposed a mixed-hybrid multilayered shell
element based on a Hu-Washizu function with independent displacements,
stress resultants and strains. Recently, Tafla et al. (2010) have proposed a FSDT
mixed-hybrid multilayered four-node plate finite element, named MiSP4-ml,
for the analysis of laminated and sandwich plates. The shear correction factors
are avoided by using a quadratic approximation of the shear stresses across the
thickness.

Figure 1. Geometry of a shell structure.
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In this work, we propose an extension of the MiSP4-ml formulation to model
shell composite structures. To this end, we adopt first, the 3D degenerated-solid
approach to obtain the local curvilinear strains expressions (Batoz &Dhatt, 1992;
Vlachoutsis, 1990). Then, a quadratic variation of the transverse shear stresses
across the thickness is supposed to avoid using shear correction factors (Tafla
et al., 2010). In order to reduce the total number of variables in the model,
transverse shear stresses are directly related to bending stresses by using two
equilibrium equations. For membrane stresses, two approaches are considered:
in the first formulation, local membrane stresses are supposed to be directly
related to curvilinear membrane strains through the membrane constitutive
matrix which leads to the first shell element HMiSP4-Q4-ml, while for the
second approach, membrane stresses are independently approximated as for
bending and transverse shear stresses. This second formulation leads to the
second developed multilayered shell element NHMiSP4-ml.

The present paper is structured as follows. In Section 2, we give the expressions
of the local curvilinear strains based on the 3D degenerated-solid approach.
Section 3 is devoted to the adopted mixed variational formulation based on
the Reissner-Hellinger principle. In Section 4, we present the formulations of
the proposed shell finite elements HMiSP4-Q4-ml and NHMiSP4-ml. Finally,
the performance of the proposed multilayered shell elements is investigated by
studying two static and free vibration benchmarks.

2. Gradient fields

2.1. Shell geometry

Consider a shell structure as depicted in Figure 1. Its geometry is characterized
by a mid surface A considered as the reference surface and a constant thickness
h. Let −→x p(ξ , η) be the position vector of one point p of the reference surface in
the global X, Y , Z coordinate system:

−→x p(ξ , η) = Xp(ξ , η)
−→
i + Yp(ξ , η)

−→
j + Zp(ξ , η)

−→
k (1)

At the reference surfaceA, the vectors of the covariant basis [F0] = [−→a 1
−→a 2

−→n ]
are defined by:

−→a 1 = −→x p,ξ ; −→a 2 = −→x p,η ; −→n =
−→a 1 ∧ −→a 2

‖−→a 1 ∧ −→a 2‖ (2)

where −→x p,α = (∂
−→x p/∂α), α = ξ , η. We introduce also the contravariant

vectors −→a 1 and −→a 2 expressed in terms of the covariant vectors as:

−→a 1 · −→a 2 = −→a 2 · −→a 1 = 0 and −→a 1 · −→a 1 = −→a 2 · −→a 2 = 1 (3)
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In general, the covariant vectors are neither orthogonal nor unit vectors. Con-
sequently, a new orthonormal basis [Q] = [−→t 1 −→t 2 −→n ] is introduced at the
reference surface to define the local curvilinear x, y, z coordinate system (Batoz
& Dhatt, 1992):

[Q] =

⎡
⎢⎢⎢⎣
c + 1

1 + c
n2Y − 1

1 + c
nXnY nX

− 1
1 + c

nXnY c + 1
1 + c

n2X nY
−nX −nY nZ

⎤
⎥⎥⎥⎦ if 1 + c �= 0 (4)

and

[Q] =
⎡
⎣1 0 0
0 −1 0
0 0 1

⎤
⎦ if 1 + c = 0 (5)

where nX , nY and nZ are the global coordinates of the normal vector −→n and
c = −→n · −→

k = nZ .
At this stage, we introduce twomatrices [C0] and [bc]whose components will be
used in the curvilinear strains expressions in Section 2.3:

[C0] =
[−→a 1 · −→t 1

−→a 1 · −→t 2−→a 2 · −→t 1
−→a 2 · −→t 2

]
; [bc] = [b][C0] with [b] =

[ −→a 2 · −→n ,η −−→a 1 · −→n ,η
−−→a 2 · −→n ,ξ

−→a 1 · −→n ,ξ

]
(6)

[C0] permits to relate the curvilinear coordinates x and y to the natural coor-
dinates ξ and η while [b] describes the warping of the reference surface. More
details about these matrices can be found in Batoz and Dhatt (1992).

2.2. Mechanical displacement vector

Consider one point q of the shell structure located at the distance z from the mid
surface A as depicted in Figure 1. The Reissner/Mindlin hypothesis permits to
express the mechanical displacement vector of q in term of that of p:

−→u q(ξ , η, ζ ) = −→u p(ξ , η) + z
−→
β (ξ , η) ; z = h

2
ζ ; −→

β = −→
θ ∧ −→n ; −→

β · −→n = 0 (7)

−→
θ is the orthogonal rotation vector of −→n and can be written in the global and
local curvilinear bases as:

−→
θ = θX

−→
i + θY

−→
j + θZ

−→
k = θx

−→t 1 + θy
−→t 2 (8)

Thus, {
θx
θy

}
=
[ 〈t1〉

〈t2〉
]⎧⎨
⎩

θX
θY
θZ

⎫⎬
⎭ (9)

The vector product
−→
β = −→

θ ∧ −→n leads to the following expression of −→uq:

−→u q(ξ , η, ζ ) = −→u p(ξ , η) + z
(− θx

−→t 2 + θy
−→t 1
)

(10)
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where 〈up〉 = 〈U V W〉 is the displacement vector of p in the global coordinate
system.

2.3. Curvilinear strains

In-plane and transverse shear local curvilinear strains can be developed in term
of the local thickness coordinate ζ as explained in Batoz and Dhatt (1992):

{εs} = 1
μ(ζ )

(
{ε0} + ζ {ε1} + ζ 2{ε2}

)
; {γs} = 1

μ(ζ )

(
{γ0} + ζ {γ1}

)
(11)

where
〈εs〉 = 〈εx εy γxy〉 ; 〈γs〉 = 〈γxz γyz〉 ; γij = 2 εij (12)

μ(ζ ) is expressed in terms of the mean curvature 2H and Gaussian curvature K
as shown in Batoz and Dhatt (1992):

μ(ζ ) = 1 − h ζH + h2

4
ζ 2K (13)

In the following, simplified expressions of the curvilinear strains will be used
because of the complexity of themixed-hybrid formulation. Accordingly, we first
neglect the mean and Gaussian curvatures in the expression of μ(ζ ) (μ(ζ ) ≈ 1)
and second, suppose a linear variation of {εs} and constant transverse shear
strains γxz and γxz across the thickness. Accordingly, {εs} and {γs} are rewritten
as:

{εs} = {ε0} + ζ {ε1} ; {γs} = {γ0} (14)
where

{ε0} =

⎧⎪⎨
⎪⎩

−→t 1 · −→u p,x−→t 2 · −→u p,y−→t 1 · −→u p,y + −→t 2 · −→u p,x

⎫⎪⎬
⎪⎭ ;

{ε1} = h
2

⎧⎪⎨
⎪⎩

−→t 1 · −→
β ,x + −→t 1 · −→

u p,x−→t 2 · −→
β ,y + −→t 2 · −→

u p,y−→t 1 · (
−→
β ,y + −→

u p,y) + −→t 2 · (
−→
β ,x + −→

u p,x)

⎫⎪⎬
⎪⎭ (15)

and

{γ0} =
{−→t 1 · −→

β + −→n · −→u p,x−→t 2 · −→
β + −→n · −→u p,y

}
(16)

Using the matrices [C0] and [bc] defined in Equation (6), −→u p,x , −→u p,y ,
−→
u p,x and−→

u p,y are given by:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−→u p,x = C011−→u p,ξ + C021−→u p,η−→u p,y = C012−→u p,ξ + C022−→u p,η−→
u p,x = bc11−→u p,ξ + bc21−→u p,η−→
u p,y = bc12−→u p,ξ + bc22−→u p,η

; C0ij = C0(i, j) and bcij = bc(i, j), i, j = 1, 2 (17)
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3. Mixed-hybrid variational formulation

Consider a multilayered composite shell structure constituted of nc layers. The
weak form of its static equilibrium can be obtained by introducing the admissible
virtual displacements −→u ∗

q as:

W = Wint − Wext = 0 ∀ −→u ∗
q with

{−→u q = −→
U q−→u ∗

q = −→
0

on Su (18)

where Wint and Wext are the internal and external virtual works, respectively,
and Su is the displacement boundary of the shell structure.
The internal virtual work Wint is written in a mixed-hybrid form and can be
decomposed into a membrane-bending partWmf and transverse shear partWc
as:

Wmf =
∫
V

(
〈ε∗

s 〉{σs} + 〈σ ∗
s 〉{εs} − 〈σ ∗

s 〉[H]−1{σs}
)
dV (19)

and

Wc =
∫
V

(
〈γ ∗

s 〉{τs} + 〈τ ∗
s 〉{γs} − 〈τ ∗

s 〉[G]−1{τs}
)
dV (20)

with {σs} and {τs} are the in-plane and transverse shear stress vectors (〈σs〉 =
〈σx σy σxy〉, 〈τs〉 = 〈σxz σyz〉) and [H] and [G] are the local in-plane and
out-of-plane elasticity matrices.
Linear and quadratic variations of {σs} and {τs} across the thickness are supposed:

{σs} = {σ0} + ζ {σ1} ; {τs} = (1 − ζ 2){τ0} (21)

where 〈σ0〉 = 〈σx0 σy0 σxy0〉 and 〈σ1〉 = 〈σx1 σy1 σxy1〉 are themembrane and
bending curvilinear stress vectors, respectively, while 〈τ0〉 = 〈τxz0 τyz0〉 is the
vector of curvilinear transverse shear stresses at the reference surface (ζ = 0).
Using Equations (14) and (21), it is possible to explicitly integrateWmf andWc
across the thickness. We obtain:

Wmf =
∫
A

⎛
⎜⎜⎜⎜⎜⎝
h〈σ ∗

0 〉{ε0} + h〈ε∗
0〉{σ0} + h

3
〈σ ∗

1 〉{ε1}+
h
3
〈ε∗

1〉{σ1} − 〈σ ∗
0 〉[Hm]{σ0} − 〈σ ∗

0 〉[Hmf ]{σ1}
−〈σ ∗

1 〉[Hmf ]T{σ0} − h4

36
〈σ ∗

1 〉[Hf ]{σ1}

⎞
⎟⎟⎟⎟⎟⎠ dA (22)

and

Wc =
∫
A

(
2h
3

〈γ ∗
0 〉{τ0} + 2h

3
〈τ ∗

0 〉{γ0} − h2

16
〈τ ∗

0 〉[Hc]{τ0}
)
dA (23)
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The new elasticity matrices [Hm], [Hmf ], [Hf ] and [Hc] traduce themultilayered
aspect of the composite shell structure and are given by:

[Hm] =
nc∑
i=1

(zi+1 − zi)[H]−1
i ; [Hmf ] = 1

h

nc∑
i=1

(z2i+1 − z2i )[H]−1
i , (24)

[Hf ] =
nc∑
i=1

[
(z3i+1 − z3i )

3
[H]i

]−1

(25)

[Hc] =
nc∑
i=1

(
(zi+1 − zi) + 16

5h4
(z5i+1 − z5i ) − 8

3h2
(z3i+1 − z3i )

)
[G]−1

i (26)

where zi and zi+1 are the local coordinates of the ith layer across the thickness
direction and [H]i and [G]i are its elastic matrices.
It is worthy to note that no shear correction factors are needed in thematrix [Hc]
to model multilayered structures which is quite different from displacement-
based models.

4. Finite element approximation

The solution of the weak form (18) can be obtained by the finite elementmethod.
The finite element approximation is constructed by dividing the composite shell
structure into elementary domains. To this end, two four-node quadrilateral
shell elements, named NHMiSP-ml and HMiSP4-Q4-ml, were developed. For
HMiSP4-Q4-ml, the membrane stress vector {σ0} is directly related to {ε0}
through [H] ({σ0} = [H]{ε0}) while for NHMiSP-ml all stresses are interpolated
independently of constitutive laws. Consequently, the membrane-bending part
of the internal virtual work of HMiSP4-Q4-ml reads:

WHMi-ml
mf =

∫
A

⎛
⎝ 〈ε∗

0 〉[Hm]{ε0} + 〈ε∗
1 〉[Hmf ]{ε0} + 〈ε∗

0 〉[Hmf ]T {ε1}+
h
3
〈σ∗

1 〉{ε1} + h
3
〈ε∗
1 〉{σ1} − h4

36
〈σ∗

1 〉[Hf ]{σ1}

⎞
⎠ dA (27)

where

[Hm] =
nc∑
i=1

(zi+1 − zi)[H]i ; [Hmf ] = 1
h

nc∑
i=1

(z2i+1 − z2i )[H]i (28)

In the following, we give first, the finite element approximations of the mem-
brane, bending and transverse shear strains and stresses and second, the stiffness
and mass matrices expressions of NHMiSP-ml and HMiSP4-Q4-ml.

4.1. Membrane and bending strains

The proposed shell elements are four-node quadrilateral elements (Figure 2).
The bilinear shape function at node i is given as:

Ni(ξ , η) = 1
4
(1 + ξiξ)(1 + ηiη) − 1 ≤ ξ , η ≤ 1 (29)
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Figure 2. Four-node quadrilateral shell element.

These shape functions interpolate at the element level the displacement vector of
p belonging to the reference surface and the rotation vector

−→
β to obtain (Batoz

& Dhatt, 1992):

−→uq =
4∑

i=1

Ni
−→
Ui + z

4∑
i=1

Ni

(
− θxi�t2i + θyi�t1i

)
(30)

where 〈Ui〉 = 〈Ui Vi Wi〉 is the displacement vector of node i in the global
coordinate system and θxi and θyi are the rotations of the normal vector −→n i
around −→t 1i and

−→t 2i, respectively.
Based on Equations (15) and (30), we find the following approximations of

{ε0} and {ε1}:

{ε0} = [B0]︸︷︷︸
3× 20

{ulocn } ; [B0] =
⎡
⎣ 〈t1〉Ni,x 0 0

· · · 〈t2〉Ni,y 0 0 · · · i = 1, 4
〈t1〉Ni,y + 〈t2〉Ni,x 0 0

⎤
⎦
(31)

and
{ε1} = [B1]︸︷︷︸

3× 20

{ulocn } (32)

with

[B1] =

⎡
⎢⎢⎢⎢⎣

〈t1〉Ni,x
h
2
〈t1i〉Ni,x

· · · 〈t2〉Ni,y
h
2
〈t2i〉Ni,y · · · i = 1, 4

〈t1〉Ni,y + 〈t2〉Ni,x
h
2

(
〈t1i〉Ni,y + 〈t2i〉Ni,x

)

⎤
⎥⎥⎥⎥⎦ (33)

Ni,α and Ni,α , α = x, y are defined in terms of the components of the matrices
[C0] and [bc] as in Equation (17). The vectors {t1i} and {t2i} are given by:

〈t1i〉 = 〈−−→t 1 · −→t 2i
−→t 1 · −→t 1i〉 ; 〈t2i〉 = 〈−−→t 2 · −→t 2i

−→t 2 · −→t 1i〉 (34)
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Figure 3. Projection of the covariant transverse shear strains.

{ulocn } is the local degrees of freedom vector of the proposed shell elements
constituted of the global nodal displacements and local nodal rotations as:

〈ulocn 〉 = 〈· · · Ui Vi Wi θxi θyi · · · i = 1, 4〉 (35)

4.2. Transverse shear strains

To control transverse shear locking problems, an independent approximation
of the shear strains is used. It’s based on the Assumed Natural Strain projection
technique proposed by Bathe and Dvorkin (1986).

Curvilinear 〈γ0〉 = 〈γxz0 γyz0〉 and covariant 〈γζ 〉 = 〈γξζ γηζ 〉 transverse
shear strains are related through the [C0] matrix as:

{γ0} = [C0]T{γζ } ⇒ {γζ } =
{

γξζ

γηζ

}
=
{−→a 1 · −→

β + −→n · −→u p,ξ−→a 2 · −→
β + −→n · −→u p,η

}
(36)

To avoid transverse shear locking, the middles of the quadrilateral element sides
A, B, C andD (Figure 3) are considered to express the covariant transverse shear
strains as:

{γζ } = [A]{γζk} ; [A] = 1
2

[
1 − η 0 1 + η 0
0 1 + ξ 0 1 − ξ

]
, γζk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ A
ξζ

γ B
ηζ

γ C
ξζ

γD
ηζ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(37)

It is possible to relate {γζk} to the local degrees of freedom vector {ulocn } through
a (4 × 20)-sized matrix [Bcζ ] as shown in Batoz and Dhatt (1992). In this case,
we obtain the following approximation of the curvilinear transverse shear strains
vector {γ0}:

{γ0} = [C0]T [A][Bcζ ]︸ ︷︷ ︸
[Bc]

{ulocn } = [Bc]︸︷︷︸
2× 20

{ulocn } (38)
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4.3. Membrane stresses

As discussed previously, the membrane curvilinear stresses of the multilay-
ered shell element HMiSP4-Q4-ml are directly related to the membrane strains
as {σ0} = [H]{ε0}. Contrary to HMiSP4-Q4-ml, the membrane stresses of
NHMiSP4-ml are independently approximated of the membrane constitutive
law. Accordingly, five membrane parameters αm1 · · ·αm5 are used to approxi-
mate {σ0} as proposed by Pian and Sumihara (1984) and Ayad (2002):

{σ0} = [P0]{αm} (39)

with

[P0] = 1
c20

⎡
⎣ C2

022 C2
012 −2C022C012 ηC2

022 ξC2
012

C2
021 C2

011 −2C021C011 ηC2
021 ξC2

011−C022C021 −C012C011 C022C011 + C012C021 −ηC022C021 −ξC012C011

⎤
⎦

where c0 = h
2det[C0] = h

2
(
C011C022 − C012C021

)
. These parameters {αm} are

then eliminated by the static condensation technique performed locally at the
element level.

4.4. Bending stresses

For the two developed multilayered shell elements, 12 parameters αf 1 · · ·αf 12
are considered to estimate the vector of bending stresses {σ1}:

{σ1} = [P1]{αf } ; [P1] =
⎡
⎣〈P〉 0 0

0 〈P〉 0
0 0 〈P〉

⎤
⎦ ; 〈P〉 = 〈1 ξ η ξη〉 (40)

These parameters {αf } are also eliminated by the static condensation technique.

4.5. Transverse shear stresses

To limit the number of variables in the model, the approximation of the trans-
verse shear stresses {τ0} is directly derived from that of bending stresses {σ1}
given in Equation (40). To this end, we consider the following static equilibrium
equations:

σx,x + τxy,y + τxz,z + fx = 0
τxy,x + σy,y + τyz,z + fy = 0

(41)

where fx and fy are the body force densities along x and y. As explained in Ayad
(2002), {τ0} is found to be related to the divergence of the the membrane stress
tensor [σ1] when Equation (41) are integrated across the thickness direction:

{τ0} = h
4
div[σ1] ; [σ1] =

[
σ1x σ1xy
σ1xy σ1y

]
(42)
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Consequently, we obtain

{τ0} = h
4

{
σ1x,x + τ1xy,y
τ1xy,x + σ1y,y

}
= h

4
[Ps]︸ ︷︷ ︸
[Pτ ]

{αf } ; [Ps] =
[〈P1〉 0 〈P2〉

0 〈P2〉 〈P1〉
]

(43)

where

〈P1〉 = 〈0 j11 j12 η j11 + ξ j12〉 ; 〈P2〉 = 〈0 j21 j22 η j21 + ξ j22〉 (44)

and jkl are the components of the Jacobian matrix inverse.

4.6. Stiffnessmatrices of HMiSP4-Q4-ml and NHMiSP4-ml

For the first shell element HMiSP4-Q4-ml, the bending and transverse shear
stresses approximations in terms of the parameters {αf } lead to the following
final expression of the internal virtual work:

WHMi-ml
int = 〈〈α∗

f 〉 〈uloc ∗
n 〉〉

[−[K1] [K1u]
[K1u]T [K0]

]{ {αf }
{ulocn }

}
(45)

where

[K0]︸︷︷︸
20× 20

=
∫
A
[B0]T [Hm][B0] dA +

∫
A
[B1]T [Hmf ][B0] dA +

∫
A
[B0]T [Hmf ][B1] dA

(46)

[K1]︸︷︷︸
12× 12

= h4

36

∫
A
[P1]T [Hf ][P1] dA + h2

16

∫
A
[Pτ ]T [Hc][Pτ ] dA (47)

[K1u]︸ ︷︷ ︸
12× 20

= h2

6

∫
A
[Pτ ]T [Bc] dA + h

3

∫
A
[P1]T [B1] dA (48)

After static condensation of the parameters {αf }, the final local stiffness matrix
of the multilayered shell element HMiSP4-Q4-ml is written as:

[KHMiSP4-Q4-ml]︸ ︷︷ ︸
20× 20

= [K0] + [K1u]T [K1]−1[K1u] (49)

For the second multilayered shell element NHMiSP4-ml, the approximations
of membrane, bending and transverse shear stresses in terms of the parameters
{αm} and {αf } lead to the following expression of the internal virtual work:

WNHMi-ml
int = 〈〈α∗

m〉 〈α∗
f 〉 〈uloc ∗

n 〉〉
⎡
⎣−[Kmm] [Kmf ] [Kmu]

[Kmf ]T −[Kf ] [Kfu]
[Kmu]T [Kfu]T [0]

⎤
⎦
⎧⎨
⎩

{αm}
{αf }
{ulocn }

⎫⎬
⎭ (50)
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where

[Kmm]︸ ︷︷ ︸
5× 5

=
∫
A
[P0]T [Hm][P0] dA ; [Kmu]︸ ︷︷ ︸

5× 20

= h
∫
A
[P0]T [B0] dA (51)

[Kf ]︸︷︷︸
12× 12

= h4

36

∫
A
[P1]T [Hf ][P1] dA + h2

16

∫
A
[Pτ ]T [Hc][Pτ ] dA (52)

[Kfu]︸︷︷︸
12× 20

= h2

6

∫
A
[Pτ ]T [Bc] dA + h

3

∫
A
[P1]T [B1] dA ; [Kmf ]︸ ︷︷ ︸

5× 20

=
∫
A
[P0]T [Hmf ][P1] dA

(53)

After static condensation of the parameters {αm} and {αf }, the final local stiffness
matrix of the multilayered shell element NHMiSP4-ml is written as:

[KNHMiSP4-ml]︸ ︷︷ ︸
20× 20

= [A1] + [A2][A3]−1[A2]T (54)

with

[A1] = [Kfu]T + [Kmu]T [Kmm]−1[Kmu] (55)
[A2] = [Kmu]T [Kmm]−1[Kmf ] ; [A3] = [Kmf ]T [Kmm]−1[Kmf ] (56)

Finally, it is worthy to note that 2 × 2 Gauss points are sufficient to exactly
integrate the stiffness matrices of HMiSP4-Q4-ml and NHMiSP4-ml.

4.7. Virtual stiffnessmatrix

When passing from the local to the global coordinate system, we introduce a
fictive workWθz associated with the local rotation θz to avoid the singularity of
the global stiffness matrix as proposed in Batoz and Dhatt (1992):

Wθz =
∫
A

αHf 11
(
θ∗
z,xθz,x + θ∗

z,yθz,y
)
dA (57)

where Hf 11 = Hf (1, 1) and α is a very small numerical coefficient (α = 10−6).
With the approximation θz = ∑4

i=1 Ni(ξ , η) θzi, it is possible to write Wθz in
term of a new (4 × 4)-sized fictive stiffness matrix [kθz] as:

Wθz = 〈θ∗
z1 θ∗

z2 θ∗
z3 θ∗

z4〉

⎡
⎢⎢⎣
kθz11 0 0 0
0 kθz22 0 0
0 0 kθz33 0
0 0 0 kθz44

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

θz1
θz2
θz3
θz4

⎫⎪⎪⎬
⎪⎪⎭ (58)
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To transform the local (20 × 20)-sized stiffness matrices of the proposed shell
elements into the global coordinate system, the following passage matrix is used:

[T]︸︷︷︸
24× 24

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[I3]
[Q1]

. . .

[I3]
[Q4]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(59)

where [I3] is the identity matrix of size 3 and [Q1] . . . [Q4] are the nodal tangent
curvilinear bases. We write

[Kglob] = [T][K loc][T]T (60)

where [K loc] is obtained from [KHMiSP4-Q4-ml] or [KNHMiSP4-ml] by adding the
components of the fictive stiffness matrix [kθz] as:

[K loc] =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .

[Ki]︸︷︷︸
5× 5

{0}

〈0〉 kθzii
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦ i = 1, 4 (61)

4.8. Effectivemassmatrix of themultilayered shell elements

In this section, we give the expression of the mass matrix of the proposed
multilayered shell elements to study free vibrations of shell composite structures.
At the element level, the kinetic energy is written as:

V = 1
2

∫
Ve

ρ
(−→̇
u q · −→̇

u q
)
dV ; −→̇

u q = d−→u q

dt
(62)

where ρ is the mass density of the composite material defined at each layer. −→u q

is written in term of −→u p and
−→
θ as:

−→u q = −→u p + z
−→
θ ∧ −→n = U

−→
i + V

−→
j + W

−→
k + z( − θx

−→t 2 + θy
−→t 1) (63)

The expression of −→u q could be rewritten in the following simplified expression:

−→u q = (U + zθr(1))
−→
i + (V + zθr(2))

−→
j + (W + zθr(3))

−→
k (64)
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with

θr(1) = −θxt2X+θyt1X ; θr(2) = −θxt2Y+θyt1Y ; θr(3) = −θxt2Z+θyt1Z
(65)

Substituting Equation (64) into Equation (62), the kinetic energy is rewritten as:

V = 1
2

∫
Ve

ρ
(
U̇U̇ + V̇ V̇ + ẆẆ

)
dV

+ 1
2

∫
Ve

ρ z
(
2U̇ θ̇r(1) + 2V̇ θ̇r(2) + 2Ẇ θ̇r(3)

)
dV

+ 1
2

∫
Ve

ρ z2
(
θ̇2r (1) + θ̇2r (2) + θ̇2r (3)

)
dV (66)

The following approximations are used to obtain the local mass matrix expres-
sion:

U̇ = 〈Nu〉{u̇locn } ; V̇ = 〈Nv〉{u̇locn } ; Ẇ = 〈Nw〉{u̇locn }
θ̇r(1) = 〈Nr1〉{u̇locn } ; θ̇r(2) = 〈Nr2〉{u̇locn } ; θ̇r(2) = 〈Nr3〉{u̇locn } (67)

We write finally
V = 1

2
〈u̇locn 〉[M]{u̇locn } (68)

with

[M] =
∫
A

⎡
⎢⎢⎢⎣

c1
(
{Nu}〈Nu〉 + {Nv}〈Nv〉 + {Nw}〈Nw〉

)
+

2c2
(
{Nu}〈Nr1〉 + {Nv}〈Nr2〉 + {Nw}〈Nr3〉

)
+

c3
(
{Nr1}〈Nr1〉 + {Nr2}〈Nr2〉 + {Nr3}〈Nr3〉

)
⎤
⎥⎥⎥⎦ dA

and

c1 =
nc∑
i=1

ρi(zi+1−zi) ; c2 = 1
2

nc∑
i=1

ρi(z2i+1−z2i ) ; c3 = 1
3

nc∑
i=1

ρi(z3i+1−z3i )

(69)

5. Numerical validation examples

In this section, two static and free vibration benchmarks are considered to assess
the efficiency and accuracy of the proposed multilayered shell elements.

5.1. Composite cylindrical panel under doubly sinusoidal loading

We consider in this example a simply-supported cylindrical panel subjected to
a sinusoidal loading q = q0 sin (πY/L) sin (πθ/φ) (φ = π/3 and L = 30) as
shown in Figure 4. It is composed of three layers [90/0/90], whose properties
are summarized in Figure 4, with three slenderness ratios R/h = 5, 10 and
20. Thanks to the problem symmetry, only one-fourth of the cylindrical panel
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Figure 4. Simply-supported composite cylindrical panel meshed with 8 × 8 quadrilateral shell
elements.

Figure 5. Cantilever composite panel meshed with 8 × 16 quadrilateral shell elements.

is considered and modeled with two regular meshes 8 × 8 and 20 × 20. We
summarize in Table 1 the normalized transverse displacement at point C located
at the center of the composite panel defined by:

WC = 100E1
q0 S4 h

WC ; S = R
h

(70)

The results of NHMiSP4-ml and HMiSP4-Q4-ml are compared first, with the
elastic analytical solution of Varadan and Bhaskar reported in Varadan and
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(a)

(b)

(c)

Figure 6.Natural frequencies of the clamped composite panels: (a) [02/±30]S , (b) [±45]2S and (c)
[0/±45/90].
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Bhaskar (1991) and second, with the element EHOST (Cho & Kim, 2000)
(EHOST is adoubly curvednine-node shell element).We remark thatNHMiSP4-
ml andHMiSP4-Q4-ml agree globallywellwith the reference solutionofVaradan
and Bhaskar (1991). NHMiSP4-ml is found to be slightly less accurate than
HMiSP4-Q4-ml. The NHMiSP4-ml result remains stable when the slenderness
ratio is increased (at each case, approximately 90% of the reference result is
reached with the second regular mesh 20 × 20). We remark also that HMiSP4-
Q4-ml becomemore accurate when the slenderness ratio increases (92.7% of the
reference displacement is reached for R/h = 5 and 99.6% for R/h = 20 with the
second mesh).

5.2. Free vibration analysis of composite panels

This example was proposed by Crawley (1979) and concerns the study of free
vibrations of three eight-layered carbon/epoxy composite cylindrical panels pre-
senting the same dimensions with three stacking sequences: [02/±30]S, [±45]2S
and [0/±45/90]S. Figure 5 depicts the geometry and material properties of the
clamped cylindrical panels and the 8 × 16 regular mesh used to model them. In
particular, we will be interested in the first five natural modes and frequencies of
these composite panels. We show in Figure 6 the obtained results of NHMiSP4-
ml and NHMiSP4-Q4-ml compared to the experimental results of Crawley
(1979) and the results of the element HSQ20 developed by Bouabdallah (1992)
(HSQ20 is a four-node quadrilateral shell element having five degrees of freedom
per node).

Except for the first composite panel [02/±30]S, NHMiSP4-ml and NHMiSP4-
Q4-ml results agree globally well with the experimental frequencies of Crawley
(1979). For the third composite panel [0/±45/90], NHMiSP4-Q4-ml is found to
be the most accurate element.

6. Conclusion

In this paper, two hybrid-mixed multilayered shell finite elements, named
NHMiSP4-ml and HMiSP4-Q4-ml, were eveloped to deal with static and free vi-
bration analyses of laminated composite plate and shell structures. Their
formulation is based on the Reissner/Mindlin FSDT without using the classical
shear correction factors. For NHMiSP4-ml, membrane, bending and trans-
verse shear stresses are interpolated independently of constitutive laws while for
HMiSP4-Q4-ml, only bending and transverse shear stresses are independently
approximated. Two static and free vibration dynamic numerical benchmarks
were considered as validation tests and the results of the proposed shell elements
were shown to agree globally well with the reference solutions.

Disclosure statement

No potential conflict of interest was reported by the authors.
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