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ABSTRACT
In this paper, the effect of pre-existing damage on brittle 
micro-cracking of polycrystalline materials is explored. The 
behaviour of single and multiple cracks randomly distributed 
within a grain scale polycrystalline aggregate is investigated 
using a recently developed grain boundary 3D computational 
framework. Each grain is modelled as a single crystal 
anisotropic domain. Opening, sliding and/or contact at grain 
boundaries are modelled using nonlinear cohesive-frictional 
laws. The polycrystalline micro-morphologies are generated 
using Voronoi tessellation algorithms in combination with a 
regularisation scheme to avoid the presence of unnecessary 
small geometrical entities (edges and faces) usually 
responsible for excessively refined meshes. Additionally, 
a semi-discontinuous grain boundary mesh within the 
Boundary Element framework is employed to reduce the 
computational time and memory storage, while retaining 
analysis accuracy. To enhance the analysis convergence, a 
Newton–Raphson scheme is used. The performed numerical 
tests produce physically sound micro-cracking evolutions, 
confirming the potential of the technique for multiscale 
analysis of polycrystalline material damage and failure.

Introduction

Damage nucleation and evolution in brittle polycrystalline materials attract rel-
evant engineering interest, as these materials are used in a wide range of appli-
cations, from microelectronics devices to advanced ceramics or armour systems. 
Understanding their response to applied loads and predicting the crack pattern 
within their internal microstructure is then crucial in the design of components 
with specific requirements such as strength, stiffness and toughness.

Polycrystalline materials appear, at the micrometre scale, as an aggregate of 
crystals with random size and shape, crystallographic orientation and mechanical, 
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physical and chemical properties. Thin layers of atoms, the grain boundaries, 
which have their own properties and act as microstructural discontinuities, sep-
arate the crystals. Additionally, flaws such as cracks, voids or precipitates are 
usually found at the grain boundaries, which then become stress concentration 
and cracks initiation sites. The ability of including microstructural defect would 
therefore be desirable to study the behaviour of polycrystalline brittle materials.

At the macroscale, in order to account for a general degradation of the material 
properties, the usual approach is given by the continuum damage mechanics. Such 
an approach is based on the assumption that cracks, voids and, in general, material 
flaws, which coalesce and evolve during the loading process, are responsible for 
the reduction of the elastic moduli of the material. Despite their simplicity, these 
models are not able to account for the internal microstructure of the considered 
material, which is in general heterogeneous and has a strong influence on the 
crack nucleation and evolution.

At the microscale, the failure of brittle polycrystalline materials has been mainly 
performed using the finite element method (FEM), which remains the most used 
approach for polycrystalline problems. In a FEM framework, the nucleation, evo-
lution and propagation of cracks within the microstructures are often modelled 
using a cohesive zone approach, based on specific traction-separation laws. In 
the literature, the most popular cohesive laws are the intrinsic laws proposed by 
Xu and Needleman (1995) and the extrinsic laws by Camacho and Ortiz (1996).

Other models for the study of polycrystalline morphologies can be found in the 
literature. Sukumar, Srolovitz, Baker, and Prévost (2003) employed the extended 
FEM to study the transition from the intergranular to transgranular crack growth. 
Raje, Slack and Sadeghi (2009) presented a discrete model in which the crystalline 
domains are considered as rigid bodies linked with each other through compliant 
joints. The increasing affordability of high performance computing tools has also 
paved the way for molecular dynamics simulations of polycrystalline microstruc-
tures (Farkas, 2013; Yamakov, Saether, Phillips, & Glaessgen, 2006). However, fur-
ther developments are needed to bridge the nanoscopic to the macroscopic scale.

As an alternative to the above-mentioned approaches, the Boundary Element 
Method (BEM) has found application in a wide range of problems (Aliabadi, 2002; 
Wrobel, 2002). One of the main advantages of the BEM is that it permits to dis-
cretise the problem of interest only in terms of boundary variables, thus avoiding 
the internal volume mesh and therefore reducing the size of the problem itself. In 
the polycrystalline materials framework, the BEM has been used in combination 
with the multi-domain technique, in which the primary variables become the 
intergranular displacements and tractions, facilitating the implementation of the 
cohesive laws at the grains boundaries. The BEM has been successfully employed 
for the homogenisation and damage propagation in brittle polycrystalline aggre-
gates for two- (Sfantos & Aliabadi, 2007a) and three-dimensional (Benedetti & 
Aliabadi, 2013a, 2013b; Gulizzi, Milazzo, & Benedetti, 2015) microstructures. 
It has been also used to model the degradation of polycrystalline materials in a 
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two-scale formulation (Benedetti & Aliabadi, 2015; Sfantos & Aliabadi, 2007b). In 
this work, a boundary element approach (Gulizzi et al., 2015) is used to numeri-
cally investigate the effects of initial microstructural imperfections on the aggre-
gate behaviour under progressive quasi-static loading.

The paper is organised as follows. First, the generation of the artificial mor-
phologies in combination with the regularisation scheme proposed by Quey, 
Dawson, and Barbe (2011) is described. Second, the enhanced grain boundary 
formulation developed by Gulizzi et al. (2015) is briefly recalled. Third, numerical 
tests involving polycrystalline microstructures with initial damage are presented 
to shows the capabilities of the model to include pre-existing damage into the 
microstructural simulations.

Microstructure generation and grain boundary formulation

In this study, the micro-morphologies are generated using the Hardcore-Laguerre 
Voronoi tessellation scheme (Fan, Wu, Zhao, & Lu, 2004), which has been widely 
recognised to reproduce the statistical features of real polycrystalline microstruc-
tures in terms of grain size and number of grain’s faces. However, typically, the 
Voronoi scheme tends to produce a large number of small geometrical entities 
that, although mathematically exact, do not provide any useful information in 
the simulations of polycrystalline microstructures, thus resulting in a source of 
unnecessary mesh refinements. To avoid such unwanted issue, the pathological 
geometrical entities having a length smaller than a predetermined threshold value 
are removed using the regularisation scheme proposed by Quey et al. (2011). 
This technique, combined with the enhanced meshing scheme discussed next, 
ensures a drastic reduction in the number of degrees of freedom for the overall 
polycrystalline domain, thus leading to a smaller system of equations in terms of 
memory storage and solution time.

The polycrystalline domain is modelled using the enhanced multi-domain 
scheme developed by Gulizzi et al. (2015). The grain boundary formulation is 
briefly recalled here. The generic grain g is considered as a three-dimensional 
single crystal with general elastic anisotropic behaviour. The displacement and 
traction fields at the boundaries of the generic grain g are linked through the 
following boundary integral equations

 

where ui and ti are the components of the displacement and traction fields at 
the grain boundary Sg; P is the generic collocation point where Equation (1) is 
evaluated; Q is the integration point running over the boundary Sg. Uij(P,Q) and 
Tij(P,Q) are the fundamental solutions for a generic 3D anisotropic elastic solid 

(1)
cij(P) uj(P) + ∫

Sg

Tij(P,Q) uj(Q)dS(Q) = ∫
Sg

Uij(P,Q) tj(Q)dS(Q), i, j = 1, 2, 3
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with source point P and field point Q; cij(P) are the free terms arising from the 
boundary limiting procedure (Aliabadi, 2002).

In order to discretise the previous integral representation, the grain boundaries 
are subdivided into a mesh containing triangular and/or quadrangular elements, 
suitably chosen to minimise the number of degrees of freedom of the grain. Over 
each mesh element the displacement and the traction fields are approximated 
using suitable shape functions, which allow to write Equation (1) in the discre-
tised form as follows

 

where Xg contains unknown components of displacements and tractions, whereas 
Yg contains the prescribed values (boundary conditions). Accordingly, Ag and Cg 
contain combinations of the columns of the matrices stemming from the integra-
tion of Equation (1) (Aliabadi, 2002).

Upon enforcing the intergranular conditions, which will be discussed in detail 
next, the following system of equations governing the entire polycrystalline aggre-
gate is obtained

 

where Ng is the number of grains of the aggregate. The interface equations are 
introduced as additional equations in the system for the overall aggregate. 
Although they are written as linear relations of the intergranular displacements 
and tractions, the coefficients of such relations are in general functions of the 
state and the load history of the grains’ interfaces. Finally, on the right-hand side 
of Equation (3), λ represents the load factor that serves to scale the prescribed 
boundary conditions.

Boundary conditions

The boundary conditions are applied over the external surfaces of the polycrys-
talline aggregate and can be given in terms of prescribed displacements, applied 
stress or in terms of periodic relations between opposite faces of the considered 
domain (Gulizzi et al., 2015).
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Interface conditions

The interface equations relate the displacement and the tractions fields at the 
interface between two adjacent grains. Calling Iab the interface shared by the 
grains a and b, the interface equations are written as equilibrium and compati-
bility equations, which in general are nonlinear expressions of the displacements 
and tractions at the grain interface. Those equations can be written ∀x∈Iab in the 
general form
 

where Φab
i  represents the equilibrium condition, whereas, based on the inter-

face state, Ψab
i  represents either continuity, cohesive or frictional contact laws 

(Benedetti & Aliabadi, 2013b). In Equation (4) the symbol ˜ denotes quantities 
calculated with respect to the grain’s face local reference system.

It is worth noting that in the present model, it is possible to include general 
traction-separation laws, which may comprise general anisotropic and nonlinear 
behaviours. Furthermore, the BEM formulation facilitates the use of the cohe-
sive zone approach, as the primary variables of the model are the intergranular 
tractions and displacement jumps, which enter directly the intergranular cohe-
sive laws. However, two main challenges remain open: (a) the developed grain 
boundary model may suffer from numerical instabilities due to the softening 
behaviour of the traction-separation laws; specific algorithms capable of following 
the equilibrium path along the softening branch, such as the arc-length proce-
dure (Crisfield, 1981), may be coupled to the model to enhance the numerical 
solution; (b) there is still the need to suitably identify the parameters entering the 
cohesive laws, which are usually determined from macroscopic evidences. Grains 
mis-orientation, inclusions and precipitates, and general non-homogeneities at 
the grain boundaries are likely to influence the micro-cracking behaviour in terms 
of crack paths and overall toughness. Methods, such as molecular mechanics and 
dynamics, able to predict the behaviour of the grain interfaces at the molecular 
scale, may be used to build more realistic cohesive laws (Zhou, Moody, Jones, 
Zimmerman, & Reedy, 2009).

Mesh requisite

The mesh size requirements for problems involving cohesive laws have been inves-
tigated by Espinosa and Zavattieri (2003b) and Tomar, Zhai, and Zhou (2004) 
in the FEM framework, and by Sfantos and Aliabadi (2007a) and Benedetti and 
Aliabadi (2013a) in the BEM framework. They report two factors that must be 
considered to ensure the mesh independency of the results: (a) the macroscopic 

(4)
Ψab
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b
j (x), t̃

a
j (x), t̃

b
j (x)

]
= 0

Φab
i

[
t̃aj (x), t̃

b
j (x)

]
= 0

i, j = 1, 2, 3



European Journal of Computational Mechanics    43

stiffness reduction due to a finite initial stiffness of the cohesive law and (b) the 
characteristic mesh element length, which must be small enough to capture the 
stress distribution within the cohesive zone. In this work, using perfect bonding 
equations, i.e. δu = 0, when the interfacial traction is below a certain threshold 
value, corresponds to an infinite initial stiffness, which fulfils the requirement (a). 
With respect to the condition (b), an estimate of the length of the cohesive zone 
Lcz can be given by the following expression (Rice, 1968)
 

(5)Lcz ≈
�

2

(
KIC

Tmax

)2

Figure 1. (a) 200-, 100-, and 50-grain morphologies with ASTM grain size G = 12 reported to scale. 
(b) Boundary conditions for the considered morphologies. ϵ is the nominal strain enforced over 
the top surface as the ratio Δu3/W where W is the side of the cubic aggregates. Over the bottom 
and the lateral surfaces, the normal displacement is enforced to be zero. n represents the unit 
normal of the face.
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where KIC is the mode I fracture toughness of the material and Tmax is the threshold 
stress that triggers the cohesive behaviour of the interface. In this work, to fulfil 
the requirement (b), the mesh is generated using a uniform mesh size l chosen 
to ensure the condition l < Lcz. Using this criterion, Gulizzi et al. (2015) showed 
that the micro-cracking results obtained using the continuous/semi-discontinu-
ous mesh, combining triangular and quadrangular elements, were in accordance 
with those obtained by Benedetti and Aliabadi (2013a) using linear discontinuous 
triangular elements.

System solutions

The system of Equation (3) is solved following the incremental/iterative proce-
dure described by Benedetti and Aliabadi (2013b), where at each load step, the 

Figure 2. Micro-crack patterns for 50-, 100- and 200-grain morphologies with an embedded crack 
having a crack area equal to 5% of the base of the polycrystalline domains. (For interpreting the 
colours, the reader is referred to the web version of the article.)
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solution is sought using a Newton–Raphson algorithm to improve the conver-
gence. The system is by construction, highly sparse and the solver PARDISO 
(Kuzmin, Luisier, & Schenk, 2013; Schenk, Bollhöfer, & Römer, 2008; Schenk, 
Wächter, & Hagemann, 2007) is used to find the solution. A desirable acceler-
ation of the solution process could be probably obtained employing specialised 
solvers, based for example on the use of iterative solvers and hierarchical matrices 
(Benedetti, Aliabadi, & Davì, 2008; Benedetti, Milazzo, & Aliabadi, 2009; Milazzo, 
Benedetti, & Aliabadi, 2012).

Results

In this section, some case studies are presented to show the effects of initial damage 
on the micro-cracking response of polycrystalline aggregates. In particular, the 
effects of a single crack and randomly distributed cracks within the aggregates 
are discussed.

Single crack behaviour

The case of a pre-existing single crack embedded within a polycrystalline brittle 
material is presented first. Three morphologies with 50, 100 and 200 grains with 
ASTM grain size G = 12 have been analysed, and are reported in Figure 1(a). The 

Figure 3.  Macroscopic stress–strain curve for the 200-grain morphology subject to tensile 
load. The figure shows the macroscopic stress vs. the applied nominal strain for a initially intact 
morphology (blue dots) and a morphology in presence of a pre-existing crack (red squares) 
with crack area Ac equal to 5% of the base of the aggregate. W indicates the side of the cubic 
polycrystalline domain. (For interpreting the colours, the reader is referred to the web version of 
the article.)
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morphologies are subjected to a tensile load as shown in Figure 1(b). A nominal 
strain ϵ is prescribed in terms of the applied displacement u3 over the top surface. 
Over the bottom and lateral surfaces the normal displacement is enforced to be 
zero.

In order to study the behaviour of polycrystalline aggregates in presence 
of an embedded crack, an interface within the morphologies has been given 
damage equal to 1, meaning that during tensile loading the interface is not 
able to carry any load, whereas in compression only sliding governed by 

Figure 4. (a) Probability density function (PDF) and (b) cumulative distribution function (CDF) of 
the crack size distribution for values of the Weibull modulus m = 4 and m = 8.
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the frictional laws (Benedetti & Aliabadi, 2013a) is allowed. The area of the 
cracked interfaces has been chosen to be 5% of the base of the polycrystalline 
domains. Figure 2 shows four snapshots of the load history for each of the 
three morphologies. In the figure, the first, the second and the third column 
correspond to the 50, 100 and 200-grain morphology, respectively. The first 
row shows the initial location of the cracks within the aggregates. The damage 
propagation is then shown per line for different values of the applied nominal 
strain. It can be noted that, as expected, the presence of the embedded crack 
drives the initiation of damage, which then propagates towards the bounda-
ries of the polycrystalline domains. However, considering the 50-grain aggre-
gate, it can be seen that the external boundaries have a stronger influence on 
the final crack pattern with respect to the morphologies with 100 and 200 
grains. Finally, Figure 3 reports the macroscopic stress–strain curve for the 
200-grain morphology showing that, although driving the crack propagation 
and final pattern, the presence of such a crack does not heavily influence the 
macroscopic response.

Randomly distributed cracks

It is experimentally evident that failure of brittle materials is strongly influenced by 
the presence of randomly distributed defects (cracks, pores, intergranular phases) 
within their internal microstructure (Espinosa & Zavattieri, 2003a). From a statis-
tical point of view, the strength distribution curves for brittle materials are math-
ematically well represented by a Weibull distribution. Poloniecki and Wilshaw 
(1971) showed that the probability density of the crack size distribution in glass 
could be expressed using the following expression
 

(6)P(a) =
cn−1

(n − 2)!
a−nexp

(
−
c

a

)

Figure 5.  Intergranular crack distribution (Weibull modulus m = 8) for a 50-grain morphology 
(ASTM grain size G = 12). Initial cracked grain boundary area equal to (a) 1%, (b) 2% and (c) 5% 
of the total grain boundary area. The red parts correspond to the cracked interfaces, whereas the 
blue parts to the intact interfaces. Those interfaces that are not coloured are entirely intact. (For 
interpreting the colours, the reader is referred to the web version of the article.)
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where a is the half-length of the cracks, c is a scaling parameter and n is the rate 
at which the distribution tends to zero. Such a distribution is related to a Weibull 
distribution where the Weibull modulus m is obtained as m = 2n−2, as shown by 
Jayatilaka and Trustrum (1977). For brittle ceramics, the Weibull modulus ranges 
from 3 to 10 (Espinosa & Zavattieri, 2003a).

In this study, pre-existing cracks are inserted within the polycrystalline micro-
morphology in terms of the ratio between the cracked grain boundary area, Sc, 

Figure 6. Macroscopic stress–strain curve for the 50-grain morphology subject to tensile load. The 
figure shows the macroscopic stress vs. the applied nominal strain for a initially intact morphology 
(dotted line) and a morphology in presence of randomly distributed cracks with crack area Sc 
equal to 1% (blue dots), 2% (green diamonds) and 5% (red squares) of the total grain boundary 
area Si. (For interpreting the colours, the reader is referred to the web version of the article.)

Figure 7. Intergranular crack distribution (Weibull modulus m = 8) for a 100-grain morphology 
(ASTM grain size G = 12). Initial cracked grain boundary area equal to (a) 1%, (b) 2% and (c) 5% 
of the total grain boundary area. The red parts correspond to the cracked interfaces, whereas the 
blue parts to the intact interfaces. Those interfaces that are not coloured are entirely intact. (For 
interpreting the colours, the reader is referred to the web version of the article.)
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and the total grain boundary area, Si. The area of the cracked grain boundaries 
are taken from the distribution described in Equation (6), where a is chosen as 
the half-side of a square crack, and c as the semi-average grain diameter (Sfantos 
& Aliabadi, 2007a).Two different values of the Weibull modulus are considered, 

Figure 8. Macroscopic stress–strain curve for the 100-grain morphology subject to tensile load. 
The figures shows the macroscopic stress vs. the applied nominal strain for a initially intact 
morphology (dotted line) and a morphology in presence of randomly distributed cracks with (a) 
Weibull modulus m = 8 and (b) Weibull modulus m = 4, and crack area Sc equal to 1% (blue dots), 
2% (green diamonds) and 5% (red squares) of the total grain boundary area Si. (For interpreting 
the colours, the reader is referred to the web version of the article.)



50    V. Gulizzi and I. Benedetti

namely m  =  4 and m  =  8, whose probability density functions are plotted in 
Figure 4.

Figure 5 shows the initial distribution with Weibull modulus m = 8, of the 
cracked interfaces within 50-grain polycrystalline aggregates. Figure 5(a)–(c) 
shows the initial damage distribution for a cracked grain boundary area equal to 
1, 2 and 5%, respectively, of the total grain boundary area. For each value of the 
cracked area, 5 initial cracks distribution have been generated and analysed. The 
macroscopic stress–strain response is plotted in Figure 6. It can be seen that the 
presence of initial damage reduces the strength of the polycrystalline domains as 
the maximum load carried by the domains reduces with increasing values of the 
initial damaged area.

Similarly to the 50-grain aggregates, Figure 7 shows the initial distribution 
with Weibull modulus m = 8, of the cracked interfaces within 100-grain poly-
crystalline aggregates. Figure 7(a)–(c) shows the initial damage distribution for 
a cracked grain boundary equal to 1, 2 and 5%, respectively, of the total grain 
boundary area. The macroscopic stress–strain responses for the morphologies 
are then plotted in Figure 8(a). In accordance with the 50 grains tests, the higher 
the number of cracked interfaces the lower the strength of the polycrystalline 
morphologies. As shown in the close-up view of Figure 8(a), some of the tests 
stop to converge before reaching the final prescribed strain. These aggregates 
are considered as failed at the last computed values of macro-stress. Figure 8(b) 
shows the macroscopic stress–strain responses for the 100-grain morphologies 
whose initial damage distribution has been obtained with a Weibull modulus 
m = 4. Table 1 shows the average tensile strength Σ̄33 and the standard deviation ⟨
Σ33

⟩
 of the tensile strength for the 100-grain morphologies. As expected, a lower 

Weibull modulus is responsible for a lower average tensile strength and a higher 
scatter for the tensile strength of each aggregate.

Conclusions

In this paper, the behaviour of brittle polycrystalline materials in presence of initial 
damage has been presented. An enhanced grain boundary formulation has been 
used to model fully three-dimensional polycrystalline domains, which permits 
to explicitly account for the statistical variability of the internal structures of 
polycrystalline materials. The model has the advantages of requiring only the dis-
cretisation of the grain boundaries and expressing the polycrystalline problems in 

Table 1.  Average Σ̄
33

 and standard deviation 
⟨
Σ
33

⟩
 of the tensile strength for the 100-grain  

morphologies with initial damage distribution.

Weibull modulus m = 8 Weibull modulus m = 4
Sc/Si 0% 1% 2% 5% 0% 1% 2% 5%
Σ̄
33

 [MPa] 541.57 525.41 511.79 455.75 541.57 513.51 501.39 447.21⟨
Σ
33

⟩
 [MPa] – 5.25 8.42 12.97 – 15.15 8.44 16.06
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terms only of the displacements and tractions at the grain interfaces. Intergranular 
fracture is then naturally modelled using a suitably defined cohesive law.

The effect of a pre-existing crack on the damage initiation and evolution within 
polycrystalline domains has been studied for 50, 100 and 200-grain morphologies. 
The presence of internal cracks randomly distributed accordingly to the Weibull 
distribution typical of brittle materials, has been also considered, and the link 
between the damaged interface area and the tensile strength of the aggregates has 
been highlighted. The performed tests highlight the potential of the model for 
multiscale analysis of polycrystalline materials degradation and failure.
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