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ABSTRACT ARTICLE HISTORY
Traditional biped walkers based on passive dynamic walking Received 4 October 2015
usually have flat or circular feet. This foot contact may be  Accepted4May2016
modelled with an effective rocker — represented as a roll-over KEYWORDS
shape - to describe the function of the knee-ankle-foot complex  p;ssive walking; gait
in human ambulation. Mahmoodi et al. has represented this roll- analysis; roll-over shape;
over shape as a polygon with a discretised set of collisions. In this prosthetic foot; foot
paper point foot, collisional and smooth rolling contact models contact; bifurcation
are compared. An approach based on the Lagrangian mechanics diagrams; basin of

is used to formulate the equations for the swing phase that  attraction
conserves mechanical energy. Qualitative insight can be gained

by studying the bifurcation diagrams of gait descriptors such

as average velocity, step period, mechanical energy and inter-

leg angle for different gain and length values for the feet, as

well as different mass and length ratios. The results from the

three approaches are compared and discussed. In the case of

a rolling disk, the collisional contact model gives a negligible

energy loss; incorporated into the double inverted pendulum

system, however, reveals much greater errors. This research is not

only useful for understanding the stability of bipedal walking, but

also for the design of rehabilitative devices such as prosthetic feet

and orthoses.

1. Introduction

An unpowered mechanical biped walker can traverse down an inclined plane
with a steady, symmetric gait comparable to human walking (McGeer, 1990).
The amount of energy lost at heel strike is made up by the potential energy gained
from walking down the slope. These ‘compass-like’ passive dynamic walkers are
usually preferred because of their simplicity and may be used as a tool to analyse
efficient bipedal locomotion. Research into the simple point foot model is still
being used today, not only as a simple approach to the biomechanics of walking
but also for in-depth analysis of the inverted double pendulum dynamics (Chyou
et al., 2011; Garcia et al., 1998; Goswami, Thuilot, & Espiau, 1996; Li & Yang,
2012). Other walkers are commonly modelled with flat (Goswami, 1999) or
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curved/circular feet; however it has been shown that foot kinematics has a direct
influence on the stability of a bipedal robot (Mahmoodi, Ransing, & Friswell,
2013). This rolling contact may be modelled using an effective rocker to describe
the function of the knee-ankle-foot complex in human walking as shown in
Figure 1. This effective rocker can be obtained from the physiological roll-over
shape defined as the trajectory of the centre of pressure in the local co-ordinate
system aligned with the stance leg (Miff et al., 2008). A roll-over shape can be
determined experimentally from motion capture systems and ground reaction
measurement. The roll-over shape represents the knee—ankle-foot kinematics,
whereas the majority of bipedal walking models would have a single point foot
contact at the end of the leg. From numerous studies it has been shown that
an individual’s roll-over shape does not change appreciably with walking speed
(Hansen, Childress, & Knox, 2004), with shoe heel height (Hansen & Childress,
2004) or when carrying extra weight (Hansen & Childress, 2005). Modelling
the physiological knee-ankle-foot system can give a better understanding of
its functions during able-bodied gait and can improve the stability of designs
for ankle-foot prosthesis and orthoses. Using the roll-over function in order to
predict the movement of hip mass can reduce the number of degrees of freedom,
while still matching kinematics as the flexions of ankles, knees and other muscles
or bones are incorporated within the roll-over concept. Basin of attraction plots
(Schwab & Wisse, 2001), (Li & Yang, 2012) and bifurcation diagrams (Goswami,
Thuilot, & Espiau 1996) are often used to study the stability and periodicity of
bipedal walking. This paper compares the effect of using three computational
models to capture the hip, ankle, foot kinematics and study its influence on
predicting the stability and periodicity of the walking process. In Section 2, it
is described how point foot, collisional and smooth rolling foot contact models
are used to approximate the hip, ankle and foot kinematics. The roll-over shape
concept is introduced and the formulations of the three mathematical models are
compared. The conditions used to compare the walking steps (and rolling disc
comparison) are described in Section 3 and the results are discussed in Section
4. The paper is concluded in Section 5 with a discussion on future challenges.

2. Incorporating foot contact into a biped walker
2.1. Roll-over function definition

Hip-ankle-foot roll-over shapes are obtained first by attaching markers to the
hip and ankle then plotting the trajectory in a global coordinate system as shown
in Figure 1(a). The Centre of Pressure (CoP) location is also obtained via ground
reaction force plates. A local coordinate system is then defined by aligning the
axis along the stance leg as in Figure 1(b). In this way, the knee-ankle—foot system
can be simplified into a rigid rocker attached at the end of the leg. The roll-over
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function y = f(x) is assumed to be a simple polynomial function

1
flx) = ;(x—xm)2 + Ym (1)

which is comparable to a curve with a constant radius of curvature. r represents
the curvature of the foot and will be referred to as the ‘roll-over gain’. x,, and
ym represent the coordinates of the x,y frame when the stance leg is vertical
(61 = 0). At the end of the roll-over shape, rolling contact is locked and the
rocker will act as a pivot point at the end of the foot. In a human system, this can
be comparable to rocking on the heel or the metatarsals at the ball of the foot.

2.2. Discretised collisions to emulate the rolling contact

Mahmoodi, Ransing, and Friswell (2013) modelled this rolling contact as a
concave polygon as shown in Figure 2(b). In this model, the stance leg pivots
about pivot point 1 with inverted pendulum dynamics until pivot point 2 makes
contact with the floor. At this point, there is a completely inelastic collision. A
transition occurs that conserves the angular momentum of the walker using the
initial conditions that consists of virtual leg lengths, initial angular velocities and
initial angular displacements. As the number of pivot points across the polygon
increase, less energy will be lost during the swing phase. This approach was done
in order to overcome the inability to model the complex non-circular geometry
of roll-over shapes. Before this, only point contact or curved/circular feet could
be used. The details of the equations of motion for the collisional pivot point
model are discussed in the following Section 2.3. From this study, an interest was
gained in the qualitative analysis using a complex roll-over shape in an inverted
pendulum passive dynamic model. A method of still incorporating a roll-over
function as the foot contact, without the need for discretising the rolling contact
as a set of collisions is proposed in Section 2.4. Both of these methods can easily
be simplified into the point foot model.

2.3. Collisional equations to emulate rolling contact (Mahmoodi, Ransing, &
Friswell, under review)

The parameters for the collisional rolling walking model can be seen in Figure
1(a). The upper body mass mp is concentrated at the hip joint, while the leg
masses are defined as m; and m,;. The vector @ = [65,0,s]7 with 6 and 0,
being the angles made by, respectively, the support leg and the swinging leg. We
define [, as the virtual stance leg length and a,; as the virtual stance lower leg
length, with 6, and 6, being the angles made, respectively. For both models the
dynamical equations can be derived from the Euler-Lagrange approach:

d (aao,é)) _aL@.6) _ o)

dt 90 00



EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 277

‘0 9)bue yum sue|d paulpul ue je dJe
Jejndupd e buoje syuiod JoA1d G yym [apow uolsl|jod buijjoy (q) ‘e 19 Ipoowyey Aq pasodoid [9pow ay3 10 Wi)sAS 91eulpioo) (e) “1oeuod buljjol ay3 a1e|nws 03 uobAjod
9ABDUOD B 03Ul PASIID.ISIP SI | uolenb3 ul pauljino adeys JdA0-||04 dY L “(E107) [[PMSH] pue ‘Buisuey ‘Ipoowye|y AG pagudsap [9pow buljjol [euoistjjod 8y *Z 24nbi4

(@



278 W. G. CHARLES ET AL.
where the Lagrangian £(6, 9) is the difference between kinetic and potential en-
ergies £(0,0) = K(6,0) — P(0). For the collisional model, the double pendulum
equations of motion as the system rotates around each pivot point, i, is derived
in Appendix A.1. These equations can be described as

M'(0)6 + N'(0,0)0 + g' () =0 (3)
with M, N and g defined as

j 2 i 2 ) .
Ml(a) _ (msai/s + mHl:,s + mnsllz,s —mnsllvsc CoS (91,5 — Qns)) (4)

_mnslivsc cos (Bys — Ops) mnscz
i 4 0 — sl Oy sin (Bys — 6 ))
NY0,0) = . nstystUns Vs ns 5
( ) (mﬂslizscens s (01/5 - Qns) 0 ( )
gi(o) _ mgga,, sin 6, + (mHg.li,S + myegll,) sin (Bys) ©)
—mgc sin ()

and the superscript i referring to the ith pivot point. What makes the collisional
model unique is the idea that the rolling contact is modelled with a large number
of discrete collisions. If the next pivot point, i + 1 comes into contact with the
ground a completely inelastic collision occurs, at which point pivot point i will
leave the ground. The following instantaneous collision takes place:

e HY(8) .o
6" = Ja (7)
Hd
where the superscripts ~ and * indicate, respectively, pre-impact and post-
impact variables. This equation represents the conservation of angular momen-
tum at each inelastic collision during the swing phase and the terms for H' are

given by
Hfl = mHlf,slf,S_lc cos (0:5' -6+ msaf,saf,s_lc cos (01:1 — 0.9
+ mnslislf,s_lc cos (9;: -0, — mnslf,slf,s_lc cos (6, — Oys) cos (9;5r — Ops)
(8)

i P24 _
Hjy, = (my + my) I, 1 cos (6, — 0,5) cos (0,5 — 6,7)

o *
+ mllalal ! cos (0,5 — Oys) cos (9;& -6,

— (mpy 4 mus) I 1 cos (05 — Ons) — myli al " cos (0, — Ons)

(10)
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Roll-over shape

Figure 3. Smooth rolling contact model with a hip mass and a point mass at each leg. The roll-over
shape from Equation 1 is included at the end of each leg.

' - 2 2 2 2 ; ;
H), = Hj = myl,, ¢ + msa,; ¢ + myul, ¢ — myl,, ¢ cos’ (Qf,;r — 9;;) (11)

Note that Hél — 0 as the number of pivot points increase. Equations 7-11 are
needed for the single-support phase exclusively for the collisional model. These
equations are used to model the contact as a set of collisions during this phase,
unlike in the rolling contact model, where the contact is modelled smoothly by
the roll-over function.

2.4. Smooth rolling contact model

The new biped model is shown in Figure 3. The model’s configuration can be
described by # = [0}, 6,]7 with 61 being the angle made between the support leg
with the normal to the ground and 6, the angle between the support leg and the
non-support swinging leg. Note that this reference frame is slightly different to
the one proposed in Section 2.3. The state vector g associated with the robot is
then:

q=10,01" =161,6,,61,6,]" (12)

The motion of the stance leg is determined by the roll-over shape having form
y = f(x) Equation 1 in the reference frame defined {x, y} above. The analogous
reference frame {x", y"*} describes the non-support swinging leg. Values for the
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inertia matrix from Equation 3 are now given by:

M(@0) = (gllz (2)122) (13)
oo S 1 10 (8 )0
(ETZ_ %) )91+5W129 296,01 + 3755, 02
(14)
g ® = (3 &%) (15)

with ®1, ®;, and ©; are given by:
o axl ayl N 2+ Y. \? 16)
=m m
= 391 391 ¢ 891 36,
9X, Y5\ 2
17
+my ((801 801) ) (17)

8X2 3X2 8Y2 8Y2 (18)
891 392 801 892

3X2 ayz
0, = 19
2 m2<(392 90, ) (19)

P being the potential energy given in the appendix Equation (B3) and the
coordinates for each point mass [X;, Y1], [X3, V2] & [X,, Y.] in Equations (B4)-
(B10).

O =

2.5. The double support transition phase

The walkers have rigid, non-elastic legs so there is assumed to be a completely
non-elastic collision at heel strike. The contact made with the floor with the
swinging leg results in an instantaneous impact with no slipping. Point foot,
collisional and the smooth-rolling models have the same inelastic collision at
each step. As the body configuration remains unchanged during impact, the
change in angular positions is represented by the equation

=Jo (20)

where the superscripts ~ and * indicate, respectively, pre-impact and post-
impact variables and the matrix J for the collisional and smooth-rolling models
is found in Appendices A.2 and B.2, respectively. Conservation of angular mo-
mentum leads to the condition:

6 — Q;(Q)é—
07 )

(21)
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with the matrixes for @~ and Q7 for the collisional and smooth rolling models
are given in Appendices A.2 and B.2, respectively. The point model uses the same
mathematics as the rolling contact; however, the hindfoot and forefoot lengths
are set to 0. This means that with no foot contact the walker rotates around a
pivot point at the ‘ankle’.

3. Results
3.1. Rolling disk verification for the collisional model

The drawbacks of discretising the rolling contact is that this approach is unable
to conserve mechanical energy through the infinitesimal jumps that occur as the
walker rolls over from one pivot point to another throughout the swing phase.
However, with a large number of points on a curve, the mechanical losses can
be negligible, represented with the case of a ball rolling down a slope as shown
in Figure 4. A circular disk is represented as a concave polygon with a large
number of corners or pivot-points and set to roll down a slope, where NP is the
number of pivot points. The analytical equation for acceleration is g sin (&), with
o being the angle of slope. An average walking step takes around 0.6-0.7s, while
the rolling disk solution gives good results up to 4 sec with NP=7962. Equation 3
is solved using MATLAB’s in-built Runge-Kutta numerical integration method
‘ode45’. The approach described in Section 2.4 is computationally more efficient
and provides more accurate results by conserving mechanical energy throughout
the swing phase. Hence, it will give a greater insight into the dynamics of bipedal
locomotion.

3.2. Comparing one walking step

The parameters for the model can be non-dimensionalised in order to reduce
the number of free parameters. A mass ratio is defined as the ratio of hip mass,
mp to leg mass, m, while a length ratio is the ratio of upper leg length, b, to
lower leg length, a (refer to Figure 2(a)). Roll-over gain is defined in Equation
1 and represents curvature of the foot. Physiological values for the three point
masses can be used by inspecting body dimensions and centre of mass locations
for the legs. The Naval Biodynamics Laboratory (1988) yield a mass and length
ratio of 3.5822 and 0.6, respectively. The walking incline is set to 2° to give a
good steady walking speed for all models. The foot contact for the discrete and
smooth rolling contact models have a roll-over gain, r, of 1.2 as in Equation 1.
The hindfoot length is 6.2 cm and forefoot length 17.8 cm. The collisional model
has 3400 points distributed along the foot. By using exactly the same model
parameters and initial conditions, we can evaluate the results at the evolution of
one walking step. Values are converted from the coordinate system defined in
Figure 3 into coordinates as in Figure 2(a) in order to compare the two models.
The smooth rolling contact is completely conservative during the swing phase,
while the collisional contact has a difference in energy of 0.14% as shown in
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Figure 5(a). Figure 5(b) proves that loss of this energy is related to the length of
the foot. Figure 6 shows the difference in angular displacements and velocities, 6
and 6. Although the rolling disk in Section 3.1 showed negligible divergence at
0.7 sec, there appears to be some divergence during rolling contact in a walking
model. The swing leg diverges, while the stance leg seems to remain. As this
system is a double inverted pendulum, it is likely that the swing leg mass is
sensitive to even the slightest perturbation.

3.3. Bifurcation diagrams

Bifurcation diagrams can be used to show gait factors such as inter-leg angle,
step period and average velocity as a function of model parameters. The walker
is set in motion for 40 steps, at which point it is assumed to be stable and values
for the next 10 steps are plotted. Bifurcation diagrams show certain behaviour
such as periodic asymmetric walking that leads to chaotic behaviour. Parameters
of a robot walker can include slope angle, mass ratios and leg length ratios, while
different curvatures for the feet can also be compared to see how this affects the
dynamics of human locomotion. The bifurcation diagrams outlined in Figure 7
show the evolution of step period and inter-leg angle as a function of slope angle.
The model parameters are the same as in Section 3.2. From the following figures,
it can be seen that the collisional model enters the chaotic region at shallower
inclines. In a passive biped walker, the slope angle is increased in order to increase
the potential energy at each walking step to offset the energy lost at heel strike.
With the multiple collisional model, an increased amount of energy is lost during
the swing phase as the model rolls along the foot contact. This is different to the
point foot and smooth rolling models in which mechanical energy is completely
conserved during the swing phase.

3.4. Basin of Attraction

At heel strike, there are three initial conditions that can have an effect on the
stability of the walker; angle between the legs, 6, and the angular velocities of
both legs, #; & 6. Studying the basin of attraction will give us a good indication
of the stability of a walker (Schwab & Wisse, 2001). The walker is set to walk with
a set of initial conditions up to 50 steps. If the walker manages to reach 50 steps,
the walker is said to be stable and that set of initial conditions lies inside the basin
of attraction. Figure 8 shows the boundaries of basin of attraction comparison
to show the robustness of the walker at a range of initial conditions. In simple
terms, a greater area of basin of attraction shows that the walker will be less
likely to fall over due to perturbations. As the computation time of the smooth
rolling contact model is approximately 60 times faster than the collision model,
the speed of calculation for the basin of attraction can be greatly increased.
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Figure 8. Basin of Attraction for the pivot point (green, dotted), rolling collision (blue, normal
line) and smooth rolling (red, dashed) contact models.
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Figure 9. Average walking speed at a given slope angle for the point foot model (black) and with
physiological foot contact (red).

4. Discussion of results

The point foot model is usually used as a simplification for bipedal walking;
however, there can be seen to be a large difference in gait descriptors at a given
slope angle. Using a roll-over shape can give better walking speed without going
into the chaotic region Figure 9. A physiological walking speed is said to be
around 1.4m/s. Although with a roll-over gain, r, of 1.2 the average velocity is
1.25 m/s before bifurcating, for passive walking this is a great improvement from
0.95 m/s for the point foot model. Differences between the collisional and smooth
rolling models are due to the error in mechanical energy at the collisions of each
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pivot point in the swing phase. Although the difference should be negligible as
in the rolling disk benchmark in Section 3.1, the actual deviation is noticeable.
It should be noted that the double inverted pendulum mechanics is a chaotic
system, so a small deviation from one walking step could possibly lead to a greater
difference at stable walking or up to a convergence at around 20-50 walking steps.
An important aspect of the mechanical system is the point at which bifurcation
occurs. In further work, it will be interesting to compare both models until the
transition to a chaotic region. The basin of attraction plots (Figure 8) show the
robustness of using smooth rolling contact over the point foot or the collisional
model. The smooth rolling contact model has maximum overlapping area with
the other two models. However, the basin of attraction area is different for each
model. This reinforces the importance of the hypothesis that the smooth rolling
contact should be preferred over collisional and point foot models. Before the
bifurcation region both models are comparable, however computationally the
smooth rolling model is approximately 60 times faster. This substantial increase
in speed is particularly advantageous when performing basin of attraction work,
in which computational times are demanding.

5. Conclusions

The point foot single mass model is usually preferred for its simplicity. However,
we believe it is worth adapting the point model to include rolling contact in
order to make the results more accurate without needing to increase the number
of DoF. The rolling contact gives a better estimation for the trajectory of CoM
and hence can more accurately predict the dynamics of human walking. Using
rolling contact also increases the stability (Figure 8) and average walking velocity
for a given slope angle (Figure 9). Using multiple collisions to simulate rolling
contact seemed to yield accurate results with a very large number of pivot points
on a rolling disk; however, incorporated into the double pendulum mechanics
it makes a much larger difference with the swing leg. This leads to differences
on the time of heel-strike, in addition to step length and touch-down velocity.
An analytical approach for modelling a rolling contact in a biped walker with
a roll-over shape has been presented and compared with collisional rolling and
point foot model. This approach conserves mechanical energy throughout the
stance phase and can be used to more accurately predict gait descriptors such as
average velocity, step period, mechanical energy and inter-leg angle for different
gain and length values for the feet, as well as different mass and length ratios. This
is particularly useful when incorporating roll-over shapes obtained experiments
of the human system. This study has shown insight into the fact that even a
negligible deviation in mechanical energy can have a great effect on the double
inverted pendulum dynamics. Future passive walking systems should consider
using the roll-over shape to more accurately predict the trajectory of hip mass
without increasing the number of DoF in a system. The next task is to compare
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results with unbalanced mass distributions in order to explore prosthetic design
applications such as the work by Mahmoodi, Ransing, and Friswell (under
review). Future work can also include adding a linear or torsional spring in
order to emulate the muscle contractions in human walking and compare the
ground reaction forces with experimental data (Geyer, Seyfarth, & Blickhan,
2006; Kuo, Donelan, & Ruina, 2005). This research is not only useful in order
to improve stability and correct gait for the design of prosthetic feet, but also
for rehabilitative devices such as ankle-foot orthoses (Mahmoodi, Ransing, &
Friswell, under review; Richter et al., 2015).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The authors gratefully acknowledge the financial support provided by the Sér Cymru National
Research Network in Advanced Engineering and Materials [grant number NRN019].

ORCID
R. S. Ransing ‘& http://orcid.org/0000-0003-4848-4545

References

Chyou, T., Liddell, G. F., & Paulin, M. G. (2011). An upper-body can improve the stability
and efficiency of passive dynamic walking. Journal of Theoretical Biology, 285, 126-135.

Hansen, A. H., & Childress, D. S. (2004). Effects of shoe heel height on biologic rollover
characteristics during walking. Journal of Rehabilitation Research and Development, 41,
547-554.

Hansen, A. H., & Childress, D. S. (2005). Effects of adding weight to the torso on roll-over
characteristics of walking. Journal of Rehabilitation Research and Development, 42,381-390.

Hansen, A. H., Childress, D. S., & Knox, E. H. (2004). Roll-over shapes of human locomotor
systems: Effects of walking speed. Clinical Biomechanics (Bristol, Avon), 19, 407-414.

Garcia, M., Chatterjee, A., Ruina, A., & Coleman, M. (1998). The simplest walking model:
Stability, complexity, and scaling. Journal of Biomechanical Engineering, 120, 281-288.

Geyer, H., Seyfarth, A., & Blickhan, R. (2006). Compliant leg behaviour explains basic
dynamics of walking and running. Proceedings of the Royal Society B: Biological Sciences,
273,2861-2867.

Goswami, A. (1999). Postural stability of biped robots and the foot-rotation indicator ( FRI )
Point. The International Journal of Robotics Research, 18, 523-533.

Goswami, A., Thuilot, B., & Espiau, B. (1996). Compass-like biped robot Part I : Stability and
bifurcation of passive gaits. [Research Report] RR-2996, INRIA.

Kuo, A. D., Donelan, J. M., & Ruina, A. (2005). Energetic consequences of walking like
an inverted pendulum: Sstep-to-step transitions. Exercise and Sport Sciences Reviews, 33,
88-97.

Li, Q., & Yang, X. S. (2012). New walking dynamics in the simplest passive bipedal walking
model. Applied Mathematical Modelling, 36, 5262-5271.


http://orcid.org
http://orcid.org/0000-0003-4848-4545

290 W. G. CHARLES ET AL.

Mahmoodi, P., Ransing, R. S., & Friswell, M. I. (2013). Modelling the effect of heel to toe
roll-over contact on the walking dynamics of passive biped robots. Applied Mathematical
Modelling, 37, 7352-7373.

Mahmoodi, P., Ransing, R. S., & Friswell, M. L. (2016). A novel mathematical formulation
for predicting symmetric passive bipedal walking motion with unbalanced masses. Applied
Mathematical Modelling, 40, 3895-3906. doi:10.1016/j.apm.2015.10.051

McGeer, T. (1990). Passive dynamic walking. The International Journal of Robotics Research,
9, 62-82.

Miff, S. C., Hansen, A. H., Childress, D. S., Gard, S. A., & Meier, M. R. (2008). Roll-over shapes
of the able-bodied knee-ankle—foot system during gait initiation, steady-state walking, and
gait termination. Gait & Posture, 27, 316-322.

Naval Biodynamics Laboratory (1988). Anthropometry and mass distribution for human
analogues. Report Number NBDL-87R003. Bethesda, MD: Naval Medical Research and
Development Office.

Richter, H., Simon, D., Smith, W. A., & Samorezov, S. (2015). Dynamic modeling, parameter
estimation and control of a leg prosthesis test robot. Applied Mathematical Modelling, 39,
559-573.

Schwab, A. L., & Wisse, M. (2001). Basin of attraction of the simplest walking model.
Proceedings of the ASME Design Engineering Technical Conference, 6, 531-539.

Appendix 1. Collisional rolling model mechanics

A.1. Derivation of Equation 3 (M’ () 6 + N’ (0,9) 0 +g' (9) = 0) using the
Euler-Langrangian approach for the single support phase

The Euler-Lagrange equation for each pivot point of the concave polygon, i

d (aLi (qé)) L (6,6)

dt 36 36

=0, L'(9,6) =K' (9,0) — P' (9) (A1)

Kinetic energy K’ (6,0) and potential energy P’ (9) are given by:

S 1 - 1 - 1 -
KE(0,0) = Smu [nl? + Zms 117 + 5 g 1)) (A2)
p (0) = —mHglf,s cos Oys — msgaf,s COs Oy — Myg (lf,s cos 0,5 — c cos Gns) (A3)

and the velocities of each point mass are given by

Vi = LysBs cos 91,5? + 1,40 sin 01,5}
_v)S = a,,0; cos 91,51? + ays0s sin 91,517 (A4)

-

Ve = (lvsés €08 Oys — Oy cOs 9,,5) i+ (lwés $in Oy — cys sin Hns)]

A.2. Thedouble-support phase momentum transfer

An instantaneous impact for the double support transition occurs in all models. The double
support phase for the collisional model has been derived from Mahmoodi, Ransing, & Friswell
(under review) and is as follows: The matrix J in Equation (20) takes the form

01
J= [1 0} (A5)
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At double-support, due to the conservation of angular momentum, the following equation
relates the pre-impact and post-impact angular velocities:

gt = 20 (A6)

Q+

where elements of Q™ ()

Qy, = mymbles zij c0s (B, — 6,5) + mib? 1 as; cos (6,5 —6,)

+ momygb*IS alt cos (0., — 6,)
m2b*1ita 55 cos (9 —0,,)cos (0,5 — 6,5)
Qp, = — mgmysb*cal] cos (gvsl ) (A7)

Q;, = mgmpbl li;" cos (0,5 — 6,5) cos (0,; —6.0)

+ m2bas 15 cos (6 — eg)cos (65 =6,

vs bys
+ memysbley L ayt cos (6,5 — 6,5) cos (0, — 6;) (A8)
— mgmpbal; l;j' cos (0,5 — 0.
— mgmpsba, aH' cos (0, — 6,) — Zbaﬁs l;f cos (0, — 6,)

Qy, = — msmpsbellTal cos (Gvsl 0,.) cos (0,5 —61) (A9)

Q" = mb(mylF + mdliF? 4 myalt? — ' cos? (0 — 05)) (A10)

and e represents the eth pivot point.

Appendix 2. Mathematical derivation of smooth rolling contact
method outlined in Section 2.4.

B.1. Swing phase mechanics

The planar double-pendulum equations are adapted to include roll-over support for the foot
contact. Its dynamical equations are derived from the Euler-Lagrange approach:

(B1)

9L©,0)\ 9L@O.0)
dt 90 T

where the Lagrangian L£(8,6) is the difference between kinetic and potential energies

L£(0,6) = K(6,0) — P@®,0).
K(9,0) = *mH”vH” + msllvsll + = mns”vns” (B2)

If the ground plane is at an angle, o, with the horizontal plane ( < 0 if walking downhill as
in Figure 2b) then the potential energy can be written as

P#) = myg(Xg sina + Yy cosa) 4+ mg (X sin o + Y cos o) + 11,58 (Xps sin o + Y5 cos o)

(B3)
Let point mass m; be located in point P; having fixed co-ordinates [x;,y;] in the {x, y}
reference frame and point mass m, be located in point P, having fixed co-ordinates [x]°, y*
in the {x"¥, y™} reference frame. Also the third mass m, is located in hip joint at the centre
of rotation between {x, y} and {x™, y"} reference frames and having the same co-ordinates,
{x¢, yc} in the both frames.
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The vectors are given by:

iy = XH7 + YHj (B4)
vy = X0 + Yyj (B5)
i5;15 = an? + Ynsj (B6)

with the coordinates,

X1(61) = (x1 — x9(61)) cos 01 + (y1 — yo (1)) sin (61) + s(01)

. (B7)
Y1(61) = —(x1 — x(61)) sin 01 + (y1 — ya(61)) cos (61)
X (1) = (xc — x9(61)) cos 01 + (yc — yo(61)) sin (01) + s(61) (B8)
Ye(01) = —(xc — x9(61)) sin 6y + (yc — yo(61)) cos (61)
where functions xg (61) and yg(6,),
r tan (67)
mwoz—iii+m
r (B9)
01) = ———— + ym
706 = e T
are defined by rearranging Equation (1). Also for the swinging leg,
Xa(01,02) = (x2(62) — x9(61)) cos b1 + (y2(62) — yo(61)) sin 61 + s(61) (B10)
Y2(01,62) = —(x2(62) — x9(61)) sin 01 + (y2(62) — yo(61)) cos 6
where [x2, 2] are coordinates of point P, in the {x, y} reference frame:
x2(02) = (x5° — xc) cos Oy + (¥5° — ) sin b + x¢ (BL1)
2(02) = —(x)° — x¢) sin6, + (V5 — ye) cos b, + y.
Inserting Equations B4, B5 and B6 into B2, K (6, é) can be rewritten as:
. 1.1 .
K(,0) = 50 M(@9)0 (B12)

which is comparable to the well-known double pendulum equations with the following form:
M(©)0 + N@©,0)0 + g(6) =0 (B13)

B.2. Double-support phase for the smooth contact model

Section 2.5 outlines the double support phase: At post impact the leading becomes the
swinging leg and the trailing leg becomes the stance leg. This leads to the equation

11
sz_J (B14)

and

Q6 =Qté" (B15)
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where the matrix Q™ consists of

_ 0X
Q= <39_< — sty — aQiIYH)

3Y1 8Xl
+my X —st) - ——v B16
(39( ) — 26 1) (B16)
aY. 0X
+m | 2 —sH - 2T,
00, 00,
_ Y, ¢
Q12 (89_( ) 892 2) ( )
_ aYy 0X1
Q21 = X lere 391 - Y Ylpre 89 (B18)
Qy, =0 (B19)

and the matrix for post-impact, Q™

ayl+ N ax+
+ my 789+ X =s 89+ (B20)
aY2 + X2
+m —Y,
<39+( : ) o, )
8Y2 a 2
L= X5 —shH - —=v B21
Q1 (89+ ( ) 267 2 (B21)
aY: - X
Q2+1 = (Xc lpost 2 _ Ychposti> (B22)
26,
8Y2 b 8X2
+
Qp = (Xc 1post T+ 89+ - Y Ylpostaez_;,_> (B23)



	1. Introduction
	2. Incorporating foot contact into a biped walker
	2.1. Roll-over function definition
	2.2. Discretised collisions to emulate the rolling contact
	2.3. Collisional equations to emulate rolling contact (MahmoodiAMM2, MahmoodiAMM2)
	2.4. Smooth rolling contact model
	2.5. The double support transition phase

	3. Results
	3.1. Rolling disk verification for the collisional model
	3.2. Comparing one walking step
	3.3. Bifurcation diagrams
	3.4. Basin of Attraction

	4. Discussion of results
	5. Conclusions
	Disclosure statement
	Funding
	ORCID
	References
	Appendix 1. Collisional rolling model mechanics
	Appendix A.1. Derivation of Equation 3 (Mi( θ)+Ni( θ, )+gi( θ)=0) using the Euler-Langrangian approach for the single support phase
	Appendix A.2. The double-support phase momentum transfer

	Appendix 2. Mathematical derivation of smooth rolling contact method outlined in Section 2.4.
	Appendix B.1. Swing phase mechanics
	Appendix B.2. Double-support phase for the smooth contact model






