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ABSTRACT
The boundary element method is used for studying frictionless
indentation response of piezoelectric (PE) films under spherical
indenter (i.e. sphere) and circular cylindrical indenter (i.e.
punch). An augmented Lagrangian formulation is employed
to solve PE films of finite thickness under contact conditions.
The methodology is validated by comparison with theoretical
solutions presented in the literature for the two limiting
cases: infinitely thick and infinitely thin PE films closed-form
solutions. Furthermore, the formulation is applied to compute
the indentation response of those cases in between.
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Introduction

Piezoelectric (PE) materials are widely used in the development of high tech-
nological applications such as actuators and sensors for engineering control
equipment or smart structures, because of the coupling effects between mechan-
ical and electric fields. General mathematical models for these electro-elastic
materials and systems can be found in the following monographs: Cady (1946),
Ikeda (1996), Ding and Chen (2001) and Yang and Yang (2005).

One of the most common shapes for sensor or actuators applications is
the film form, as it can be observed from Mason (1950), Pohanka and Smith
(1988), Uchino (1997) and Muralt (2008). The film is bonded to a substrate
and its thickness is ranging from a few nanometres to several millimetres. To
have a better understanding of the indentation behaviour of these systems and
to measure the mechanical and electric properties of these materials, many
researchers have been analysing these systemsunder different contact conditions.

Indentation techniques on bulk and film forms have been studied experimen-
tally by: Saigal, Giannakopoulos, Pettermann and Suresh (1999), Ramamurty,
Sridhar, Giannakopoulos and Suresh (1999) and Kamble, Kubair and Rama-
murty (2009).

Theoretical investigations on bulk forms have been carried out by Matysiak
(1985), Fan, Sze and Yang (1996), Chen andDing (1996), Chen, Shioya andDing
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(1999), Giannakopoulos and Suresh (1999), Ding, Hou and Guo (2000), Wang,
Fang and Chen (2002), Ramirez and Heyliger (2003), Ramirez (2006), Kalinin,
Karapetian and Kachanov (2004), Gao and Noda (2004), Wang and Han (2006),
Ke, Yang, Kitipornchai and Wang (2008) and Yang (2008).

More recently, theoretical investigations on film forms have been carried out
by Wang, Chen and Lu (2008, 2011, 2012), who considered PE films under
frictionless normal indentation conditions. Wang et al. (2008) studied the ax-
isymmetric indentation problemof a PE filmperfectly bonded to a rigid substrate
and later Wang et al. (2011, 2012) studied the elastic substrate effect .

Numerical schemes based on the finite element method (FEM) have been
also proposed to simulate electro-elastic contact under frictionless conditions
by Han, Sofonea and Kazmi (2007), Barboteu, Fernández and Ouafik (2008)
or Hüeber, Matei and Wohlmuth (2013). Liu and Fuqian (2012b) applied the
FEM to study spherical indentation response of PE half-spaces and later Liu and
Fuqian (2012a) applied the FEM to the study of the effect of electric boundary
conditions on the spherical indentation of transversely isotropic PE films. The
advantage of numerical methods is that the indentation studies are not restricted
to axisymmetric cases or specific geometries. General geometries, material ori-
entation or even friction can be considered and incorporated into the model (see
Liu and Yang, 2013).

In this context, this work proposes the boundary element method (BEM) as
an alternative to the FEM to tackle these problems. The BEM has revealed to be a
very suitable and accurate numerical methodology to study contact indentation
problems of anisotropicmaterials see (Blazquez et al. 2006 for 2D andRodríguez-
Tembleque et al. 2011 for 3D). In general, the BEM considers only the boundary
degrees of freedom. So, for electro-elastic materials, as the number of degrees
of freedom per node is increased due to fact that the electric field is taken into
account, we obtain a significant reduction in the number of degrees of freedom
when compared with the finite element formulations (specially in 3D problems).

This paper applies the boundary element formulation previously developed
by Rodríguez-Tembleque et al. (2015) to study frictionless indentation response
of PE bodies in the presence of electric fields (i.e. PE films bonded to a rigid
substrate). The contact methodology presented in this work is based on an
augmented Lagrangian formulation similar to that of Alart and Curnier (1991)
and Christensen, Klarbring, Pang and Strömberg (1998), and it can be found
in the monographs by Kikuchi and Oden (1988), Laursen (2002) or Wriggers
(2002). The boundary elements technique is used to compute the electro-elastic
influence coefficients, whilst the projection contact operators acting over the aug-
mented Lagrangian guarantee the PE contact restrictions fulfilment. The present
methodology is validated by comparison with theoretical solutions presented
for infinitely thick and infinitely thin PE films by Wang et al. (2008), and then
applied to compute the indentation response of those cases in between.
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Piezoelectricity

Let � ⊂ R
3 be a 3D region occupied by a PE material with a piecewise smooth

boundary ∂�, and (xi) (i = 1, 2, 3) a Cartesian coordinate system. This work
considers small deformations, so the infinitesimal strain tensor γ and the electric
field E are obtained from derivatives of the displacements u and potential field ϕ

as

γij = (ui,j + uj,i)/2 in �,
Ei = −ϕ,i in �.

(1)

In the absence of body forces, themechanical stresses σ and the electric displace-
ments D are divergence-free, that is,

σij,j = 0 in �,
Di,i = 0 in �,

(2)

where repeated dummy indices indicate summation. In linear PE materials, the
elastic and electric fields are coupled through the constitutive law

σij = cijklγkl − elijEl in �,
Di = eiklγkl + εilEl in �,

(3)

where c and ε denote the elastic stiffness tensor and the dielectric permittivity
tensor, respectively, which are positive definite, whilst tensor e governs the PE
coupling. These tensors satisfy the following symmetries: cijkl = cjikl = cijlk =
cklij, ekij = ekji, εkl = εlk.

Boundary conditions of the problem

Two partitions of the boundary ∂� are considered to define the mechanical and
the electrical boundary conditions. The first one divides ∂� into three disjoint
parts: ∂� = ∂�u ∪∂�t ∪∂�c , being ∂�u ∩∂�t ∩∂�c = ∅. Here, ∂�u denotes
the boundary on which displacements ũi are prescribed, ∂�t denotes the part
of the boundary where tractions t̃i = σijνj are imposed and ∂�c represents
the potential contact surface under rigid indentation, which have outward unit
normal vector νci. The second partition is: ∂� = ∂�ϕ ∪ ∂�q ∪ ∂�c , where the
electric potential ϕ̃ is prescribed on ∂�ϕ and the electric charge q̃ = Diνi is
assumed on ∂�q.

Boundary conditions

Mechanical and electrical boundary conditions areprescribedon ∂�. TheDirich-
let boundary conditions are

ui = ũi on ∂�u,
ϕ = ϕ̃ on ∂�ϕ ,

(4)
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and the Neumann boundary conditions are given by

σijνj = t̃i on ∂�t ,
Diνi = q̃ on ∂�q,

(5)

with νi being the outward unit normal to the boundary.
For a well-posed problem, either displacement or traction and electric poten-

tial or normal charge flux must be prescribed at each boundary point outside the
contact zone ∂�c .

Under small displacement assumption, a common unit normal vector νci can
be considered in ∂�c . So the nonlinear boundary conditions are:

σijνcj = pi on ∂�c ,
Diνci = −κ(ϕ − ϕo) on ∂�c ,

(6)

where pi is the contact traction, pν = p·νc is the normal contact pressure, κ is the
conductivity coefficient and ϕo denotes the electric potential of the foundation
or the indenter. Frictionless contact is assumed, i.e. pτ = p − pννc = 0.

Contact restrictions

The unilateral contact law involves Signorini’s contact conditions in ∂�c :

gν ≥ 0, pν ≤ 0, gν pν = 0, (7)

where gν = (go −uν), go being the initial gap between the bodies and uν = u · νc
(u is the relative displacement on ∂�c).

The normal contact constraints presented in (7) can be formulated as:

pν − PR−(p∗
ν) = 0, (8)

where PR−( • ) is the normal projection function (PR−( • ) =MIN(0, •)) and
p∗
ν = pν +rνgν is the augmented normal traction. The parameter rν is the normal
dimensional penalisation parameter (rν ∈ R

+).
The electrical conductivity coefficient in (6) can be defined as κ = κ(pν)what

allows to describe perfect electrical contact conditions similarly to the Signorini’s
contact conditions,

κ(pν) =
{
0 if pν = 0,
κ∗ if pν < 0,

(9)

κ∗ being the conductivity parameter similar to Hüeber et al. (2013) and
Rodríguez-Tembleque et al. (2015). So, when there is no contact (i.e. pν = 0)
on ∂�c , the normal component of the electric displacement field vanishes, and
when there is contact, electrical charges appear in the electrical contact condition
(6).
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Explicit boundary element formulation

In this section, the classical BEM formulation for elasticity (Brebbia and
Dominguez, 1992 and Aliabadi, 2002, among others) is extended to the coupled
PE problem following the work by Rodríguez-Tembleque et al. (2015).

In this methodology, the boundary ∂� is discretised into Ne elements of
surface ∂�e, so the PE boundary integral equation can be written as

cJK (x′)uJ(x′) +
Ne∑
e=1

{
−
∫

∂�e

TJK (x′, x)uJ(x)dS
}

=
Ne∑
e=1

{ ∫
∂�e

UJK (x′, x)tJ(x)dS
}

.

(10)

In equation (10), upper-case sub-indices range from 1 to 4, so that an extended
displacement vector uJ is defined as

uJ =
{
uj J � 3
ϕ J = 4,

(11)

and an the extended traction vector as

tJ =
{
tj J � 3
q J = 4.

(12)

Matrix cJK depends on the local geometry of the boundary ∂� at the collocation
point x′ and is equal to 1

2δJK for smooth boundaries (see Mantič, 1993 for non-
smooth cases), δJK being the Kronecker delta; and,UJK and TJK are the extended
displacement fundamental solution and the extended traction fundamental solu-
tion, respectively. That is, UJK represents the elastic displacement, in an infinite
PE solid, at the point x in the xJ -direction (J = 1− 3) due to a mechanical force
applied at the point x′ in xK -direction (K = 1 − 3) or due to a point electric
charge (K = 4) applied at the point x′; and the electric potential at point x (J = 4)
due to a mechanical force applied at the point x′ in xK -direction (K = 1 − 3) or
due to a point electric charge (K = 4) applied at the point x′. Analogously, TJK
is, in an infinite PE solid, the mechanical traction on a plane with outward unit
normal to the boundary at the point x in the xJ -direction (J = 1 − 3) due to a
mechanical force applied at the point x′ in xK -direction (K = 1 − 3) or due to a
point electric charge (K = 4) applied at the point x′; and the electric charge flux
on a planewith outward unit normal to the boundary at the point x (J = 4) due to
a mechanical force applied at the point x′ in xK -direction (K = 1−3) or due to a
point electric charge (K = 4) applied at the point x′. In this work, the scheme for
the evaluation of the extended fundamental solutions proposed by Buroni and
Sáez (2010) is implemented, which posses the remarkable characteristics that
it is exact, explicit and valid for mathematical degenerate and non-degenerate
materials in the Stroh formalism context. The strongly singular integral on the
left-hand side is evaluated in the Cauchy principal value sense, whereas the
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weakly singular integral on the right-hand side is evaluated as an improper
integral.

The physical variables uJ and tJ are approximated over each element ∂�e
using linear shape functions, as a function of the nodal values as

uJ =
4∑

i=1

Ni(ξ , η)uiJ , (13)

tJ =
4∑

i=1

Ni(ξ , η)tiJ , (14)

where uiJ and t
i
J are the nodal extended displacements and tractions, respectively.

After a collocation procedure at boundary nodes and using the approximation
(13) and (14), Equation (10) can be written in matricial form as

Hu = Gt, (15)

where vectors u and t contain the values of all nodal extended displacements
and tractions, respectively (i.e. u contains the nodal displacements and electric
potentials, and t contains the nodal tractions and electric charges). Boundary
conditions can be imposed rearranging the columns inH and G, and passing all
the unknowns to vector x on the left-hand side, resulting in the final system

Ax = F. (16)

Discrete PE contact formulation

The boundary element approximation for PE contact problems (16) can be
rearranged as:

[
Axe Auc Aϕc Apc Aqc

]
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xe
uc
ϕc
pc
qc

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= F, (17)

where xe collects the nodal external unknowns (i.e., the nodal unknowns which
are outside the contact zone), uc and ϕc collect the nodal contact displacements
and electric potentials, respectively, pc contains the normal nodal contact trac-
tions (i.e. pc = pν) and qc contains the nodal electric charges. MatricesAxe ,Auc ,
Aϕc , Apc and Aqc are constructed with the columns of matricesH and G.

Next, nodal electric charge on every contact node i can be expressed in terms
of the electric potential according to the electrical contact condition (6) and (9),
as:
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(a) (b)

(c) (d)

Figure 1. (a) Spherical indenter. (b) Flat circular indenter. Boundary elementmesh for a half-space
configuration (c) and a thin film configuration (d).

(qc)i = −κ((pc)i)((ϕc)i − (ϕo)i). (18)

So equation (17) can be written as

[
Axe Auc Ãϕc Apc

]
⎧⎪⎪⎨
⎪⎪⎩

xe
uc
ϕc
pc

⎫⎪⎪⎬
⎪⎪⎭

= F̃, (19)

where Ãϕc = Aϕc − κ(pc)Aqc , F̃ = F − κ(pc)Aqcϕo and κ(pc) is a diagonal
matrix, i.e.: κ(pc) =DIAG

(
κ((pc)1), · · · , κ((pc)i), · · · , κ((pc)Nc)

)
.

Finally, themechanical contact restriction (8) is defined on every contact node
i as:

(pc)i − PR−( (pc)i + rν(gc)i ) = 0, (20)

where pc contains the normal contact tractions of every contact node i and gc
contains the normal gap vector of every contact node i: (gc)i = (go)i − (uc)i.
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Table 1.Material properties of the PE ceramic BaTiO3.

Elastic coefficients (GPa)
c1111 150.00
c1122 66.00
c1133 66.00
c3333 146.00
c2323 44.00
Piezoelectric coefficients (C/m2)
e113 11.40
e333 17.50
e311 −4.350
Dielectric constants (10−9 F/m)
ε11 9.868
ε33 11.151

The quasi-static PE contact problem is thus defined by Equations (19)–(20)
and it can be solved using different solution schemes according to Alart and
Curnier (1991) and Christensen et al. (1998). In this work, the nonlinear system
(19-20) is solved using a well-known iterative method, namely Uzawa’s method.
This iterative scheme was presented by Kikuchi and Oden (1988) and Alart
and Curnier (1991) and later applied to contact of PE materials by Rodríguez-
Tembleque et al. (2015).

Numerical examples

This section studies the indentation response of a transversely isotropic PE block,
whose dimensions are 2L1 × 2L1 × t, under different contact conditions (see
Figure 1 (a) and (b) where vertical axis x3 coincides with νc). In the numerical
examples, two rigid indenters (i.e. a sphere of radius R = 100 × 10−3 m and
a flat circular punch of radius ao = 3.2 × 10−3 m) are subjected to a normal
indentation go. Thenormal indentation for the spherical indenter is go = 5×10−5

m and for the punch is go = 5 × 10−6 m. The PE block is assumed to be ideally
bonded at the base (x3 = −t). A transversely isotropic PE material (BaTiO3)
with the symmetry axis coinciding with x3-direction is considered in this case,
its properties being presented in Table 1. The domain is discretised by 1024 linear
quadrilateral boundary elements, using 16×16 elements on the Lo×Lo potential
contact zone (Lo = 5 × 10−3 m), as Figure 1(c) shows. In the case of PE film
configurations, a more local and refinedmesh on the thickness is considered (see
Figure 1(d)).

Insulating indenters

First, we consider insulating electrical boundary conditions for the indenters.
Normalised contact pressure distribution as a function of the ratio of the contact
radius a and the thickness of the film (a/t) are presented in Figure 2 for a
spherical indenter (Figure 2(a)) and a flat cylindrical punch (Figure 2(b)). Images
in Figure 2 present an excellent convergence to the limiting cases (i.e. infinitely
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(a) (b)

Figure 2. Normalised contact pressure distribution as a function of the ratio of the contact radius
a and the thickness of the film (a/t) for: (a) spherical indenter and (b) flat circular indenter.

(a) (b)

Figure 3. Normalised electric potential distribution as a function of the ratio of the contact radius
a and the thickness of the film (a/t) for: (a) spherical indenter and (b) flat circular indenter.

thick or half-space (HS) solution and infinitely thin films (TF) solution) when
the thickness of the film is augmented or reduced, respectively. Same effects are
observed in Figure 3 for the electric potential distribution on each case.

Indentation responses of a finitely thick PE film (i.e. indentation force re-
sponses and electric potential) are shown in Figure 4 for the spherical indenter.
It may be seen that the transition occurs at around a/t 
 1. HS solutions are
good approximation of the indentation responses of a finitely thick PE film
when a/t < 0.1, whilst solutions for an infinitely thin film are more appropriate
when a/t 
 10. These conclusions were presented in Wang et al. (2008) for an
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(a) (b)

Figure 4. Spherical indentation response as a function of the ratio of the contact radius a and the
thickness of the film (a/t): (a) Normalised indentation force and (b) Normalisedmaximum electric
potential.

(a) (b)

Figure 5. Circular cylindrical punch indentation response as a function of the ratio of the contact
radius a and the thickness of the film (a/t): (a) Normalised indentation force and (b) Normalised
maximum electric potential.

axisymmetric frictionless insulating indentation of finitely thick PE films. Same
results are observed in Figure 5 for the punch.

Conducting indenters

Finally, the influence of the non-isolated indentation conditions are studied
for both indenters. The influence of the conductivity parameter κ∗ (9) in the
indentation force and electric potential are presented in Figures 6 and 7, for a
sphere and a punch, respectively. In both cases, a prescribed indenter electric
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(a) (b)

Figure 6. Spherical indentation response as a function of the ratio of the contact radius a and the
thickness of the film (a/t): (a) Normalised indentation force and (b) Normalisedmaximum electric
potential.

(a) (b)

Figure 7. Circular cylindrical punch indentation response as a function of the ratio of the contact
radius a and the thickness of the film (a/t): (a) Normalised indentation force and (b) Normalised
maximum electric potential.

potential is ϕo = 0 and the results are normalised relative to the insulating HS
indentation.

We observe in Figures 6(a) and 7(a) that indentation forces are not highly
affected by the conductivity κ∗ in both PE HS and TF configurations. Neverthe-
less, the values of the electric potential at the contact region are very affected (see
Figures 6(b) and 7(b)). They tend to the indenter prescribed electric potential
ϕo when the values of κ∗ are higher, in finitely thick PE films configurations.
In fact, when κ∗ increases, the influence of a/t is neglected and PE HS and TF
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configurations present the same values for the electric potential at the contact
zone.

Summary

Athree-dimensional boundary element formulationhas been applied to analyse a
transversely isotropic PEmaterial subjected to a normal frictionless indentation.
Two kinds of indenters have been considered (i.e. a spherical indenter and a flat
cylindrical punch). In both cases, insulating and conductingboundary conditions
are studied. Results present an excellent agreement with Wang et al. (2008) for
the two limiting cases: infinitely thick and infinitely thin PE films closed-form
solutions. Results reveal that the values of the electric potential at the contact
region are very affected by ratio a/t under insulating indentation conditions.
For a conducting indenter, electric potential tends to the indenter prescribed
electric potential when the values of the conductivity (κ∗) are higher, but, when
κ∗ increases, the influence of a/t is neglected and PE HS and TF configurations
present the same values for the electric potential.
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