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Electrostatic field analysis of anisotropic conductive 
media using voxel-based static method of moments with 
fast multipole method
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ABSTRACT
A voxel-based static method of moments (MoM) is proposed 
to analyse electrostatic fields in biological tissues with 
anisotropic conductivities, such as nerve fibre. This MoM 
emulates a volume element by using surface elements and 
boundary equations; thus, it is regarded as a type of indirect 
boundary element method (IBEM). Therefore, the MoM can 
be concurrently applied with the voxel-based IBEM, and both 
methods can be accelerated by the fast multipole method and 
fast Fourier transform in the same manner. After validating the 
MoM, we calculate the magnetically induced electric field in 
a simplified human head model constructed using diffusion 
tensor imaging data. It is confirmed that the proposed voxel-
based MoM is applicable to field analyses of voxel models 
composed of isotropic and anisotropic tissues. In addition, by 
analysing variants of the original inhomogeneous anisotropic 
model, we observe the variation in the electric current 
distributions in (i) an inhomogeneous isotropic model, (ii) a 
homogeneous isotropic model and (iii) an inhomogeneous 
anisotropic model with finer voxel size. The calculated electric 
currents in these models exhibit qualitatively reasonable 
distributions. The proposed method is applied to models with 
up to 188,296,465 unknowns using a personal computer.

1.  Introduction

Numerical electromagnetic field analyses based on voxel models are widely con-
ducted using various methods such as the finite difference method and the finite 
element method (FEM; Dawson, Caputa, & Stuchly, 1997; Hirata et al., 2010; 
Rullmann et al., 2009). The advantages of voxel-based analysis include facile pro-
duction of realistic models from three-dimensional image data and a simple data 
structure that is suitable for storage, handling and visualisation. A typical applica-
tion is field analysis of an anatomical human model constructed using magnetic 
resonance imaging (MRI) data (Nagaoka et al., 2004).
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Some biological tissues, such as nerve fibre, muscle and bone, have anisotropic 
conductivities. For example, high and low conductivities are observed along and 
across nerve fibre bundles, respectively. Their isotropic approximations can pro-
duce field inaccuracies. By considering anisotropy, for example, FEM analyses 
were conducted using head models based on diffusion tensor imaging (DTI) data 
(Rullmann et al., 2009; Wolters et al., 2006). DTI is a type of MRI that visualises 
the apparent diffusion tensor �

a
 of water molecules inside the tissues. Conductivity 

tensors are then approximately estimated using �
a
.

On the other hand, a voxel-based indirect boundary element method (IBEM), 
which uses the Laplace kernel fast multipole method (FMM) (Greengard & 
Rokhlin, 1997) to handle large-scale problems, was developed by Hamada and 
Kobayashi (2006). This method analyses the electrostatic fields in cubic voxel 
models that describe the conductivities of biological tissues. The quality of the 
calculated field is comparable to that obtained using the scalar-potential finite-
difference method, impedance method and quasi-static finite-difference time-
domain method (Hirata et al., 2010). Moreover, this method can effectively 
manage a voxel model composed of 547 million tissue voxels and 61 million 
boundary elements using a personal computer (Hamada, 2014a, 2014b). However, 
it cannot address anisotropic conductivities.

In this study, in order to enhance the versatility of the voxel-based IBEM, the 
static method of moments (MoM; Cadebec, Coulomb, & Janet, 2006; Newman, 
Trowbridge, & Turner, 1972; Takahashi, Wakao, & Kameari, 2006) is remodelled 
into a voxel-based static MoM, which is designed to address anisotropic con-
ductivities. This MoM emulates a volume element by using surface elements and 
boundary equations. It does not execute volume integrals; thus, it is regarded 
as a type of IBEM. Therefore, the MoM can be concurrently applied with the 
voxel-based IBEM, and both methods can be accelerated by the FMM and the 
fast Fourier transform (FFT) in the same manner. After validating this MoM, 
we calculate the electrostatic field in a simplified human head model including 
inhomogeneous anisotropic conductive tissues, which is developed using DTI 
data. In addition, we observe the variation in the calculated field distributions in 
three variants of the original model. It is shown that the proposed MoM and the 
IBEM are concurrently applicable to field analyses of voxel models composed of 
isotropic and anisotropic tissues.

2.  Voxel-based indirect BEM and voxel-based static MoM

2.1.  Magnetically induced electrostatic field in biological samples

The basic equations of magnetically induced low-frequency faint currents in a 
biological sample have been provided by, for example, Dawson et al. (1997). Here, 
both the displacement current and the secondary magnetic field are assumed to 
be negligible. When an external vector potential A0 and a magnetic flux density 
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B0, which satisfy B0 = ∇ × A0, are applied, the magnetically induced electric field 
E and the electric current density J satisfy the following equations:

 

where j, ω, σ and φ are the imaginary unit, angular frequency, conductivity and 
electric scalar potential, respectively. The following boundary equation (BEQ) 
holds for a boundary with a unit normal vector n:

 

The subscripts +  and − indicate the positive and negative sides with respect to n, 
respectively. This BEQ is equivalent to the following pair of BEQs, each of which 
is described using quantities defined on one side of the boundary:

 

where s, �r and σ0 are the surface charge density, relative conductivity and an 
arbitrary scalar reference value of conductivity, respectively. These quantities are 
analogous to those describing magnetisation or dielectric polarisation. Note that 
Equation (3) dissolves the direct relationship between quantities defined on the 
plus and minus sides of the boundary.

Anisotropic conductivity is represented by regarding � and �r as second-order 
tensors � and � r, respectively.

 

where the superscript T denotes the transpose, and �rxx, �rxy,�rxz,�ryy,�ryz and 
�rzz are the components of tensor � r in the xyz coordinate system. The vectors 
u = (ux , uy , uz)

T, v = (vx , vy , vz)
T and w = (wx ,wy,wz)

T are the unit eigenvectors 
of � r, and �ru, �rv, and �rw are the eigenvalues in the corresponding directions.

2.2.  Voxel-based indirect boundary element method

The voxel-based IBEM regards a square boundary sandwiched by two voxels hav-
ing different conductivities as a square boundary element (Hamada & Kobayashi, 
2006). The element has uniform surface charge density and numerically simulates 
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φ in Equation (1). Here, n is restricted to i, j or k, which are parallel to the x, y 
and z axes, respectively. Equation (2) produces the following BEQ for the IBEM:
 

where ℓ is the voxel side length and S denotes the area of a surface element. 
Similarly, Equation (3) provides the following BEQs, which are equivalent to 
Equation (5):
 

Let us approximate s± by the uniform charge densities Σ± of the surface charge 
elements as follows: 
 

Note that Σ+ and Σ− are governed by these BEQs, each of which is described 
using quantities defined on only one side of the elements, and we refer to these 

(5)�0�r+En+ = �0�r−En−, En± = ∫S E± ⋅ ndS∕𝓁2,

(6)s+ = −�0

(
�r+ − 1

)
En+, s− = +�0

(
�r− − 1

)
En−, s± = ∫S s±dS∕�

2.

(7)�+ = −�0

(
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(
�r− − 1

)
En−.

Figure 1. Pair of one-sided elements.

Figure 2.  Two-dimensional schematic arrangement of elements for voxel model involving 
isotropic and anisotropic media.
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elements as one-sided elements (see Figure 1). The surface charge density of the 
IBEM element equals the sum of Σ+ and Σ− when they are in the same position.

Now, the IBEM elements can also be allocated using the following procedures 
(see Figure 2):

[i] � The one-sided elements are allocated to cover each isotropic medium 
that is represented as a voxel cluster. The non-conductive open region 
outside the tissues is also classified as an isotropic voxel cluster.

[ii] � A pair of one-sided elements that are in the same position is replaced 
with an IBEM element.

2.3.  Voxel-based static method of moments

We propose a voxel-based static MoM, which represents a cubic voxel of an aniso-
tropic medium using a sextet of one-sided elements defined on the inner surfaces 
of the voxel (see Figures 2 and 3). It is assumed that the surface charge densities, 
Σ1 through Σ6, in Figure 3 are approximately evaluated by the following equations 
using En1 through En6, similarly to the way Σ± are evaluated by En± in Equation (7):
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Figure 3. Sextet of one-sided elements for anisotropic voxel.
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where the ACAT and Y terms describe, for example, the following relationship:
 

Equation (9) suggests that the average field on the surface assigned Σ1 is approxi-

mated by 
(
En1,

(
En2 + En5

)
∕2,

(
En3 + En6

)
∕2

)T

, which is the exact field when 

ℓ tends to zero. The Z terms constrain 
∑6

i=1 �i to zero, and they vanish when ℓ 
tends to zero. Although the sum of the polarisation charges is theoretically zero 
in an arbitrary closed surface, the Z terms approximately emulate this relationship 
in the closed surface just covering each voxel. These properties allow Equation (8) 
to address anisotropy. When the following procedures are added to those listed 
in the previous section, concurrent use of the voxel-based MoM and IBEM is 
possible. This is illustrated in Figure 2.

[i] � The sextet of elements is allocated to every anisotropic voxel.
[ii] � The sextet charges cannot be replaced with IBEM elements.
 Supplemental comments are provided in the Appendix.

2.4.  Governing simultaneous linear equations

The IBEM elements, one-sided elements and sextet charge elements are collectively 
rearranged in a new order and assigned a serial number between 1 and N. The 
charge density of the ith element is denoted by xi. Considering Coulomb’s law 
and the externally applied field, the En± on the ith element, En±[i]

, is represented 
by the following integral equation:

 

where ri is the position vector on the ith element. If no other element is in the 
location of the ith element, {i} denotes i; otherwise, {i} denotes the set contain-
ing i and the other element’s number if they are in the same position. The gov-
erning linear equations, Cx  =  b, are derived using Equations (5), (7), (8), and 
(10), where C, x and b are an N × N coefficient matrix, N × 1 unknown vec-
tor and N × 1 constant vector, respectively. Because this formulation does not 
involve volume integrals, this MoM is considered to be a type of IBEM. After 
solving for x, fields E and J are calculated for all the voxel centres. For exam-
ple, E at the gravity centre of the voxel illustrated in Figure 3 is approximated 

by 
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calculated using Equation (10). The value of J at the voxel centre is evaluated by 
using J = σE or J = �E .

2.5.  Voxel-based fast multipole method

When we solve the equation Cx  =  b with an iterative solver, we accelerate the 
matrix-vector multiplication operation by using the FMM. Because the vox-
el-based MoM and IBEM use a common set of surface elements defined on the 
voxel walls, the voxel-based MoM is also accelerated by the voxel-based FMM 
developed for the voxel-based IBEM. However, the surface elements for this MoM 
are densely allocated in anisotropic media; thus, the calculation cost of near-field 
components in the FMM algorithm (Hamada, 2011) tends to be high.

On the other hand, we can adopt the FFT as an alternative to the voxel-based 
FMM for the multiplication operation. Because the FFT algorithm is efficient 
when the surface elements are densely allocated, we adopt it to calculate only 
the near-field components of the voxel-based FMM. This hybrid technique that 
is applied to the surface elements is similar to that developed by De Zaeytijd, 
Bogaert, and Franchois (2008) for volume elements using a uniform cubic grid.

3.  Simplified human head model constructed using DTI data

In order to analyse electrostatic fields in an anisotropic biological sample, a 
simplified model of a human head was generated using DTI data (Rullmann  
et al., 2009; Wolters et al., 2006). DTI is a type of MRI that produces a set of MR  
images of in vivo biological tissues, from which the apparent diffusion tensor �

a
 

of water molecules inside the tissues can be evaluated for every voxel location. 
Rullmann presented one of the simplest methods for evaluating the conduc-
tivity tensor � from �

a
 (Rullmann et al., 2009). This method assumes that � is 

proportional to �
a
 and that the magnitude ratio of � to �

a
 equals the ratio of the 

isotropic conductivity value found in literature to the geometric mean of the 
three eigenvalues of �a.

We obtained �a data using DTI Studio and DTI sample data of a human 
head (https://www.mristudio.org). The dimensions of the original �a data were 
256 × 256 × 58, and they were resized to 88 × 88 × 60. The top and bottom slices 
were considered to be ‘air’ slices. The voxel size was set to 2.5 × 2.5 × 2.5 mm3. 
Based on T2-weighted MR images, the volume was classified into five regions (see 
Figure 4): air, outside the skull, skull, inside the skull and eyeballs.

The number of voxels and the average value of the isotropic conductivities 
found in literature are summarised in Table 1. The average was calculated using 
the anatomical human voxel model developed by Nagaoka et al. (2004) with 
the conductivities compiled by Hirata et al. (2010), in which the tissue conduc-
tivities range from VL = 0.02 to VU = 2.0 Sm−1 (both inclusive), where VL and 
VU are the respective values of the cortical bone and cerebrospinal fluid (CSF). 

https://www.mristudio.org
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The conductivity tensor was approximately evaluated using a method similar to 
Rullmann’s method (Rullmann et al., 2009); however, the grey matter, white matter 
and CSF regions were not separated in the ‘inside the skull’ region. We adjusted 
�
0
�
ru, �0

�
rv and �

0
�
rw to the upper limit of VU when this limit was exceeded so 

that the conductivity of CSF would not be exceeded. We also adjusted these values 
to a lower limit of 0.002 Sm−1, which was one-tenth of VL, when they were lower 
than this limit or negative.

Finally, the ‘inside the skull’ region adopted the evaluated tensor � and the other 
regions adopted the isotropic average values of conductivities listed in Table 1.

4.  Computing environment and settings for calculation

A personal computer running 64-bit Microsoft® Windows® 8.1 was used for the 
calculations. It had an Intel® CoreTM i7–5960X CPU (8 CPU cores, 3 GHz) with 
64 GiB of DDR4 SDRAM. The source code was compiled using Intel® Visual 
FORTRAN Compiler XE Ver. 15, with up to 16 OpenMP threads.

Figure 4. Simplified head model.

Table 1. Number of voxels and average conductivities in developed head model.

ID no. Region No. of voxels Average conductivity/Sm−1

0 Air 287,976 0.00
1 Outside the skull 33,123 0.21
2 Skull 52,881 0.02
3 Inside the skull 89,903 0.47
4 Eyeballs 766 1.45
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The order of the multipole and local expansions in the FMM algorithm was set 
to ten. The diagonal-form translation algorithm was used (Greengard & Rokhlin, 
1997). The voxel cluster size used to define the leaf cell size of the FMM was 
8 × 8 × 8. The three-dimensional FFT was executed using the Intel® Math Kernel 
Library. The iterative solver used was GBi-CGSTAB(s, L) (Tanio & Sugihara, 2010), 
where s = 1 and L = 1. Convergence was assumed when the relative residual norm 
became less than 5.0 × 10−7.

The applied homogeneous magnetic field, B
0
= (B

0x ,B0y ,B0z), 
was 50-Hz AC. The vector potential was defined 
as  A

0
= 0.5(B

0yz − B
0zy)i + 0.5(B

0zx − B
0xz)j + 0.5(B

0xy − B
0yx)k, and σ0 was 

set to 1.0 Sm−1.

5.  Results

5.1.  Field analysis of rectangular solid conductor

In order to validate the proposed MoM, we calculated the electrostatic field in a 
homogeneous and anisotropic conductive rectangular solid. The dimensions of the 
conductor were −0.1 m ≤ x ≤ 0.1 m, −0.07 m ≤ y ≤ 0.07 m and −0.25 m ≤ z ≤ 0.25 m. 
The voxel side length was set to 0.01 m. Therefore, this conductor is represented 
as a voxel model that does not include the shape representation error, which is 
sometimes called the staircase approximation error (Dawson et al., 1997; Hirata 
et al., 2010). Thus, we can confirm the validity of the MoM without incurring 
this type of error.

First, because an analytical solution of the induced field was available, the 
following settings were adopted: u = i, σru = σrxx = 8, v =  j, σrv = σryy = 4, w = k, 
σrw = σrzz = 2, σrxy = σrxz = σryz = 0, B

0
 = B

0zk, and B0z = 1.0 μT. The analytical solution 
is provided by the following equations (Wang & Eisenberg, 1994):
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where 2a and 2b are the side lengths of the rectangular solid in the x and y direc-
tions, respectively.

Furthermore, we calculated the induced field using a direct BEM that incor-
porates triangular patches. The fundamental solutions and the boundary integral 
equation are as follows (Brebbia & Dominguez, 1992):
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Figure 5.  Electric fields in rectangular solid anisotropic conductor. Three arrows are drawn at 
each point in Figure 5(a), and the corresponding electric fields are calculated using the analytical 
equation, direct BEM and voxel-based static MoM, respectively. The electric fields corresponding 
to the circles, crosses and addition symbols in Figure 5(b) are also calculated using these respective 
methods.
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Figure 6. Electric fields in rectangular solid anisotropic conductor. Two arrows are drawn at each 
point in Figure 6(a), and the corresponding electric fields are calculated using the direct BEM and 
voxel-based static MoM, respectively. The electric fields corresponding to the circles and addition 
symbols in Figure 6(b) are also calculated using these respective methods.
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where r = uu + vv + ww and r i = uiu + viv + wiw are position vectors on the 
boundary, n is the normal vector at r and c(ri) is a constant that depends on the 
boundary shape at r i.

The number of conductive voxels and the number of unknowns were 14,000 
and 87,960, respectively. The direct BEM used 21,674 unknowns. Figure 5(a) and 
(b) shows three types of electrostatic fields on a cross section for z = −0.005 m. 
However, it is difficult to distinguish the differences between them in Figure 5(a). 
Although we observe a slight decline in the accuracy of the MoM in the vicinity 
of the corners of the rectangular solid in Figure 5(b), the calculated fields are 
generally in good agreement.

Second, we randomly set the parameters to �
ruu = (9, 1.5, 3), �

rvv = (−1, 5, 0.5), 
�
rww = u × v and B

0
 = (0.4, 0.7, 1) μT. Figure 6(a) and (b) shows two types of elec-

trostatic fields calculated using the direct BEM and the voxel-based MoM on a cross 
section for z = −0.005 m. However, the arrows at the same position in Figure 6(a) 
seem nearly identical. Although slight differences are observed in the vicinity of 
the corners of the rectangular solid in Figure 6(b), the calculated fields are in good 
agreement in practice. Therefore, we can conclude that the proposed method is valid.

5.2.  Field analysis of simplified human head model constructed using DTI

5.2.1.  Field analysis with simplified head model
In order to confirm the applicability of the proposed MoM to electrostatic field 
analysis of an anisotropic biological sample, we calculated the electrostatic field in 
the human head model described in Section 3 (see Figure 4 and Table 1) by apply-
ing the MoM and IBEM concurrently. The applied magnetic field was B

0
 = B

0zk, 
with B0z = 1.0 μT. The numbers of tissue voxels, unknowns, IBEM elements, one-
sided elements and sextet charge elements are listed in Table 2.

Figure 7 shows the fractional anisotropy (FA; Wolters et al., 2006), |J|, and |E| 
on four cross sections perpendicular to the z axis. FA is a frequently used index 
and is defined as
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Table 2. Specifications of head models and required costs of iterative solver.

Model Original (figure 4) Finely subdivided (73) model
No. of tissue voxels 176,673 60,598,839 = 73 × 176,673
No. of unknowns 606,277 188,296,465
No. of IBEM elements 48,925 2,397,325 = 72 × 48,925
No. of one-sided elements 17,934 878,766 = 72 × 17,934
No. of sextet charge elements 539,418 = 6 × 89,903 185,020,374 = 73 × 539,418
Time required by iterative solver 21.3 s 4968 s
Required C

x
 multiplications 180 216

Required amount of memory 0.5 GiB 50 GiB
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This indicates the degree of anisotropy for a value from 0 to 1 (both inclusive). 
The upper row in Figure 7 shows the FA, which exhibits a nonzero value at an 
anisotropic conductive voxel. It is well known that the white matter region has 
structures of anisotropic nerve fibre bundles. Thus, the region represents inho-
mogeneous and anisotropic conductivity, which can be observed in the figure.

The middle row in Figure 7 shows the induced |J|, which circulates in the 
same direction as the arrows in Figure 5 and has a large value in CSF because of 
its high conductivity. Furthermore, characteristically enhanced current flows are 
observed along the nerve fibre bundles, especially on the cross section for slice 
30. Figure 8(a) shows the same slice with arrows that indicate the characteristic 
flows. These fibre bundles are the inferior fronto-occipital fasciculi and the inferior 
longitudinal fasciculi.

In order to gain a better understanding of this result, we calculated the field 
distribution in a variant of the original model, developed by replacing the conduc-
tivity tensors with inhomogeneous and isotropic conductivity of 

(||�ru�rv�rw
||
)1∕3

�
0
 

at every voxel in the ‘inside the skull’ region (see Figure 8(b)). Figure 8(b) shows 
that the current flows along the nerve fibre bundles, observed in Figure 8(a), disap-
pear because of this replacement. In addition, we calculated the field distribution 
in another variant having a homogeneous and isotropic conductivity of 0.47 Sm−1 
in the ‘inside the skull’ region, as shown in Figure 8(c). The figure shows a smooth 

Figure 7.  Calculated fields in simplified head model with inhomogeneous and anisotropic 
conductivity in the ‘inside the skull’ region. Numbers 20 through 50 indicate the z slice number.
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eddy field inside the region, and the detailed structures have disappeared. Thus, 
Figure 8(b) and (c) shows qualitatively reasonable results, as expected.

The lower row in Figure 7 shows the induced |E|, which roughly exhibits a radial 
stripe pattern. This appearance can be explained by the fact that the circulating 
J vertically crosses the layers of white matter, grey matter and the cerebral sulci 
filled with CSF. The conductivities of these layers are approximately 0.06, 0.1 
and 2.0 Sm−1, respectively, and J maintains a nearly constant intensity along the 
circulation path. Therefore, |E| = ||�−1

J|| repeats this rise and fall along the path.

5.2.2  Field analysis with finely subdivided head model
Because the conductivity tensors � of all voxels in the ‘inside the skull’ region are 
estimated from the measured image data with relatively low signal-to-noise ratios, 
the tensors are discontinuous nearly everywhere. It was not clear whether we 
could obtain appropriate fields by analysing a model having such discontinuous �. 
Thus, we calculated the induced field in yet another variant, obtained by dividing 
each voxel into smaller voxels of equal volume (7 × 7 × 7) with the same �. Even 

Figure 8. |J| on slice 30 or on the corresponding cross section. The red arrows indicate the 
characteristic flows. (a) Original model with inhomogeneous and anisotropic conductivity (the 
same as that shown in Figure 7). (b) Variant with inhomogeneous and isotropic conductivity. (c) 
Variant with homogeneous and isotropic conductivity. (d) Subdivided model with inhomogeneous 
and anisotropic conductivity, each voxel volume of which is 1/73 of the original one.
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though the number of unknowns exceeds 188 million, the proposed method is 
able to manage such a relatively large-scale problem. The numbers of tissue voxels, 
unknowns and elements are listed in Table 2. The calculated |J| is shown in Figure 
8(d) on the cross section corresponding to slice 30 in Figure 8(a). A detailed dis-
tribution is observed in Figure 8(d), as compared to that in Figure 8(a), and the 
results in Figure 8(a) and (d) are macroscopically in good agreement. This result 
suggests that the field calculated in the original model is macroscopically useful.

The calculation times for solving the linear equations of the original and finely 
subdivided models are 21.3 and 4968 s, respectively (see Table 2). The respective 
numbers of required matrix-vector multiplications are 180 and 216. Thus, the 
ratio of single multiplication times is (4968 s/216)/(21.3 s/180) = 194.4. Further, 
the ratio of the respective numbers of unknowns is 188,296,465/606,277 = 310.6. 
These ratios roughly exhibit linear dependency as expected when using the FMM. 
Deviation from linearity is assumed to occur because the calculation time of 21.3 s 
is not fully optimised. The main memory requirements for analysing these models 
are around 0.5 and 50 GiB, respectively.

It has been shown that the proposed MoM and IBEM are concurrently appli-
cable to field analyses of voxel models composed of isotropic and anisotropic 
tissues. Because each anisotropic tissue voxel consumes six surface elements, a 
small number of anisotropic tissue voxels and a large number of isotropic ones, 
which are addressed by the MoM and IBEM, respectively, are preferable. Although 
the method that approximates � using DTI data requires further improvement 
to produce a more accurate estimation, it is an attractive method for using voxel 
models having both structural and property information extracted from MRI 
and DTI data.

6.  Summary

A voxel-based static MoM was proposed to analyse electrostatic fields in biological 
tissues with anisotropic conductivities. The proposed method represents a cubic 
voxel of an anisotropic medium and a voxel cluster of an isotropic medium using 
a sextet of one-sided surface elements and one-sided surface elements, respec-
tively. It does not execute volume integrals; thus, it is regarded as a type of IBEM. 
Therefore, the MoM can be concurrently applied with the voxel-based IBEM, 
and both methods can be accelerated by the FMM and FFT in the same manner.

After validating the MoM, we calculated the magnetically induced electrostatic 
fields in a simplified human head model constructed using DTI data. Through 
concurrent use of the proposed voxel-based MoM and the voxel-based IBEM, 
we succeeded in analysing voxel models composed of isotropic and anisotropic 
tissues. In addition, by analysing variants of the original inhomogeneous aniso-
tropic model, we observed the variation in the electric current distributions in 
the following models: (i) an inhomogeneous isotropic model, (ii) a homogeneous 
isotropic model and (iii) an inhomogeneous anisotropic model with finer voxel 



European Journal of Computational Mechanics    69

size. The calculated current distributions in these models showed qualitatively 
reasonable results. Furthermore, the proposed method could effectively manage 
188,296,465 unknowns using a personal computer with an FMM-FFT hybrid 
algorithm.
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Appendix 1. Supplemental comments on procedures (i) and (ii) 
described in Section 2.

• � Because the sextet of elements can handle anisotropic voxels, it can handle isotropic 
voxels as well. Although the non-conductive open region is isotropic, the one-sided 
elements are indispensable for representing this region.

• � Because two one-sided elements in the same position are equivalent to an IBEM ele-
ment, we can solve for unknown charge densities by using one-sided elements instead 
of conventional IBEM elements. In this case, we can skip procedure [ii].

• � We can skip procedure [i] for the region where the relative conductivity �
r
 is 1.0. Note 

that the relative conductivity of the non-conductive air region is 0.0.
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