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ABSTRACT
An improvement to the classical application of the isogeometric
approach to the two-dimensional boundary element method is
proposed. In the classical isogeometric approach the boundary
conditions are imposed directly to the control variables that
are not always interpolatory of the governing variables, thus
introducing an error that may also be large. The issue has
been debated in the finite element method context where
it has recently motivated various alternative techniques, but
it is still open in other numerical methods. In the present
paper the approach, introduced by the authors in a previous
paper, to correctly impose any general boundary condition in
the boundary element method framework, is theoretically and
numerically investigated. Comparison with analytical solutions,
classical boundary element solutions and isogeometric boundary
element solutions are carried out to demonstrate the improved
performance of the proposed approach.
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1. Introduction

IsoGeometric Analysis (IGA) has received increasing attention since its first
appearance ten years ago (Hughes, Cottrell, & Bazilevs, 2005). The main reason
stems from the possibility to take the geometry directly from Computer Aided
Design (CAD) programs, avoiding the mesh generation step. Furthermore, the
involved functions exhibit high continuity and efficient refinement strategies that
allow superior precision and convergence rate.

In the CAD context the geometry is governed by the use of B-Splines and
by the Non-Uniform Rational B-Splines (NURBS, see Piegl & Tiller, 1997)
curves. From the practical point of view the geometrical representation differs
from the classical polynomial shape, commonly adopted in the Computer Aided
Engineering (CAE) context, as requiring the definition of control points, knot
vectors and weights.

The idea of improving the CAE representation of the domain and of its
boundary has been investigated in the last twenty years. Many authors have
pointed out the influence of the geometrical representation on the accuracy of the
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solution. For instance in Szabo and Babuska (1991) high-order (p version) Finite
ElementMethod (FEM) approaches are demonstrated to show exponential rates
of convergence. In this context can be framed the newmethodology proposed by
Hughes, Cottrell, and Bazilevs (2005) representing the geometry of the domain
by NURBS. The procedure is commonly referred as isogeometric analysis if the
same representation is also adopted to model the governing fields. The FEM
methodology has also been extended to the nonlinear analysis. For instance in
Verhoosel et al. (2011) isogeometric finite elements are used to introduce the
cohesive zone for brittle fracture modelling.

The representation of the boundary of the domain, more than the domain it-
self, deserves special attention. It holds special interest in someelasticity problems
(see for instance Munoz, 2008 in contact analysis). The influence of the bound-
ary’s geometrical representation is clearly underlined in Sevilla, Fernández-
Méndez, and Huerta (2008) for two-dimensional (2D) analysis and in Sevilla,
Fernández-Méndez, and Huerta (2011) for three-dimensional (3D) analysis. In
both papers a methodology similar to Hughes, Cottrell, and Bazilevs (2005) is
proposed but the NURBS are restricted to the boundary of the computational
domain. In such an approach the boundary can be directly imported from
any CAD software. Specific interpolation and integration strategies need to be
implemented for the elements intersecting the boundary, but a standard finite
element approach can be used for the majority remaining part of the domain.

To extend the NURBS approach to the Boundary Element Method (BEM)
can be successful. In fact, the governing integral equations involved in the BEM
are developed on the boundary only, thus being highly improved by the use of
a more accurate representation. The very first application of the isogeometric
concept to the BEM is developed in Simpson et al. (2012): The NURBS are
adopted to represent boundary, displacements and tractions in 2D elasticity
giving rise to what the authors call IGA with the BEM (IGABEM). Related
implementation aspects are focused in Simpson et al. (2013). As a matter of fact,
all the numerical examples are carried out with reference to geometric shapes
and boundary conditions that do not put the issue of the correct imposition of
the boundary conditions in evidence. Coupling the isogeometric BEM and T-
spline surfaces for linear elastostatic problems is addressed in Peake, Trevelyan,
and Coates (2013). An interesting application of the NURBS to the BEM is
given in Beer, Marussig, and Duenser (2013) where the isogeometric concept is
applied to problems in geotechnical engineering, i.e. exterior problems as typified
by analyses of underground excavations. Coupling BEM with the isogeometric
concept is worthy to be investigated further as the IGA is able to optimise the
main characteristic of BEM, i.e. the capacity to focus the discretisation to the
boundary only.

Both in IGABEM and in IGA by FEM the imposition of the boundary con-
ditions needs special attention. If they are homogeneous or inhomogeneous but
uniform no problem arises due to the partition of unity property of the NURBS
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basis. Non-uniform boundary conditions can be applied to the control points
where the NURBS are interpolatory. For all the other cases special treatment has
to be employed, similarly to meshless methods. In the FEM context there are a
few contributions dealing with this problem. In Wang and Xuan (2010) a trans-
formation method is developed to impose inhomogeneous Dirichlet boundary
conditions: the control variables are linked to the collocated nodal values at
the essential boundary by previously partitioning the NURBS control points into
boundary and interior groups; however thismethod requiresmodifications of the
stiffness matrix that complicates the usual structure of the FE code. A procedure
involving quasi-interpolant projectors is proposed in Costantini et al. (2010) in
the context of generalised B-spline-based IGA but no numerical examples are
given in elasticity. The Nitsche’s method is implemented in Embar, Dolbow, and
Harari (2010) for spline-based finite elements. In De Luycker et al. (2011) a weak
enforcement of general inhomogeneous Dirichlet boundary conditions using a
least squares minimisation is presented.

The present paper intends to propose a novel approach of IGABEM. Any
boundary condition, either homogeneous or inhomogeneous, is automatically
fulfilled by suitably modifying the final system of equations. Detailed instruc-
tions on how it can be implemented in a classical code are given. An analyti-
cal/numerical example is provided to show the error introduced by the IGABEM
approach in fulfilling the boundary condition, and how such an error does not
occur with the present approach. Two more numerical examples are included to
demonstrate the capability of the procedure in comparisonwith the classical BEM
and the classical IGABEM. The paper is organised as follows. The next section
gives a brief summary of the IGABEM approach. The third section is aimed at
presenting the procedure (from now on named ImprIGABEM) with enhanced
treatment of the boundary conditions. In the final section, three numerical
examples are carried out to demonstrate the efficiency of the procedure.

2. The IGABEM governing relations

In the present section details on the governing integral equations in 2D elasticity
andon the IGABEMapproach are given. For the sake of clarity a short summary is
provided. Thediscretised integral equations are presented and suitably collocated
to generate the final system of equations. Finally the here adopted refinement
strategies based on NURBS insertion and knot insertion are detailed.

2.1. Integral equations and NURBS representation

The governing displacement and stress integral equations in linear elasticity have
well-known expressions in terms of boundary displacementu, boundary traction
t and Kelvin fundamental solutions u∗

ij(y, x), t
∗
ij(y, x) (see for instance Mallardo

& Ruocco, 2014 and Wrobel & Aliabadi, 1996).
In order to solve any general elasticity problem, it is necessary to discretise

both the geometry of the boundary and the boundary displacement and traction
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fields.Within the IGABEM framework, the same basis functions, i.e. theNURBS,
are used for the representation of the geometry and for the approximation of the
governing fields.

The definition of theNURBS involves the definition of the B-spline. In fact, the
NURBS represent an improvement of the B-splines as they allow, for instance,
an exact representation of the conics (such as circle, ellipse, etc.). The NURBS
are given by the following relation:

Ri,p(ζ ) = wiNi,p(ζ )∑n
j=1 Nj,p(ζ )wj

(1)

wherewj areweights,Ni,p(ζ ) is the ith B-spline of degreep (seePiegl&Tiller, 1997
for its expression) and n is the number of control points, i.e. some points (to be
discussed further) that fulfil the same task of the mesh nodes in the conventional
BEM.

The generation of a B-spline basis of degree p is based on a sequence of real
numbers collected in the knot vector:

U = (ζ1, · · · , ζn+p+1) (2)

where ζ1 ≤ ζ2 ≤ · · · ζn+p+1, and n represents the number of basis functions too.
Some of the inner knot spans may have zero length and, often, the knot vector is
normalised in (0, 1), i.e. ζ1 = 0 and ζn+p+1 = 1.

The B-splines are piecewise polynomials and they own some important useful
features (see for instance Mallardo & Ruocco, 2014 and Piegl & Tiller, 1997).

The boundary of the elastic domain can be represented by the following
expression:

x(ζ ) =
n∑

k=1

Rk,p(ζ )Pk (3)

wherePk is the kth control point. First and last control points are coincident if the
curve is closed. It is worthy to underline that there is no reason that the control
points coincide with boundary points. The main idea of IGABEM is to adopt the
same NURBS to describe the governing physical variables, i.e. displacement and
tractions on the boundary in the present case:

ul(ζ ) =
n∑

k=1

Rk,p(ζ )dk (4a)

tl(ζ ) =
n∑

k=1

Rk,p(ζ )qk (4b)

where the vectorsdk andqk, of components dlk and qlk, respectively, with l = 1, 2
in 2D, will be shortly explained.
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The final discretised displacement integral equation, collocated in the node:

yi =
n∑

k=1

Rk,p(ζ i)Pk (5)

can thus be written as:

cij(yi)
p+1∑
k=1

Rk,p(ζ )djk +
NE∑
e=1

p+1∑
k=1

djk

[∫
�e

t∗ij(yi, x(ζ ))Rk,p(ζ )Je(ζ )dζ

]
=

=
NE∑
e=1

p+1∑
k=1

qjk

[∫
�e

u∗
ij(yi, x(ζ ))Rk,p(ζ )Je(ζ )dζ

]
(6)

where the element �e must be intended as the part of curve going from ζr to
ζr+1 of the knot vector, provided that ζr is the eth knot without counting the
multiplicity and ζr �= ζr+1. NE is the total number of elements and Je(ζ ) is
the Jacobian of the map given by Equation (3) (see also Mallardo & Ruocco,
2014; Simpson et al., 2012 for more details). The collocation nodes can be
chosen, for instance, as the Greville abscissae. The unknowns dk and qk do
not represent, as it occurs in conventional BEM, the values of displacement and
traction, respectively, in the boundary node, but they are variables that have
neither physical meaning nor relation with u and t. Only one observation can be
taken: after d is computed, the deformed geometry can be drawn by using new
control points that are shifted from the initial position of the quantity d.

The final discretised stress relation in any internal point Y can be written as:

σij(Y) =
NE∑
e=1

p+1∑
k=1

qlk
[∫

�e

U∗
ijl(Y, x(ζ ))Rk,p(ζ )Je(ζ )dζ

]
−

NE∑
e=1

p+1∑
k=1

dlk
[∫

�e

T∗
ijl(Y, x(ζ ))Rk,p(ζ )Je(ζ )dζ

]
(7)

Collocating Equation (6) at each collocation point provides the following final
system of equations:

Hd = Gq (8)

where the boundary conditions need to be well-posed in order to compute the
unknown displacement and traction on the boundary. The above system of
equations can be arranged in order to collect the 2n unknowns in v�x (the
subscript �x meaning the unknown boundary variables) and the remaining
parameters, i.e. the ones associated to the imposed boundary conditions, in v�b

(the subscript �b meaning the imposed boundary variables to be collected in the
known right-hand side):

Av�x = Lv�b (9)
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(a) (b)

Figure 1. N-refinement on the circle. • Control points. - NURBS ends. (a) Four NURBS. (b) Eight
NURBS.

Details on the computation of both singular and non-singular integrals can
be found in Mallardo and Ruocco (2014).

2.2. N- and h-refinements

In the classical finite-element/boundary-element approach it is rather common
to improve the precision of the results either by adding more elements or by
increasing the order of the shape functions. The latter is the analogue of the
p-refinement in the FEM/BEM context. On the other hand, in the isogeometric
approach, in addition to the p-refinement, the precision can be increased either
by dividing the original curve or by inserting new knots. The first strategy is here
named N-refinement whereas the latter is the analogous of the h-refinement in
FEM.

The N-refinement is obtained by increasing the number of NURBS that
reproduce the boundary geometry and the boundary governing displacement
and traction fields.

In Figure 1, for instance, the N-refinement applied to a circle is depicted. It is
worthy to underline that the shape functions do not change, simply the control
points are increased (see Figure 2).

The h-refinement strategy, at the lth level, inserts l new knots in the original
representation without changing the curve geometrically or parametrically. For
instance Figure 3 shows the h-refinement obtained by inserting one new knot.
The new n+1 basis functions and new n+1 control points are formed recursively
from the previous representation of n basis functions and n control points (see
Hughes, Cottrell, & Bazilevs, 2005 for details).

The curve after h-refinement is geometrically and parametrically identical to
the original curve but the basis functions and the control points are changed (see
Figure 4).

The different representation between N- and h-refinement is more evident
if a stress concentration occurs. The convergence to the maximum (analytical)
vertical stress arising in an infinite plate with an elliptical hole (Figure 5) can be
tested by both refinement strategies with different ratios a

b . It is worthy to remind
that for such a geometry a very poor discretisation is sufficient to model exactly
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Figure 2. A quarter-circle represented by one NURBS (a) and by two NURBS (b): geometry (above)
and the corresponding quadratic NURBS (below).

(a) (b)

Figure 3. From (a) to (b): h-refinement on the circle with insertion of one knot. • Control points. •
Control points involved by the knot insertion.

the geometry and, therefore, the occurring numerical error is mainly related to
the field variables representation (displacement and traction).

The numerical finite domain is obtained by considering a limited plate of
size 80 times larger than the major ellipse axis (see Figure 5). The following
mechanical and geometrical parameters and load condition are adopted: Young’s
modulusE = 105, Poisson’s coefficient ν = 0.3, a = 1 and p = 1. In Figure 6, the
convergence of the N- and h refinements is tested with respect to the maximum
analytical stress given by:

σmax = p
(
1 + 2

a
b

)
(10)

for different values of a and b of the ellipse and versus the Degree of Freedom
(DoF) of the numerical model. The higher a/b is, the stronger is the effect of the
stress concentration as the ellipse tends to the penny shaped crack.

Thefilled symbol in thefigure refers to the results obtainedby theh-refinement,
whereas the empty symbol refers to theN-refinement. The error of a few percent
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Figure 4. h-refinement with one knot insertion: geometry (above) and the corresponding
quadratic NURBS (below). (a) Four knots. (b) Five knots.

Figure 5. Elliptical hole within an infinite plate under traction.

for very fine meshes (over 200 DoF) is mainly due to the fact that the numerical
domain has been limited to 80 times the elliptical hole and it is not of infinite
size. The results demonstrate that the h-refinement provides more reliable stress
results.
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Figure 6. Stress error norm for plate with elliptical hole. Comparison between N- (empty symbol)
and h- (filled symbol) refinement strategies.

3. Boundary condition enforcement

To apply inhomogeneous boundary conditions at the spatial locations of non-
interpolatory control points introduces an error that reduces the overall accuracy.
In the present section a new procedure is provided to overcome such a issue. The
main relations are here reported. Furthermore, some implementation aspects are
discussed to show that the procedure can be easily implemented in a classical
IGABEM code.

Let us consider general mixed boundary conditions that can be imposed to
each collocation point. The 2n imposed scalar values, either traction component
or displacement component, can be collected in a vectorw that can be expressed
as:

w = Bv (11)

where v is a vector collecting all the variables d and q and B is a (2n x 4n)
matrix whose half entries only need to be computed because some of them are
zero. For instance, in the special case of Dirichlet (Neumann) conditions, the left
(right) part of B is zero. The matrix B can be rearranged in order to collect the
final unknowns and the parameters involved by the boundary conditions in two
sub-vectors v�x and v�b (already defined in Equation (9)), respectively:

w = [
B�x B�b

] (
v�x

v�b

)
(12)

By applying a suitable matrix condensation to Equation (9), the final squared
system of equations, with the correct imposition of the boundary conditions, can
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be obtained:

v�b = −B−1
�b

B�xv�x +B−1
�b

w = Cv�x +a =⇒ (A−L C)v�x = La =⇒ Av�x = b
(13)

From the computational point of view, the above procedure can be imple-
mented in a more efficient way. Displacement and traction in the collocation
nodes belonging to the genericNURBSof the discretised boundary can bewritten
in matrix form in terms of the N variables dk and qk:

u = Cd (14a)
t = Cq (14b)

where u = (u(y1), · · · , u(yN ))T and t = (t(y1), · · · , t(yN ))T , (T meaning
transpose), and the matrix C is given by:

C =
⎛
⎜⎝

C11 · · · C1N
...

...
...

CN1 · · · CNN

⎞
⎟⎠ (15)

whose 2× 2 submatrix Cik contains one scalar term that can be easily computed:

Cik =
(
Rk,p(yi) 0

0 Rk,p(yi)

)
(16)

The Equation (14) can be inverted:

d = C−1u (17a)
q = C−1t (17b)

On the basis of the above steps, the system of Equation (8) can be written in
terms of displacement and traction on the boundary:

H̃u = G̃t (18)

In fact, the global matrices H̃ and G̃ are built by suitably inserting the 2N×2N
submatrices H̃NURB and G̃NURB, respectively, for all the NURBS describing the
boundary of the problem under analysis. Each couple of submatrices H̃NURB,
G̃NURB is easily computed by:

H̃NURB = HNURBC−1 (19a)
G̃NURB = GNURBC−1 (19b)
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In the special case that a constant traction component is applied on �NURB
(i.e. one NURBS of the boundary �):

tl(y) = K withK = constant value∀ y ∈ �NURB (20)

then Equation (17b) implies:

ql(y) = K ∀ y ∈ �NURB (21)

due to the partition unity property of the NURBS. In all the other situations, an
error occurs when the boundary condition is applied directly to ql rather than to
tl .

It is worthy to remark some issues.

Remark 1. The inversion of the matrix C is not numerically carried out, as
it is achieved by solving the system of Equation (14) with given boundary
conditions.
Remark 2. The resolution of the system (14) is performed for each NURBS
and not for the entire boundary, i.e. the dimension of thematrixC is limited.
Remark 3. C is positive and banded (with bandwidth equal to p + 1) with
consequent benefit from reduced storage and faster resolution algorithms,
both in 2D and in 3D.

4. Numerical results

In the present section three numerical examples are investigated to demonstrate
both the reliability and the efficiency of the proposed procedure (ImprIGABEM)
and its superior performance when compared to the current procedure (IGA-
BEM). The reported error norms in terms of displacement are computed in L2
sense and normalised with respect to their corresponding norms obtained from
the analytical solution, i.e.

e = ‖u − uan‖L2
‖uan‖L2

(22)

The first example (see Figure 7) deals with a benchmark cantilever problem
in plane strain for which an analytical solution is available. It is aimed at inves-
tigating the error arising in the numerical boundary conditions when using the
classical approach and how such an error is avoided with the present approach.

Other two numerical examples are aimed at comparing ImprIGABEM and
IGABEM for general curved boundaries (note that the example in Section 3 has
straight boundaries). In order to do so, two infinite-size 2D structural problems
for which an analytical solution is provided are investigated. The availability of
the analytical solution allows a complete comparison. The former example (see
Figure 10) deals with a hole in an infinite plate subjected to unidirectional tension
at infinity, the latter (see Figure 15) solves the semi-infinite L-shaped wedge in
mode I loading case. These geometries are usually converted into finite-size
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PE = 105 = 0.3

Figure 7. Cantilever beam under parabolic shear load at one end.
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IGABEM - 3 control points
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Figure 8. Computed applied traction on the AB side of the cantilever beam. Comparison between
IGABEM, ImprIGABEM and exact value.

problems by invoking the symmetry (dash-point line in Figure 9), trimming
the infinite plate along straight lines (� in the Figure 9) and applying the exact
traction on the trimming lines. The numerical domain is eventually the dark-grey
domain in Figure 9.

The approachdescribed in the present paper reveals its superioritywhen either
the boundary of the structure under analysis is loaded by non-homogeneous
Dirichlet/Neumann conditions or the more the boundary geometry is curved.
These two conditions can occur in a huge amount of structural problems but,
to the authors’ opinion, they can be focused by solving the two infinite-size
examples introduced above in the following way: the trimming line � is drawn
with increasing curvature and the numerical results compared for different
curvature level. Such a convergence study can well highlight the difference
in precision between the proposed approach (ImprIGABEM) and the usual
approach (IGABEM) for general curved boundary, with the additional advantage
to have the analytical solution available.

4.1. Cantilever beam

The plane strain benchmark cantilever beam depicted in Figure 7 is con-
sidered. The geometry and the material properties are listed in the figure. The
corresponding analytical y-displacement of the point K (middle point of AB, see
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Table 1.Comparison of P between the present approach (ImprIGABEM) and the classical (IGABEM)
approach (c.p. stands for control points on AB). P= 1 is the correct value.

ImprIGABEM IGABEM

3 c.p. 3 c.p. 4 c.p. 5 c.p. 10 c.p.

P 1.0 0.5 0.750 0.870 0.979

Figure 7) is:

uy(K) = P
6EI

[
2L3 + (4 + 5ν)

H2L
4

]
(23)

where I = H3/12 and:

E = E
1 − ν2

ν = ν

1 − ν
(24)

The Equation 4(b) provides the actual boundary traction on AB in terms of
the variables q associated to the control points. In the classical approach, the
boundary condition on the side AB of the cantilever would be imposed on qy .
The correct value of the traction in K is 3P

2H , whereas if, for instance, one element
is adopted along AB, the value obtained by imposing the boundary condition on
qy would be:

ty(K) = R2,2(K)qy(K) = 0.5qy(K) = 0.5
3P
2H

= 1
2
tycorrect (K) (25)

exactly one half of the correct value. The inconvenience is commonly overcome
by increasing the number of elements. On the contrary, the approach proposed
by the present paper is correct without any need to increase the mesh. The
integral of the boundary conditions on the loaded side of the cantilever beam
versus increasing number of control points is a measure of the error introduced
by the uncorrect imposition of the boundary conditions. From Table 1 it is
evident that three control points on AB are sufficient in the proposed approach
(ImprIGABEM) to obtain exactly P = 1 whereas 10 control points are necessary
to provide about 98% of P with the classical IGABEM. The integration is carried
out by Gaussian quadrature with twelve points. Eight elements on the horizontal
sides of the beam and four elements on the fixed vertical side of the beam are
used. The error in the computation of P is also highlighted in Figure 8 where the
y-component of the applied traction on AB modelled by the present approach
(ImprIGABEM) and by the classical IGABEM approach are compared with the
correct value. The superior performance of the present approach is evident.

The error introduced by the classical IGABEM and overcome by the present
approach is reflected into the displacement solution. In Table 2 the analytical
displacement of the pointK is compared to the value obtained with three control
points by the present approach and to the values computed by the classical
IGABEM approach with increasing number of control points (i.e. applying h-
refinement). In conclusion the way by which the classical IGABEM approach
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Figure 9.Usual extraction of the numerical finite domain from the infinite domain of the analytical
solution. Hole in an infinite plate (left). Semi-infinite L-shaped wedge (right).

Table 2. Comparison of uy(K) between the present approach (ImprIGABEM) and the classical
IGABEM approach (c.p. stands for control points on AB).

ImprIGABEM IGABEM

Analytical 3 c.p. 3 c.p. 4 c.p. 5 c.p. 10 c.p.

uy (K) ∗ 10−3 8.03 8.06 4.03 6.03 6.99 7.86

imposes the non-homogeneous boundary conditions introduces an error that
can be overcome only by deeply refining the mesh. The approach proposed by
the present paper is able to provide a numerical solution that is clear of such an
error.

4.2. Hole within an infinite plane

The problem of an infinite plate with a hole under the action of a unidirectional
tension σ∞ has an analytical solution that is available, for instance, in Szabo and
Babuska (1991). Plane strain condition is adopted. The mechanical parameters
are: Young’s modulus E = 106 and Poisson’s coefficient ν = 0.3. The prescribed
boundary conditions at infinity are σ∞ = 1.0 and the size of the internal hole’s
radius is R = 1.0.

The boundary conditions on � (see Figure 9-left) are computed as exact
tractions t� :

t� = Tann (26)

whereas zero-displacement conditions are applied at the symmetry lines. The
analytic stress tensor Tan can be found in Szabo and Babuska (1991) (see Eqs.
10.40). The numerical results concerning two different shapes of the curve � are
presented here. The curve � is compound by (red line in Figure 10) either two
straight lines or a quarter-circle.
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Figure 10. Two different finite domains extracted by the infinite plate with hole: (a) two straight
lines, (b) quarter-circle.

Figure 11. Error e plot for infinite plate with hole. Boundary straight lines.

First of all a comparison can be made between the present ImprIGABEM
approach, the classical BEM and the classical IGABEM, in terms of the conver-
gence performance in the case of � = straight line. If L is the size depicted in
Figure 10(a), Figure 11 compares the convergence rate for L = 2 in terms of the
total number of DoF reported along the x-axis.

From Figure 11 it is worthy to observe that a lower error is obtained with the
present approach.

The comparison can be also carried out by replacing one boundary line with a
circle arc (see Figure 10(b)) and L from 2 to 200. The corresponding convergence
diagrams are depicted in Figure 12.

In such a case the error introduced by anuncorrect imposition of the boundary
condition ismore evident and it does not becomenegligible asL increases because
the boundary conditions do not analytically tend to the constant value. The error
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(a) (b)

Figure 12. Error e plot for infinite plate with hole. Quarter-circle boundary. (a) L = 2, (b) L = 200.

Figure 13. Quarter-circle boundary � with different curvatures. The circles indicate the control
points. (a) 32 DoF, (b) 48 DoF.

introduced by an uncorrect imposition of the boundary conditions increases
with increasing curvature. With reference to the six different arcs depicted in
Figure 13, the comparison in error e is shown in Figure 14 with 32 elements in
(a) and 48 elements in (b).

From such results it is clear that the difference between the proposed ImprI-
GABEM approach and the classical IGABEM approach increases as the control
points distance from the boundary (i.e. arc-type going from 6 to 1).

4.3. Semi-infinite L-shapedwedge

The present problem deals with the semi-infinite L-shaped wedge (see Figure 15)
which exhibits a singularity at the wedge apex. The analytical solution is available
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Figure 14. Error e plot for different circular arcs � (see Figure 13).

Figure 15. Semi-infinite π/2 wedge under uniform traction.

in Szabo and Babuska (1991) (see Eqs. 10.27). Mode I loading case in plane strain
with the following parameters L = 1, E = 105, ν = 0.3, σ∞ = 1, is considered.

The problem is numerically solved by cutting the boundary along the bound-
ary � as depicted in Figure 15. The analytical tractions can be applied along
these lines as boundary conditions of the numerical problem. In Figure 16 the
results corresponding to the classical BEM, to the classical IGABEM and to
the proposed ImprIGABEM are compared. Better results are obtained with the
proposed procedure.

In Figure 17 the error:
| u − uan |
| umax

an | (27)



88 V. MALLARDO AND E. RUOCCO

(a) (b)

Figure 16. Error e plot for semi-infinite L-shaped wedge. Circular boundary line. (a) L = 1, (b)
L = 100.

0.000
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0.030

0.040

0.050

(a) (b) (c)

Figure 17. Displacement error in the internal points. (a) ImprIGABEM. (b) IGABEM. (c) Legend.

is plotted over the internal domain with reference to the ImprIGABEM results,
Figure 17(a), and to the IGABEM results, Figure 17(b). The more intense blue
underlines a higher error for the IGABEM results.

The maximum error values are 3 and 7%, respectively, i.e. the IGABEM
approach provides an error that is more than double. The percentage of the
domain with an error less than 3% is more than 90% for the proposed approach
whereas it is 25% for the classical approach.

5. Conclusions

An improved IGABEMapproachwas presented. In the usual IGABEMapproach,
the boundary conditions are directly applied to the control variables regardless
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on the position of the control points. As these points are not always interpolatory
in the governing field variables, a numerical error may be introduced. The
improved proposed procedure was demonstrated to be clear of such an error. It
requires the inversion of matrices C whose computation is very fast due to their
banded property. Some numerical examples were presented to demonstrate that
the present approach is able to overcome the drawback and to provide higher
accuracy.
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