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ABSTRACT
In this study, the natural convection in a square enclosure
filled with water-based aluminium oxide (Al2O3) under the
influence of an externally applied inclined magnetic field is
considered numerically. The flow is steady, two-dimensional
and laminar; the nanoparticles and water are assumed to be in
thermal equilibrium. The governing equations are solved in terms
of stream function–vorticity–temperature using both the dual
reciprocity boundary element method and the finite element
method to see the influence of characteristic flow parameters,
namely: solid volume fraction (φ), inclination angle (γ ), Rayleigh
(Ra) and Hartmann (Ha) numbers. Numerical simulations are
performed for 0 ≤ φ ≤ 0.2, γ = 0,π/4,π/3,π/2, and the
values of Rayleigh and Hartmann numbers up to 107 and
300, respectively. The results show that the buoyancy-driven
circulating flows undergo inversion of direction as Ra and Ha
increase, and magnitudes of streamlines and vorticity contours
increase as Ra increases, but decrease as Ha increases. The
isotherms have a horizontal profile for high Ra values as a result
of convective dominance over conduction. AsHa increases, effect
of the convection on flow is reduced, thus the isotherms tend to
have vertical profiles.
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1. Introduction

The problems of natural convection under the influence of a magnetic field have
received considerable attention over the last decades due to their wide variety
of engineering applications, such as crystal growth, purification of molten met-
als, nuclear reactor cooling, microelectronic devices and solar technology. The
nanofluid is a liquid–solid mixture in which metallic or non-metallic nanopar-
ticles are suspended. The suspended particles change the transport properties
and heat transfer performance of the fluid, which exhibits a great potential in
enhancing heat transfer. Thus, the mechanism of heat transfer of nanofluids
has been recently investigated by many researchers using different numerical
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methods in different geometries.When the fluid is also electrically conducting, an
external magnetic field can be used to control the convection within enclosures.

Öztop, Al-Salem, and Pop (2011) studied the mixed convection with a mag-
netic field in a top-sided lid-driven cavity heated by a corner heater. Yu, Qiu,
Qiu, and Tian (2013) numerically investigated the natural convection in a rect-
angular cavity under different directions of uniformmagnetic field. Both of these
studies showed that heat transfer decreases with an increase in the intensity of
external magnetic field (as Hartmann number increases). Sheikholeslami and
Ganji (2014) used control volume-based finite element method (FEM) to study
the effect of external magnetic field on ferrofluid flow and heat transfer in a
semi-annulus enclosure with sinusoidal hot wall. Pirmohammadi and Ghassemi
(2009) studied the effect of magnetic field on convection heat transfer inside a
tilted square enclosure. In trapezoidal cavities, MHD natural and free convec-
tions are studied by Hasanuzzaman et al. (2012) and Hossain and Alim (2014),
respectively. Türk and Tezer-Sezgin (2013) have given FEM solution of natural
convection flow in square enclosures under magnetic field. As discussed in the
above studies, magnetic field results in the decrease of convective circulating
flowswithin the enclosures filledwith electrically conductingfluids, consequently
reducing the rate of heat transfer. But, in some devices, such as magnetic field
sensors and cooling system of electronic devices, enhanced heat transfer is
desired. In order to improve the heat transfer performance of such devices,
the use of nanofluids with higher thermal conductivity is a promising solution.

The natural convection in a square enclosure filled with a nanofluid under
the effect of a magnetic field is investigated numerically in many works. The
effects of parameters such as the Rayleigh number, the Hartmann number and
the nanofluid solid volume fraction on the flow and temperature fields are
analysed using different numerical techniques in these studies. A finite element
approachusingCOMSOLMultiphysics is implemented inHamida andCharrada
(2015), whereas the control volume formulation SIMPLE algorithm and a finite
volume code based on PATANKAR’s SIMPLER method are used in the works
of Ghasemi, Aminossadati, and Raisi (2011) and Pirmohammadi and Ghassemi
(2009), respectively. On the other hand, the natural convection in a triangular
enclosure filled with nanofluid in presence of horizontally applied magnetic
field and partially heated by differently located heat sources is solved by finite
volume method in Mahmoudi, Pop, and Shahi (2012), and the numerical results
are obtained up to the values of Ra = 107 and Ha = 100. A control volume
formulation using the SIMPLE algorithm was developed in Ghasemi (2013) to
study the natural convection in a U-shaped enclosure which is filled with a
nanofluid. It is observed that the heat transfer rate increases with an increase in
Rayleigh number and the solid volume fraction, but it decreases with an increase
in the Hartmann number. Further, the MHD natural convection in a nanofluid-
filled inclined enclosure with sinusoidal wall is investigated using the control
volume-based FEM in the work of Sheikholeslami, Gorji-Bandpy, Ganji, and
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Soleimani (2014). The problem of natural convection under the influence of
an inclined magnetic field in an inclined L-shaped enclosure with differentially
heated wall, and filled with water–Cu nanofluid is analysed in Elshehabey, Hady,
Ahmed, andMohamed (2014). The fully implicit finite differencemethod is used
to solve the governing equations forRa = 106 andHa = 100 and different angles
of inclination and magnetic field directions. Lattice Boltzmann method has also
been used in solving MHD natural convection of water/alumina nanofluids by
Kefayati (2013) and Sheikholeslami, Gorji-Bandpy, and Ganji (2013). It is found
that the enhancement in heat transfer is an increasing function of Hartmann
number, while it is a decreasing function of Rayleigh number in Sheikholeslami,
Gorji-Bandpy, and Ganji (2013). As a boundary discretization technique, the
dual reciprocity boundary element method (DRBEM) solution of the unsteady
natural convective flow of nanofluids in a square enclosure with a heat source
is presented in Gümgüm and Tezer-Sezgin (2010) in the absence of external
magnetic field.

In the present study, the natural convection heat transfer in a square enclosure
filled with a nanofluid in the presence of a magnetic field is considered. The
main objective of this study is to solve the problem with two effective and
accurate numerical methods, namely: FEM and DRBEM, and to compare these
techniques which differ in nature as being domain and boundary discretization
types, respectively. The DRBEM is a boundary-only discretization technique
which enables one to use the fundamental solution of the Laplace equation due
to the treatment of non-linear terms as inhomogeneity. Thus, the discretization
of only the boundary of the region results in small algebraic systems, which
constitutes the main advantage of DRBEM. On the other hand, the FEM, a well-
developed andwidely used reliable numerical approach, is capable of givingmore
accurate results, especially for very high characteristic flow parameters; however,
it results in large-sized algebraic systems requiring high computational cost. In
this paper, numerical tests are performed for a wide range of problem parameters
such as Rayleigh number, Hartmann number and solid volume fraction. The
externalmagnetic field is oblique and the solutions are obtained for large values of
Hartmann number. The results are visualised in terms of streamlines, isotherms
and vorticity contours to see the effect of buoyancy force, nanoparticles and
magnetic field on the fluid flow and heat transfer.

2. Governing equations

The problem of a steady, two-dimensional, laminar natural convection flow of
a Newtonian and incompressible nanofluid (water–Al2O3) is considered in a
square enclosure under the effect of an externally applied magnetic field. The
base fluid and the solid spherical nanoparticles are considered to be in thermal
equilibrium, and their properties are taken from Ghasemi et al. (2011). The
inducedmagnetic field, radiation and the Joule heating effects are neglected. The
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Figure 1. Domain and boundary conditions of the problem.

gravity is in the vertical direction and there is no viscous dissipation. No-slip
boundary conditions for the velocity are imposed on the walls of the cavity. The
upper and lower walls of the cavity are taken as adiabatic, whereas the vertical
walls are kept at constant temperatures, namely: the left wall is heated (Th) and
the right wall is cooled (Tc). The variation of the density in the buoyancy term
is determined by means of Boussinesq approximation and the other thermo-
physical properties of the nanofluid are assumed as constant. The external
magnetic field with intensity B0 is uniform and is applied in a direction lying
in the xy-plane but forming an angle γ with the x-axis (see Figure 1).

Under the above assumptions, the continuity, momentum and energy equa-
tions can bewritten in the non-dimensional velocity-pressure–temperature form
as (Ghasemi et al., 2011; Ghasemi, 2013; Elshehabey et al., 2014)

∂u
∂x

+ ∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+ μnf

ρnf αf

(
∂2u
∂x2

+ ∂2u
∂y2

)
+ Ha2Pr sin γ

(
v cos γ − u sin γ

)
(2)

u
∂v
∂x

+ v
∂v
∂y

= −∂p
∂y

+ μnf

ρnf αf

(
∂2v
∂x2

+ ∂2v
∂y2

)
+ RaPr

(ρβ)nf

ρnf βf
T

+ Ha2Pr cos γ
(
u sin γ − v cos γ

)
(3)

u
∂T
∂x

+ v
∂T
∂y

= αnf

αf

(
∂2T
∂x2

+ ∂2T
∂y2

)
(4)

with the non-dimensional parameters
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x = x̄
l
, y = ȳ

l
, u = ūl

αf
, v = v̄l

αf
, p = p̄l2

ρnf α
2
f
, T = T − Tc

Th − Tc
,

Ra = gβf 	3(Th − Tc)

νf αf
, Pr = νf

αf
, Ha = B0	

√
σnf

ρnf νf
(5)

where l, g , σ , ν and B0 are the characteristic length, gravitational acceleration,
electrical conductivity, kinematic viscosity and the magnetic field intensity, re-
spectively. In Equations (1)–(4), the parameters u, v, p and T denote the non-
dimensional x- and y-velocity components, pressure and temperature of the
fluid, respectively. The overline in (5) indicates that the quantities are dimen-
sional. Here, Ra is the Rayleigh number, Pr is the Prandtl number and Ha is the
Hartmann number. The thermo-physical properties of water, aluminium oxide
and the nanofluid are determined as (Ghasemi et al., 2011)

ρnf = (1 − φ)ρf + φρp, σnf = (1 − φ)σf + φσp, αnf = knf /(ρCp)nf ,
(ρβ)nf = (1 − φ)(ρβ)f + φ(ρβ)p, (ρCp)nf = (1 − φ)(ρCp)f + φ(ρCp)p,

knf = kf
[kp + 2kf − 2φ(kf − kp)
kp + 2kf + φ(kf − kp)

]
, μnf = μf (1 − φ)−2.5

(6)
where φ is the solid volume fraction, ρ is the density, α is the thermal diffusivity,
Cp is the specific heat, β is the thermal expansion coefficient, μ is the effective
dynamic viscosity, k is the thermal conductivity and the subscripts ‘nf ’, ‘f ’ and ‘p’
refer to nanofluid, fluid and nanoparticle, respectively.

For the two-dimensional flow, defining stream function ψ(x, y) and vorticity
w(x, y) as

∂ψ

∂y
= u,

∂ψ

∂x
= −v, w = ∂v

∂x
− ∂u
∂y

the Equations (1)–(4) can be written in the stream function–vorticity and tem-
perature

∇2ψ = −w (7)
μnf

ρnf αf
∇2w = ∂w

∂x
∂ψ

∂y
− ∂w
∂y
∂ψ

∂x
− RaPr

(ρβ)nf

ρnf βf

∂T
∂x

− Ha2Pr
(
sin (2γ )

∂2ψ

∂x∂y
+ cos2 γ

∂2ψ

∂x2
+ sin2 γ

∂2ψ

∂y2

)
(8)

αnf

αf
∇2T = ∂T

∂x
∂ψ

∂y
− ∂T
∂y
∂ψ

∂x
. (9)

Equations (7)–(9) are accompanied with the accordingly transformed bound-
ary conditions as shown in Figure 1.
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3. Numerical methods

3.1. DRBEM formulation

The aim of the DRBEM is to transform the governing equations of the problem
into boundary integral equations by treating all the terms except Laplacian
operator as inhomogeneity (Brebbia, Partridge, &Wrobel, 1992). In thismanner,
the governing Equations (7)–(9) are weighted with the two-dimensional funda-
mental solution of Laplace equation, u∗ = 1/2π ln (1/r). The application of the
Green’s second identity to Equations (7)–(9) results in

ciψi +
∫



(
q∗ψ − u∗ ∂ψ

∂n

)
d
 = −

∫
�

(− w)u∗d� (10)

ciwi +
∫



(
q∗w − u∗ ∂w

∂n

)
d
 = −

∫
�

ρnf αf

μnf

[
∂w
∂x
∂ψ

∂y
− ∂w
∂y
∂ψ

∂x

− RaPr
(ρβ)nf

ρnf βf

∂T
∂x

− Ha2Pr
(
sin (2γ )

∂2ψ

∂x∂y
+ cos2 γ

∂2ψ

∂x2

+ sin2 γ
∂2ψ

∂y2

)]
u∗d� (11)

ciTi +
∫



(q∗T − u∗ ∂T
∂n
)d
 = −

∫
�

αf

αnf
(
∂T
∂x
∂ψ

∂y
− ∂T
∂y
∂ψ

∂x
)u∗d� (12)

where q∗ = ∂u∗/∂n, 
 is the boundary of the domain � and the subscript i
denotes the source point. The constant ci is given by ci = θi/2π with the internal
angle θi at the source point.

The integrands of the domain integrals on the right-hand side of Equations
(10)–(12) except u∗ are treated as inhomogeneity. Thus, they are approximated
by a set of radial basis functions fj(x, y) linked with the particular solutions ûj
to the equation ∇2ûj = fj (Brebbia et al., 1992). The approximations for these
integrands are given by

∑N+L
j=1 αjfj(x, y),

∑N+L
j=1 βjfj(x, y) and

∑N+L
j=1 γjfj(x, y),

respectively, for Equations (10)–(12). The coefficients αj, βj and γj are unde-
termined constants. The numbers of the boundary and the internal nodes are
denoted by N and L, respectively. Now, the right-hand sides of Equations (10)–
(12) also involve themultiplication of the Laplace operator with the fundamental
solution u∗, which can be treated in a similar manner by the use of DRBEM to
obtain the boundary-only integrals. Then, the use of constant elements for the
discretization of the boundary results in the corresponding matrix–vector form
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of Equations (10)–(12)

Hψ − G
∂ψ

∂n
= (HÛ − GQ̂)F−1{−w}, (13)(

Hw − G
∂w
∂n

)
= (HÛ − GQ̂)F−1

{
ρnf αf

μnf

[
∂w
∂x
∂ψ

∂y
− ∂w
∂y
∂ψ

∂x

− RaPr
(ρβ)nf

ρnf βf

∂T
∂x

(14)

− Ha2Pr
(
sin (2γ )

∂2ψ

∂x∂y
+ cos2 γ

∂2ψ

∂x2
+ sin2 γ

∂2ψ

∂y2

)]}
(
HT − G

∂T
∂n

)
= (HÛ − GQ̂)F−1

{
αf

αnf

(
∂T
∂x
∂ψ

∂y
− ∂T
∂y
∂ψ

∂x

)}
(15)

where the matrices Û and Q̂ are constructed by taking each of the vectors ûj and
q̂j as columns, respectively. The coordinate matrix F of size (N + L) contains
the radial basis functions fj as columns (e.g. f = 1 + rj). The components of the
matrices H and G are

Hij = ciδij + 1
2π

∫

j

∂

∂n

(
ln
(
1
r

))
d
j, Hii = −

N∑
j=1,j �=i

Hij,

Gij = 1
2π

∫

j

ln
(
1
r

)
d
j, Gii = A

2π

(
ln
(
2
A

)
+ 1

)

where r is the distance from node i to element j, A is the length of the element
and δij is the Kronecker delta function. The resulting non-linear and coupled
DRBEM equations are solved by an iterative process with initial estimates of
vorticity and temperature. First, the stream function Equation (13) is solved by
giving an initial estimate for vorticity. Then, with the use of an initial estimate
for the temperature, the vorticity Equation (14) is solved. Once the vorticity
values are obtained at all points in the domain, a similar procedure is employed
for the solution of the energy Equation (15). In each iteration, the required
space derivatives of the unknowns ψ , w and T , and also the unknown vorticity
boundary conditions are obtained using the coordinate matrix F as

∂R
∂x

= ∂F
∂x

F−1R,
∂R
∂y

= ∂F
∂y

F−1R, w = −
(
∂2F
∂x2

F−1ψ + ∂2F
∂y2

F−1ψ

)

where R is one of the unknowns ψ , w or T . The iterative procedure will stop
when a pre-assigned tolerance is reached between two successive iterations.

3.2. FEM formulation

The FEM formulation of Equations (7)–(9) is obtained by extending the FEM
model in Türk and Tezer-Sezgin (2013) for the natural convection of pure fluids
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under the effect of an inclined magnetic field. The weak form is developed by
multiplying Equations (7)–(9) with the weight functions ω1, ω2 and ω3 which
are assumed to be twice differentiable with respect to x and y, and taken as equal
to the shape functions used for an element approximation in Galerkin approach
(Reddy, 2006). Then, the application of the divergence theorem results in:

−
∫
�

(
∂ω1

∂x
∂ψ

∂x
+ ∂ω1

∂y
∂ψ

∂y

)
d�+

∫
�

ω1wd�+
∫
∂�

ω1
∂ψ

∂n
ds = 0, (16)

− μnf

ρnf αf

∫
�

(
∂ω2

∂x
∂w
∂x

+ ∂ω2

∂y
∂w
∂y

)
d�−

∫
�

ω2

(
∂ψ

∂x
∂w
∂y

− ∂w
∂y
∂ψ

∂x

)
d�

+ Ha2Pr
∫
�

ω2

(
sin (2γ )

∂2ψ

∂x∂y
+ cos2 γ

∂2ψ

∂x2
+ sin2 γ

∂2ψ

∂y2

)
d�

+ RaPr
(ρβ)nf

ρnf βf

∫
�

ω2
∂T
∂x

d�+ μnf

ρnf αf

∫
∂�

ω2
∂w
∂n

ds = 0, (17)

− αnf

αf

∫
�

(
∂ω3

∂x
∂T
∂x

+ ∂ω3

∂y
∂T
∂y

)
d�−

∫
�

w3

(
∂T
∂x
∂ψ

∂y
− ∂T
∂y
∂ψ

∂x

)
d�

+ αnf

αf

∫
∂�

ω3
∂T
∂n

ds = 0, (18)

dropping the boundary integrals due to the property of shape functions to
be vanished for Dirichlet boundary conditions, and zero normal derivative
conditions. The region is discretized using 6-nodal triangular elements, and
quadratic shape functions are used in the approximation ofψ ,w andT over each
element. Assembly procedure for all elements results in matrix–vector system of
equations

[K]{ψ} = [M]{w} (19)
μnf

ρnf αf
[K] {w} + [A] {w} = RaPr

(ρβ)nf

ρnf βf
{F1} + Ha2Pr {F2} (20)

αnf

αf
[K] {T} + [A] {T} = {0} (21)

where the stiffness, mass and convective matrices are given as

[K] =
Me∑
e=1

∫
�e

(
∂Ne

i
∂x

∂Ne
j

∂x
+ ∂Ne

i
∂y

∂Ne
j

∂y

)
d�e

[M] =
Me∑
e=1

∫
�e

Ne
i N

e
j d�e

[A] =
Me∑
e=1

∫
�e

Ne
i

[( 6∑
k=1

∂Ne
k

∂y
ψe
k

)
∂Ne

j

∂x
−
( 6∑
k=1

∂Ne
k

∂x
ψe
k

)
∂Ne

j

∂y

]
d�e,
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for i, j = 1, . . . , 6. The right-hand-side vectors are given as

{F1} =
Me∑
e=1

∫
�e

Ne
i

6∑
k=1

(
∂Ne

k
∂x

Te
k

)
d�e

{F2} =
Me∑
e=1

∫
�e

Ne
i

(
sin (2γ )

6∑
k=1

∂2Ne
k

∂x∂y
ψe
k + cos2 γ

6∑
k=1

∂2Ne
k

∂x2
ψe
k

+ sin2 γ
6∑

k=1

∂2Ne
k

∂y2
ψe
k

)
d�e.

Here, i = 1, . . . , 6 and
∑Me

e=1
represents the assembly procedure over the total

number of elements, Me. In the computations of the element matrices and
vectors, the integrations are carried out using an isoparametric interpolation
and Gaussian quadrature. Equations (19)–(21) are solved iteratively, and the
missing vorticity boundary values are calculated using the formula

wb = −(a0ψb + a1ψp + a2ψq + a3ψn). (22)

In (22), the subscript b denotes the boundary node, ψp and ψq are the stream
function values, respectively, ph and qh distance away nodes along the normal
direction, h being the distance between two consecutive nodes, and ψn is the
normal derivative. The constants ai, i = 0, 1, 2, 3, are derived from the Taylor
series expansion of the stream function by means of Equation (7) (see Türk and
Tezer-Sezgin (2013) formore details). In calculations, the nodes at the upper and
lower corners are included to the upper and lower walls, respectively. The right-
hand side vectors {F1} and {F2} are computed from previously obtainedψ and T
values in each iteration. The iterative procedure is carried out until a convergence
tolerance is reached between two successive iterations for all unknowns.

4. Results and discussion

The steady natural convection flow in an enclosure filledwith awater–(Al2O3)
nanofluid under the influence of a magnetic field is analysed by two powerful
numerical techniques, DRBEM and FEM. The obtained numerical results are
presented including a comparison of the two methods. Numerical tests are
carried out for several values of Ra, Ha, γ and φ. Grid dependency is tested and
the results are shown in Figure 2. It is observed that inDRBEMN = 200 constant
boundary elements and in FEM Me = 1152 quadratic triangular elements are
enough to satisfy the grid independence. Thus, these numbers of elements are
used in obtaining the results presented in this section. The convergence tolerance
for the iterative procedures for each method is set to be 10−5.

The comparison of the DRBEM and FEM solutions to the system (7)–(9)
under the effect of a horizontally applied magnetic field (γ = 0) is displayed in
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Figure 2. Grid dependency for Ha = 60, Ra = 105, φ = 0.03 when γ = 0: (a) DRBEM, (b) FEM.

Figure 3 for the case whenHa = 60, Ra = 105, φ = 0.03. These results show the
agreement of the solutions obtained by both FEM and DRBEM methods which
are also in well agreement with the solutions given in the work of Ghasemi et al.
(2011). DRBEM and FEM have different characteristics as being boundary and
domain discretization methods, respectively. DRBEM requires considerably less
boundary elements compared to the number of domain elements (triangles) in
FEM.

The effect of Rayleigh number on the streamlines, the equivorticity lines and
the isotherms atHa = 60, φ = 0.03 in the case of horizontally applied magnetic
field (γ = 0) by DRBEM is displayed in Figure 4. It is well observed that for
small values of Rayleigh number (Ra = 103, 104), the streamlines show similar
profiles; however, an increase in their magnitudes occurs as Ra increases. The
core vortex of the streamlines tends to become diagonal at the highest Rayleigh
number (Ra = 105, see Figure 3(a)). On the other hand, an increase in Ra to
105 leads the flow to become convection dominated. Thus, the isotherms change
their profile from vertical to almost diagonal (see Figure 3(a)).

In Figure 5, the DRBEM solutions are shown at Ra = 103, φ = 0.03, γ = 0
for three values of Hartmann number (Ha = 100, 200, 300). The values of
both stream function and vorticity decrease gradually in magnitude with an
increase in Hartmann number since the externally applied magnetic field has a
retardation effect on the flow when its intensity gets stronger. Further, following
the increase in Ha to 300, the core vortex in streamlines extends vertically and
this results in the boundary layer formation along the horizontal walls of the
cavity. This reduction in velocity causes a decrease in convective heat transfer.
Thus, conduction heat transfer becomes the dominant mechanism in the heat
transfer. The isotherms are almost vertical for all magnetic numbers due to the
dominance in conduction for Ra = 103.

The variation in stream function, vorticity and temperature along the vertical
centreline x = 0.5, 0 ≤ y ≤ 1 at different solid volume fractions (φ =
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Figure 4. Streamlines, vorticity contours and isotherms by DRBEM for Ha = 60, φ = 0.03, γ = 0:
(a) Ra = 103, (b) Ra = 104.

0, 0.03, 0.08, 0.15, 0.2) is displayed in Figure 6(a) for Ha = 10 and Figure 6(b)
for Ha = 60 when Ra = 105, γ = 0. The results are obtained using DRBEM.
It is observed that the Hartmann number has a crucial effect on the nanofluid
flow at various values of the solid volume fraction. As the solid volume fraction
increases, the stream function and vorticity values increase in magnitude for
small values of Hartmann number as Ha = 10. However, the stream function
values decrease inmagnitudewith an increase inφ for a higher value ofHartmann
number, namely Ha = 60, which indicates a reduction in the fluid flow rate
along the vertical centreline of the cavity, and a decrease in the strength of the
convective circulations. On the other hand, there is no significant effect of φ on
the vorticity variation when Ha = 60. Increasing φ has also no effect on the
values of temperature for small Ha = 10, whereas the temperature increases in
the lower part of the cavity (0 < y < 0.5) and it decreases in the upper part
(0.5 < y < 1) when Ha = 60. The calculations are also carried out for the values
ofHartmann number (10 < Ha < 60); and it is observed thatHa ≈ 25 is a critical
value at Ra = 105. That is, for higher values of Hartmann number (Ha ≥ 25),
an increase in φ results in a reduction in magnitude of stream function, while it
increases for Ha < 25.

It is well-known that one has to use finer mesh when Ra increases. DRBEM
matrices are full matrices and do not show a special form, although their sizes
are small due to the boundary-only discretization. Thus, they present difficulties
for large Rayleigh numbers because of the resulting rather large-sized systems.
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Figure 6. The variation of stream function (left), vorticity (middle) and temperature (right)
along the vertical centreline x = 0.5, 0 ≤ y ≤ 1 at different solid volume fractions
(φ = 0, 0.03, 0.08, 0.15, 0.2) for (a) Ha = 10, (b) Ha = 60 when Ra = 105, γ = 0.

However, FEMmatrices are sparse while their sizes are large. Thus, for Rayleigh
numbers (Ra > 105), the computations are carried out using FEM. In Figure 7,
the FEM solutions are illustrated for Ha = 100, φ = 0.03, γ = 0, and (a)
Ra = 104, (b) Ra = 106. When Rayleigh number is increased, the strength of
the buoyancy-driven circulation increases and undergoes an inversion which
is an indication of convection dominance in the flow. The convective transfer
increases. As a consequence, the isotherms tend to have changed profiles from
vertical to horizontal. These results are in good agreementwith the ones obtained
in Ghasemi et al. (2011).

The effect of increasing Hartmann number is investigated also for a high
Rayleigh number,Ra = 107 using FEM, and the results are illustrated in Figure 8.
It is observed that the horizontal profiles of the streamlines and isotherms are
slightly distorted into a diagonal form. The magnitudes of both the streamlines
and the vorticity contours are decreased showing the flattening tendency ofMHD
flow. The convection domination effect on the flow due to the high Rayleigh
number is slightly overwhelmed by an increase in the values of Hartmann
number from 150 to 300. It is expected to be more pronounced for higher values
of Ha.
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Figure 8. Streamlines, vorticity contours and isotherms by FEM for Ra = 107, φ = 0.03, γ = 0:
(a) Ha = 150, (b) Ha = 300.

The streamlines, equivorticity lines and the isotherms are drawn in
Figures 9–11 for the Rayleigh numbers Ra = 103, 104, 105, respectively, to
see the effect of the inclination angle on the flow and the heat transfer, for both
the numerical techniques (a) DRBEM and (b) FEM. The results are obtained at
Ha = 60, φ = 0.03 when γ = π

4
and

π

3
. The core vortex of the streamlines,

which is almost vertical in the centre of the cavity when γ = 0 (see Figure 3(a)),
extends in the direction of the applied magnetic field. However, the isotherms
show the same behaviour, irrespective of the inclination angle γ . Moreover,
these figures indicate that the DRBEM and FEM solutions are also in very good
agreement for all Ra, and the angles γ = π

4
and γ = π

3
as for the previous cases

(when γ = 0).
The effect of the magnetic field direction is displayed in Figure 12 for incli-

nation angles γ = π

4
,
π

3
and

π

2
when φ = 0.03, Ra = 107, Ha = 300 using

FEM.When Figure 12 is compared with Figure 8(b) drawn at the same values of
Ra, Ha and φ with horizontally applied magnetic field (γ = 0), it is evident that
the direction of the external magnetic field has a considerable effect on the flow.
The streamlines and vorticity contours extend along themagnetic field direction.
The central vortex in streamlines elongates in the magnetic field direction, and
it splits into two symmetric vortices in the same direction for the values γ = π

3
and γ = π

2
. The direction of the magnetic field has a similar effect on the
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Figure 9. Streamlines, vorticity contours and isotherms for Ha = 60, Ra = 103, φ = 0.03 at
γ = π

4
,
π

3
: (a) DRBEM, (b) FEM.

vorticity, and the formation of boundary layers is more pronounced along the
magnetic field direction. Due to the strong convection for high value of Rayleigh
number (Ra = 107), the magnetic field direction has an insignificant influence
on the temperature profile when γ = π

4
and γ = π

3
(see Figures 8(b) and

12(a)–(b)). Magnetic field applied in the vertical direction (γ = π

2
) is slightly

more effective in forming boundary layers in streamlines and vorticity contours
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Figure 10. Streamlines, vorticity contours and isotherms for Ha = 60, Ra = 104, φ = 0.03 at
γ = π

4
,
π

3
: (a) DRBEM, (b) FEM.
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Figure 11. Streamlines, vorticity contours and isotherms for Ha = 60, Ra = 105, φ = 0.03 at
γ = π

4
,
π

3
: (a) DRBEM, (b) FEM.
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Figure 12. Streamlines, vorticity contours and isotherms by FEM for Ra = 107, Ha = 300,
φ = 0.03: (a) γ = π

4
, (b) γ = π

3
, (c) γ = π

2
.
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along the vertical walls. This effect is also observed on heat transfer as isotherms
are shifted through the diagonal of the cavity.

5. Conclusion

Thenatural convectionflow in an enclosure filledwith awater/aluminananofluid
is solved under the effect of an inclined magnetic field using two numerical
techniques, namely: FEM and DRBEM, with different meshing types. Both FEM
and DRBEM are suitable approaches for simulating MHD natural convection
heat transfer of nanofluids in enclosures. For moderate values of Ra and Ha,
they give the same behaviour of the flow and temperature. The FEM is more
powerful to solve the problem for high values of Ra and Ha; however, the
DRBEM computational cost is considerably less. The effects of the physical
problem parameters on the flow behaviour and the temperature distribution
are investigated. It is observed that an increase in Hartmann number results
in a decrease in the magnitude of stream function and vorticity, whereas they
increase as Rayleigh number increases. Thus, the magnetic field has a negative
effect on buoyancy force and decreases the flow motion. Furthermore, the flow
becomes convection dominated for high values of Rawhich leads to a horizontal
profile for isotherms. On the other hand, an increase inHa has an opposite effect
on the profiles of isotherms, that is the isotherms become vertical following the
reduction in the effect of convection. The effect of solid volume fraction on the
fluid flow depends on the values of Ra and Ha, e.g. at Ra = 105, the magnitude
of the stream function increases for Ha < 25, but decreases for Ha ≥ 25 with
an increase in the solid volume fraction. The results obtained using DRBEM and
FEM are in good agreement with each other for all inclination angles tested, and
also with the results given in the literature (Ghasemi et al., 2011) when γ = 0.
The flow pattern is considerably affected by the variation in the magnetic field
direction.Moreover, as the inclination of the externalmagnetic field is increasing
from 0 to π/2, the heat transfer is finally confined between the left lower and
right upper corners of the cavity.
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