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ABSTRACT
In the boundary element method (BEM) for stress analysis, it is 
well known that thermal loads give rise to an additional volume 
integral in the primary form of the boundary integral equation 
(BIE). This volume integral needs to be further transformed to 
surface ones in order to retain the characteristic of the BEM 
as a boundary solution technique. In this study of the BEM for 
3D thermoelasticity in general anisotropy, the fundamental 
solutions are expressed as Fourier series with coefficients 
calculated using an explicit-form Green’s function. In the 
exact volume-to-surface integral transformation associated 
with the term for the thermal effects in the BIE, a new kernel 
function is constructed. All formulations are implemented 
in an existing BEM code for 3D elastostatic analysis. Some 
numerical examples are presented to demonstrate the 
veracity of the formulations and the implementation, where 
the numerical results are compared with those obtained using 
the finite element method (FEM).

1.  Introduction

In the direct formulation of the boundary integral equation (BIE) for the bound-
ary element method (BEM), an additional volume integral arises when thermal 
loads are involved. If this integral is to be evaluated directly, it would require ‘cell- 
discretisation’ throughout the entire domain, destroying the notion of the BEM 
as a boundary solution technique. Over the years, several schemes have been 
proposed to overcome the need for domain discretisation. They include the dual 
reciprocity method (Nardini & Brebbia, 1982), the multiple reciprocity method 
(Nowak & Brebbia, 1989), the particular integral approach (Deb & Banerjee, 1990) 
and the exact transformation method (ETM) (Rizzo & Shippy, 1977). Among 
these schemes, the ETM is most appealing, not least because it restores the BIE to 
a true BIE without requiring analytical and/or numerical approximations, unlike 
the other schemes. For steady state, isotropic thermoelasticity, this volume integral 
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has been exactly transformed to boundary ones using the ETM for both 2D and 
3D cases (Rizzo & Shippy, 1977). It has also been successfully achieved for 2D 
anisotropic thermoelasticity (Shiah & Tan, 1999) via a domain mapping technique 
(Shiah & Tan, 1997). However, the extension to the same end in BEM analysis 
for 3D generally anisotropic thermoelasticity poses a great challenge due to the 
mathematical complexity of the associated fundamental solutions.

The topic of numerical evaluation of the fundamental solution and its deriv-
atives for 3D generally anisotropic elastic bodies has also remained a focus of 
numerous investigations for several decades (e.g. Pan & Yuan, 2000; Phan, Gray, 
& Kaplan, 2004; Sales & Gray, 1998; Tonon, Pan, & Amadei, 2001; Vogel & Rizzo, 
1973; Wang & Denda, 2007; Wilson & Cruse, 1978). This is due to the fact that the 
Green’s function presented in these cited works is not in closed, algebraic form. 
The fully explicit forms of the Green’s function have only been developed in more 
recent years (see Lee, 2003, 2009; Shiah, Tan, & Lee, 2008; Tan, Shiah, & Lin, 2009; 
Ting & Lee, 1997). They allow their implementation into a BEM code with rela-
tively greater ease, although they are still mathematically very elaborate. Indeed, 
the present lead authors further improved on the implementation as well as the 
computational efforts for the numerical evaluation of the fundamental solution 
and its derivatives in BEM by representing these quantities as a double Fourier 
series (Shiah, Tan, & Wang, 2012; Tan, Shiah, & Wang, 2013). Following this suc-
cess, they also found that the double Fourier series representation of the Green’s 
function and its derivatives can provide a very expedient means to facilitate the 
volume-to-surface integral transformation for the thermoelastic effects in the BIE 
in 3D general anisotropy (Shiah & Tan, 2014). This paper reports on the successful 
implementation of the ETM as described in that paper for the BEM thermoelastic 
analysis of 3D generally anisotropic solids. A brief review of the analytical basis 
will first be presented below, followed by some numerical examples.

2.  BIE for anisotropic thermoelasticity

The analytical volume-to-surface integral transformation of the associated term 
in the BIE due to thermal loads for 3D general anisotropy has been described and 
presented by the present authors very recently (Shiah & Tan, 2014). Nevertheless, 
it is useful to provide a review of the key steps and the basic governing equations 
here. For a generally anisotropic elastic solid, the constitutive relationship between 
the stress σij and the strain εij with temperature change, Θ, is governed by the well-
known Duhamel–Neumann relation:
 

where C  =  Cijkl and γij denote the elastic constants (stiffness coefficients) and 
thermal moduli of the material, respectively. The stiffness coefficients in C used 
in the analysis here are arranged in the order according to:

(1)�ij = Cijkl�kl − �ijΘ, (i, j, k, l = 1, 2, 3),
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For a generally anisotropic body, the thermal moduli in Equation (1) are given by:
 

where αkl are the coefficients of thermal expansion. As in the usual manner to 
treat problems in steady-state, sequentially coupled thermoelasticity, the resulting 
elastic field is determined from the temperature distribution corresponding to the 
boundary conditions prescribed for heat conduction analysis. For this, the thermal 
field can be solved independently but must be first obtained before solving the 
elastostatic problem. Under the steady-state condition without heat source, the 
anisotropic heat conduction is governed in the Cartesian coordinate system by

where Kij are the thermal conductivity coefficients. Equation (4) can be trans-
formed to its canonical form of the Laplace equation by a simple coordinate 
transformation,
 

where x̂ and x represent the transformed and the original coordinates, respectively; 
F denotes the transformation matrix with its coefficients defined by:
 

where,

(2)� =
(
�11, �22, �33, �23, �13, �12

)T
, � = (�11, �22, �33, 2�23, 2�13, 2�12)

T .

(3)�ij = Cijkl �kl ,

(4)KijΘ,ij = 0, (i, j = 1, 2, 3),

(5)x̂
T = Fx

T ,

(6)F =

⎛
⎜⎜⎜⎝

√
Δ∕K

11
0 0

−K
12
∕K

11
1 0

�
1

�
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�
3

⎞
⎟⎟⎟⎠
,

Δ = K11K22 − K2
12,

�1 = (K12K23 − K13K22)∕
√
�,

(7)�2 = (K12K13 − K23K11)∕
√
�,

�3 = Δ∕
√
�, � = K11K13Δ − K11K12K

2
13 + K11K12K13K23 − K2

23K
2
11.
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Under the transformed coordinate system, the heat conduction is now governed 
by the standard Laplace equation,
 

where the underscore is used to denote the new coordinate system. Once the 
temperature field in the body is determined via solving the BIE for the mapped 
domain, the solution for the corresponding elastic field of the solid body can 
then proceed.
As has been well established in the literature for the direct BEM formulation, the 
displacements ui and the tractions ti at the source point P and the field point Q 
on the surface S of an elastic body are related by the following integral equation,
 

It is clear that the last volume integral in Equation (9) needs to be transformed 
into surface ones for the equation to be truly a BIE. In the case of 2D general ani-
sotropy, Shiah and Tan (1999) show that the volume integral can be analytically 
transformed to the boundary. The steps for the corresponding 3D case follow in 
the same general vein, although the analytical process becomes significantly more 
challenging due to the mathematically more complicated form of the fundamental 
solutions. A quick review of the fundamental solutions is thus in order before the 
integral transformation process is further discussed.

As derived by Ting and Lee (1997), the Green’s function of displacements for 
3D general anisotropy can be expressed in terms of the spherical coordinates  
(r, θ, ϕ) as

 

where r represents the radial distance between the source and the field point; and 
the quantities qn, �̂(n) and � are given by:
 

 

(8)Θ,ii = 0, (i = 1, 2, 3),

(9)Cij(P)ui(P) + ∫s ui(Q)T
∗
ij (P,Q)dS = ∫s ti(Q) U

∗
ij (P,Q)dS

+ ∫s �iknk(Q)Θ(Q)U
∗
ij (P,Q)dS − ∫

Ω

�ikΘ,k(q) U
∗
ij (P, q) dΩ.

(10)U
∗(x) =

1

4𝜋r

1

|�|
4∑

n=0

qn�̂
(n)
,

(11a)qn =

⎧
⎪⎨⎪⎩

−1

2𝛽1𝛽2𝛽3

�
Re

�∑3

t=1

pnt

(pt−p̄t+1)(pt−p̄t+2)

�
− 𝛿n2

�
for n = 0, 1, 2,

1

2𝛽1𝛽2𝛽3
Re

�∑3

t=1

pn−2t p̄t+1 p̄t+2

(pt−p̄t+1)(pt−p̄t+2)

�
for n = 3, 4,

(11b)Γ̂
(n)

ij
= Γ̃

(n)

(i+1)(j+1)(i+2)(j+2)
− Γ̃

(n)

(i+1)(j+2)(i+2)(j+1)
, (i, j = 1, 2, 3),
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In Equation (11a), the Stroh’s eigenvalues, pi, appear as three pairs of complex 
conjugates:
 

whose conjugates are denoted by p̄v. For more details regarding the variable defi-
nitions in Equation (11a) and (d), one can refer to Ting and Lee (1997). It is quite 
evident that carrying out spatial differentiations of Equation (10) to obtain the 
corresponding fundamental solution for tractions, T∗

ij, is cumbersome and less 
than straightforward. To simplify this, the present authors (Tan et al., 2013) rewrite 
the Green’s function into a Fourier series form,
 

 

where a is an integer large enough to ensure convergence of the series; �(m,n)
uv are 

unknown coefficients determined, from the theory of Fourier series, by:
 

From previous studies, a = 16 is adequate to ensure convergence of the series 
even for highly anisotropic material properties. By performing differentiations 
in the spherical coordinate system, the first-order derivatives of U*, denoted by 
U*', may be expressed as:
 

It is apparent that the computations in Equation (15) are fairly straightforward. 
The process of the volume-to-surface integral transformation will now be outlined.

(11c)�ik = Cijksmjms,

(11d)m = (− sin �, cos �, 0).

(12)pv = 𝛼v + i 𝛽v, 𝛽v < 0, (v = 1, 2, 3),

(13a)U
∗ = H(�,�)∕4�r,

(13b)Huv(�,�) =

a∑
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n=−a

�(m,n)
uv ei (m �+n�), (u, v = 1, 2, 3),
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uv =

1

4�2 ∫
�

−�
∫
�

−�

Huv(�,�) e
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1
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�
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uv ei (m �+n�)

�
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�
for l = 2

a∑
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a∑
n=−a

�(m,n)
uv ei (m �+n�)[−(cos� + i n sin�)] for l = 3

.
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3.  BIE for anisotropic thermoelasticity

As explained previously, to restore the BEM as a truly boundary solution tech-
nique, the volume integral in Equation (9) needs to be transformed into a surface 
ones. For brevity, this integral is denoted by Vj, viz.
 

where the notations of P and q in the integrand to, respectively, denote the source 
and the field point are omitted for conciseness. Similar to the transformation pro-
cess for the 2D case (Shiah & Tan, 1999), the volume integral is, first, re-defined 
in the mapped domain using Equation (5) by:
 

where Γik are the new thermal moduli, defined by (Shiah & Tan, 2004):
 

The volume integral can be exactly transformed to the mapped surface Ŝ, given by:
 

where W∗
ijkis a new kernel function introduced to satisfy:

 

The analytical volume-to-surface integral transformation is not complete without 
explicitly determining the new function Wijk. In the mapped domain, the funda-
mental solution of displacements is expressed as:
 

In a similar manner, the Fourier series representation of Ĥ(𝜃̂, 𝜙̂) is given by:
 

(16)Vj = − ∫
Ω

�ikΘ,k U
∗
ij dΩ ,
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Ω
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.

(19)Vj = ∫Ŝ Γik

[(
Θ W∗

ijk,t
− W∗

ijk
Θ,t

)
n̂t − Θ U∗

ij n̂k

]
dŜ,

(20)W∗
ijk,tt = U∗

ij,k.

(21)Û
∗
(r̂, 𝜃̂, 𝜙̂) =

Ĥ(𝜃̂, 𝜙̂)

4𝜋r̂
.

(22)Ĥuv(𝜃, 𝜙̂) =

𝛼∑
m=−𝛼

𝛼∑
n=−𝛼

𝜆̂(m,n)
uv ei (m 𝜃̂+n 𝜙̂), (u, v = 1, 2, 3),
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where the series coefficients are determined by:
 

It is evident that Ĥuv(𝜃̂, 𝜙̂) can be determined using the Û(x̂1, x̂2, x̂3), defined in 
the Cartesian coordinate system for the mapped domain, as follows:
 

By the coordinate transformation in Equation (5), Equation (24) can be rewritten as:
 

where
 

Thus, Equation (23) is re-expressed as:
 

In Equation (27), (r′, �′,�′) are all intrinsic functions of (𝜃̂,𝜙̂), defined by:

As a result, 𝜆̂(m,n)
uv  can be numerically computed using, for example, Gaussian quad-

rature, viz.
 

where f̂ (m,n)
uv (𝜃̂, 𝜙̂) is the integrand in Equation (27), i.e.

 

In Equation (30), Huv (𝜃̂,𝜙
′) is directly computed from Equation (13b). With all 

the coefficients, 𝜆̂(m,n)
uv , computed via the steps outlined above, the fundamental 

(23)𝜆̂(m,n)
uv =
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𝜋
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𝜋
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Ĥuv(𝜃̂, 𝜙̂) e
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(24)Ĥ(𝜃̂, 𝜙̂) = 4𝜋 Û
∗
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(25)Ĥ(𝜃̂, 𝜙̂) = 4𝜋 U
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�
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�
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√
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1
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𝜋

−𝜋
∫
𝜋

−𝜋

Huv(𝜃
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x�1
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(
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.
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uv =
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(
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)
,
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uv (𝜃̂, 𝜙̂) =

Huv(𝜃
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displacements in the transformed coordinate system can be calculated using the 
Fourier series:
 

Similar to Equation (15), the first-order derivatives of the fundamental displace-
ments are given by:
 

The remaining task to complete the volume integral transformation is the deter-
mination of W∗

ijk. In the spherical coordinate system for the mapped domain, 
Equation (20) can be expressed as:
 

where,

 

To satisfy Equation (33), W∗
ijk must be dependent on the spherical angles only and 

thus, it is written simply as W∗
ijk(𝜃̂, 𝜙̂). As a result, Equation (33) is simplified to:

 

By taking advantage of the periodic nature of the spherical angles, W∗
ijk(𝜃̂, 𝜙̂) can 

be expressed as a Fourier series as well; thus,

(31)U∗

uv
=

1

4𝜋r̂

a∑
m=−a

a∑
n=−a

𝜆̂(m,n)
uv ei (m 𝜃̂+n 𝜙̂), (u, v = 1, 2, 3)

(32)
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1

4𝜋r̂2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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𝛼∑
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�
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�
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�
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�
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�
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�
+ im cos 𝜃̂∕ sin 𝜙̂

�
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�
−
�
cos 𝜙̂ + i n sin 𝜙̂
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.
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+

1
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=
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,

(34)
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�
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�
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�
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�
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a∑
n=−a

𝜆̂
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�
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�
sin 𝜙̂ − i n cos 𝜙̂

�
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�
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�
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2
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where C̃(m,n)

ijk
 are unknown coefficients to be determined. Substituting Equation 

(36) directly into Equation (35) yields:
 

For determining the unknown coefficients, both sides of Equation (37) are inte-
grated as follows:

As a result of performing the above integrations for p, q ranging from −a to + a, 
one obtains:
 

where C̄ijk is the matrix with each set of C̃(m,n)

ijk
 numbered in the sequential order, 

�ijk represents the integration values on the right hand side of Equation (38), 
and M is the banded matrix obtained from the integration of the left hand side 
of Equation (38). More details regarding the determination of C̃(m,n)

ijk
 can be found 

in Shiah and Tan (2014) and thus, no further discussion is made here. With all 
coefficients determined by Equation (39), W∗

ijk(𝜃̂, 𝜙̂) is computed using Equation 
(36) and its first-order derivatives are given by:
 

Since the formulations of W∗
ijk(𝜃̂, 𝜙̂) and W∗

ijk,t(r̂, 𝜃̂, 𝜙̂) have been explicitly defined, 
the transformed surface integral, Equation (19), can be numerically evaluated in 
a straightforward manner.
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ijk
ei(m𝜃̂+n𝜙̂)

�
in cos 𝜃̂ cos 𝜙̂ − im sin 𝜃̂∕ sin 𝜙̂

�
(for t = 1)

a∑
m=−a

a∑
n=−a

C̃(m,n)

ijk
ei(m𝜃̂+n𝜙̂)

�
in sin 𝜃̂ cos 𝜙̂ + im cos 𝜃̂∕ sin 𝜙̂

�
(for t = 2)

a∑
m=−a

a∑
n=−a

C̃(m,n)

ijk
ei(m𝜃̂+n𝜙̂)

�
−in sin 𝜙̂

�
(for t = 3)

.
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4.  Numerical examples

All the formulations described above have been implemented in an existing BEM 
code based on the quadratic isoparametric element. Three examples are presented 
here to illustrate its successful implementation. The material properties of alumina 
Al2O3 crystal (Shiah & Tan, 2004) were chosen for the thermoelastic analyses of 
these problems. It has the following stiffness constants:

Also, the following thermal properties were used in the analysis:
 

To treat the problem as a generally anisotropic case, the principal material axes 
were rotated with respect to the x3-, x1- and x2-axis by 60o, 45o, 30o counterclock-
wise, respectively, in succession. This results in the following material constants 
in the global Cartesian coordinate system:
 

 

 

Figure 1(a) shows the first example considered. It is a thick plate with its two 
opposite ends fully constrained. All surfaces except the constrained ends are trac-
tion-free. For the thermal boundary conditions, the end at x2 = L/2 is prescribed 

(41)C11 = 465 GPa, C33 = 563 GPa, C44 = 233 GPa,

C12 = 124 GPa, C13 = 117 GPa, C14 = 101 GPa,

(42)K
∗
11
= 18 (W∕m ◦

C), K
∗
22
= 10 (W∕m ◦

C), K
∗
33
= 25 (W∕m ◦

C),

�∗
11
= 8.1 × 10

−6
(1∕◦ C), �∗

22
= 5.4 × 10

−6
(1∕◦ C), �∗

33
= 9.2 × 10

−6
(1∕°

C).

(43a)

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

620.616 53.593 87.202 39.992 −18.414 −58.115

53.593 513.175 140.699 73.644 6.364 65.699

87.202 140.699 512.227 −106.569 55.535 1.423

39.992 73.644 −106.569 214.376 8.301 39.574

−18.414 6.364 55.535 8.301 202.085 45.390

−58.115 65.699 1.423 39.574 45.390 143.531

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(GPa),

(43b)K =

⎛
⎜⎜⎜⎝

19.262 2.425 6.809

2.425 17.113 −1.456

6.809 −1.456 16.625

⎞⎟⎟⎟⎠
(W/m

◦

C)

(43c)� =

⎛⎜⎜⎜⎝

7.75731 0.69343 1.69477

0.69343 7.78019 −0.58957

1.69477 −0.58957 7.16250

⎞
⎟⎟⎟⎠
× 10

−6 (1∕◦C)
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with 0 °C and the opposite end is 100 °C; all the other surfaces are thermally 
insulated. Also shown in Figure 1(a) is the mesh employed for the BEM analy-
sis; it has 352 elements. For the purpose of verification of the BEM results, the 
problem is also analysed using ANSYS FEM with 83,780 SOLIDS226 elements  
(Figure 1(b)). The resultant displacements (u0 =

√
u2
1 + u2

2 + u2
3 ) at the nodes along 

the centrelines on the top and bottom surfaces are calculated and normalised by  
the quantity L �11ΔΘ, where ΔΘ = 100 °C is the temperature difference between 
the constrained ends. The variations of the calculated resultant displacements are 
shown in Figure 2 for both the BEM and FEM results. The von Mises equivalent 
stress at these locations is also calculated and plotted in Figure 3. As can be seen 
from these plots, the agreement between the BEM and FEM results is very good 
indeed.

For the second example, consider a thick-walled tube with one end (bottom) 
closed with an integrated end plate as shown in Figure 4(a); the dimensions are 
as indicated. The outside wall and the bottom are fully constrained and all other 
surfaces are traction-free. For the thermal boundary conditions, the exterior con-
strained surfaces are prescribed with 0 °C, and the inner surfaces, including the 
bottom and the inner cylinder wall, are prescribed 100 °C; the top end is ther-
mally insulated. Figure 4(a) and (b) shows the mesh discretisations of the BEM 

(b) 

L=8

Lt=

00C

1000C

(a) 

Figure 1. Modelling of a thick rectangular plate by (a) BEM and (b) ANSYS FEM.
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and ANSYS analyses, where 608 and 83,780 SOLIDS226 elements were used, 
respectively. The resultant displacements at the nodes around the periphery 
of the inner surface on the x1−x2 plane are calculated and normalised by the 
same factor as in the previous case. The normalised resultant displacements 
at these nodes are plotted in Figure 5. The hoop stress σθθ and the axial stress 
σ33 at the nodes on the inner and outer surfaces in the x1−x2 plane are also 
plotted in Figures 6 and 7, respectively. As can be seen from the comparisons 
in these plots, very good agreement is again obtained between the results of 
the BEM and ANSYS analyses.

The last example treats a thick-walled hollow sphere with the inner radius, 
ri = 1 unit and outer radius, ro = 2 units. The outside surface is fully constrained 
and the inner is free to displace in all directions. For the thermal boundary 
condition, the inner and outer surfaces are prescribed with 100 °C and 0 °C 
(ΔΘ = 100 °C), respectively. Figure 8(a) and (b) displays the meshes used in 
the BEM and ANSYS analyses, where 680 elements and 61,440 SOLIDS226 

ANSYS  BEM

=0.5

=-0.5

Figure 3. Equivalent stress along the centreline (x1 = 0) of the thick plate.

ANSYS  BEM

Top

Bottom

Figure 2. Resultant displacement along the centreline (x1 = 0) of the thick plate.
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elements are, respectively, employed. Similar to the analyses in the previous 
example, the resultant displacement at the nodes around the equators of the 
inner and outer surfaces is calculated, and their normalised values are plotted 
in Figure 9. The normalised σθθ and σ33 are also plotted in Figures 10 and 11, 
respectively. Excellent agreement between the results obtained from the BEM 
and FEM analyses are again achieved.

(a) 

(b) 

x1

x2

x3

Figure 4. Modelling of a thick-walled tube under thermal gradient: (a) BEM mesh, (b) ANSYS FEM 
mesh.
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ANSYS  BEM

r=ri

(degree)

Figure 5. Variation of the normalised resultant displacement around the inner surface of the tube 
at the x3 = 0 plane.

ANSYS  BEM

r=ri

r=ro

(degree)

Figure 6. Variations of the normalised hoop stresses at the inner and outer surfaces of the tube 
at the x3 = 0 plane.

ANSYS  BEM

r=ri

r=ro

(degree)

Figure 7. Variations of the normalised axial stresses at the inner and outer surfaces of the tube 
on the x3 = 0 plane.
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Figure 8. Modelling of the thick-walled hollow sphere by (a) BEM, (b) ANSYS.

ANSYS  BEM

r=ri

(degree)

Figure 9.  Variation of the normalised resultant displacement around the equator of the inner 
surface of the sphere.



106    Y. C. Shiah and C. L. Tan

5.  Conclusions

The ETM that transforms analytically the additional volume integral associated 
with thermal effects in the BIE to surface integrals has been achieved and imple-
mented for BEM in 3D general anisotropic thermoelasticity. This has never been 
successfully undertaken in the literature because of the mathematical complexity 
of the Green’s function. The approach followed the same key steps developed by 
the lead authors for the 2D case previously, together with the use of the double 
Fourier representation of the 3D Green’s function. The transformed surface inte-
grals have been successfully implemented into an existing BEM code. This has 
been illustrated by some examples in which numerical results have been com-
pared with those obtained using ANSYS FEM analysis using very refined meshes. 

ANSYS  BEM

r=ri

r=ro

(degree)

Figure 10. Variations of the normalised hoop stresses along the equators of the inner and outer 
surfaces of the hollow sphere.

ANSYS  BEM

r=ri

r=ro

(degree)

Figure 11. Variation of the normalised stress σ33 along the equators of the inner and outer surfaces 
of the hollow sphere.



European Journal of Computational Mechanics    107

Excellent agreement between the results obtained using both numerical schemes 
have been obtained.
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