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ABSTRACT
A comparison of three different methods for the numerical
evaluationof three-dimensional (3D) anisotropicGreen’s function
and its first and second derivatives is presented. The line integral
expressions of the Green’s function and its derivatives are the
starting point of this investigation. The conventional line integral
expressions are rewritten in terms of three different kinds of
line integrals. In the first method, the numerical integration is
applied to the line integrals. In the second method, the residue
calculus is used, which results in explicit expressions of the
Green’s function and its derivatives in non-degenerate cases.
In the third method, the three line integrals are expressed in
terms of two elementary line integrals, and after a rewritten of
the explicit expressions evaluated by the simple pole residue
calculus, the final explicit expressions are applicable in both
degenerate and non-degenerate cases. The three methods are
implemented in FORTRAN tomake adirect comparison. Using the
analytical solutions, the three expressions of the Green’s function
and its derivatives are proved to be correct. The numerical
phenomenon of the three methods near a degenerate point is
studied numerically. Besides, the efficiency of the three methods
is compared through the computing CPU times.
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1. Introduction

The Green’s function and its derivatives play an important role in the bound-
ary integral equation or boundary element method (BEM). In homogeneous,
isotropic and linear elasticity, these functions have a simple analytical form. They
can be evaluated directly in a BEM program. However, in generally anisotropic
linear elasticity, the Green’s function and its derivatives are much more com-
plicated. Though Wilson and Cruse (1978) proposed a practical algorithm by
employing a cubic interpolation from tabulated pre-calculated values for the
evaluation of the Green’s function and its derivatives in BEM programs, the
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direct evaluation of the anisotropic Green’s function and its derivatives was
preferred and hence investigated by many researchers.

Let us consider an infinite static linear elastic homogeneous three-dimensional
(3D) anisotropic solid. In this paper, a vector or tensor is represented by either
a bold letter or a letter in indices notation. The Green’s function Gij(x) satisfies
the following partial differential equation

cijklGkm,lj(x)+ δimδ(x) = 0, (1)

where cijkl is the elasticity tensor, δim is the Kronecker delta, and δ(x) is the
three-dimensional Dirac delta function which is zero everywhere, except at the
point x = 0. The elasticity tensor cijkl is a symmetrical tensor

cijkl = cjikl = cijlk = cklij. (2)

By applying either Fourier transforms (Fredholm, 1900) or Radon transforms
(Wang, 1997) to Equation (1) followed by some elementary manipulations, the
Green’s function for 3D anisotropic materials can be deduced to a contour
integral

Gij(x) = 1
8π2r

∮
S
Nij(ξ)D−1(ξ)dS(ξ), (3)

where r = |x|, S is a unit circle in a plane whose normal vector is along x,
ξ is a vector located on S, and Nij(ξ) and D(ξ) are, respectively, the cofactors
and determinant of Kik(ξ) = cijklξjξl . As will be shown in the next section, with
proper change of the variables, the Green’s function in line integral form can be
written as

Gij(x) = 1
4π2r

∫ +∞

−∞
Nij(p)D−1(p)dp, (4)

whereNij(p) andD(p) are deduced fromNij(ξ
∗) andD(ξ∗)with the substitution

of ξ∗ = n+pm, and n andm are any twomutually orthogonal unit vectors on the
oblique plane perpendicular to x. In particular,D(p) is a sixth-order polynomial.
As long as the elastic strain energy is positive, the roots ofD(p) are three pairs of
complex conjugates known as Stroh eigenvalues. By applying the Cauchy residue
theorem to the line integrals with the assumption that pi (i = 1, 2, 3) are three
distinct roots of D(p) with a positive imaginary part, Equation (4) becomes

Gij(x) = i
2πr

3∑
v=1

Nij(pv)
D′(pv)

, (5)

where D′(p) = dD(p)/dp and i = √−1.
Equation (5) is simple but not applicable when any two of pi are identical. To

deal with the so-called degenerate situations with repeated roots, Phan, Gray,
and Kaplan (2004) and Buroni, Ortiz, and Sáez (2011) presented the explicit
expressions of theGreen’s function by applying themultiple pole residue calculus
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to the line integral. Although these explicit expressions of the Green’s function in
the degenerate and non-degenerate cases are correct, the results become unstable
in the numerical calculation when the Stroh eigenvalues are distinct, but very
close to each other (nearly degenerate cases). After a magical rewritten of the
explicit expression of the Green’s function in the non-degenerate case, Ting and
Lee (1997) found a novel explicit expression of the Green’s function applicable
in the non-degenerate and degenerate cases. Moreover, the numerical results of
these explicit expression were stable in the nearly degenerate case, which has not
been emphasised in the literature, and will be confirmed in the following of this
paper.

The derivatives of the Green’s function were investigated also by many re-
searchers (Barnett, 1972; Buroni et al., 2011; Lee, 2003; Phan, Gray, and Kaplan,
2005; Sales & Gray, 1998). Although the numerical integration method (NIM)
for the evaluation of the Green’s function and its derivatives was suggested
many years ago (Barnett, 1972), researchers are still interested in the explicit
expressions of the Green’s function and its derivatives, which should be advan-
tageous in the BEM programming. Phan et al. (2004, 2005) used the Cauchy
residue theorem to derive explicit expressions of the Green’s function and its
first derivative in terms of the Stroh eigenvalues. However, their expressions
were different for three different cases, namely, the non-degenerate case (three
distinct eigenvalues), the partially degenerate case (two identical eigenvalues)
and the degenerate case (three identical eigenvalues). Lee (2009) also derived
the explicit expression of the first derivative of the Green’s function for three
different cases based on the novel explicit expression of the Green’s function
proposed by Ting and Lee (1997). She mentioned the way to obtain the second
derivative, but no final expressions and examples for the second derivative of
the Green’s function were given. Buroni and Sáez (2013) presented novel unified
explicit expressions for the first and second derivatives of the Green’s function in
the spherical coordinate systemwith the help of the expression proposed by Ting
and Lee (1997). These expressions shared the same character of Ting and Lee’s
expression, i.e. applicable in degenerate, non-degenerate and nearly degenerate
cases. Recently, Xie, Zhang, Wan, and Zhong (2013) suggested a new way to
obtain the explicit expressions for the Green’s function and its first and second
derivatives, which are applicable in all cases. Different from the work of Buroni
and Sáez (2013), partial derivatives of the Green’s function in Xie et al. (2013)
were performed in the Cartesian coordinate system, which are more attractive
in the applications. It is expected that the explicit expressions are applicable in
all cases and much more convenient for the numerical implementation because
programmers needn’t to distinguish different cases in the programming. Besides,
for the implementation of the Green’s function and its derivatives in the BEM
programs, Shiah, Tan, and Wang (2012) and Tan, Shiah, and Wang (2013)
expressed the Green’s function and its derivatives as Fourier series, and they
demonstrated that their method was very efficient from the numerical point of
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view. Since the Green’s function and its derivatives can be expressed as three
different formulae, it is useful to investigate the accuracy and efficiency of the
numerical evaluation of these different formulae. However, to the authors’ best
knowledge, a direct and detailed comparison between the different expressions of
theGreen’s function and its derivatives has not yet been reported in the literature.
Besides the above-mentioned methods, interested readers may be refered to
Malén (1971), Lavagnino (1995), Ting (1996), Hwu (2010) and Pan and Chen
(2015) for methods constructing the Green’s function and its derivatives using
the so-called Stroh formalism.

In this paper, we mainly focus our attention to the three different formulae
to evaluate the Green’s function and its derivatives for 3D generally anisotropic
materials. Specifically we investigate the numerical implementations of the three
formulae. In the first method, the numerical integration is applied to the line in-
tegral expressions of the Green’s function and its derivatives, while in the second
method the residue calculus with distinctness assumption of Stroh eigenvalues
is applied to the line integrals which leads to explicit expressions of the Green’s
function and its derivatives. In the third method, the Green’s function and its
derivatives are first expressed in terms of two elementary line integrals. Then, the
residue calculuswith the distinctness assumption is applied to the elementary line
integrals, and thereafter a rewritten of the resulting expressions leads to explicit
expressions applicable in both non-degenerate and degenerate cases. The three
methods are implemented in FORTRAN programs. Since the nearly degenerate
case is involved in the second and thirdmethods, a transversely isotropicmaterial
is chosen to investigate these twomethods in the nearly degenerate case. Besides,
the accuracy and the efficiency of the threemethods are compared and discussed.

2. Three different formulae for the Green’s function and its derivatives

2.1. Line integral expressions of the Green’s function and its derivatives

The line integral expression of the Green’s function was firstly investigated by
Fredholm (1900), Lifshitz and Rozenzweig (1947) and Synge (1957). While the
line integral expression of the derivatives of the Green’s function was derived by
Barnett (1972) and Mura (1987).

Here, the Green’s function and its first and second derivatives in terms of the
line integrals over a unit circle presented by Mura (1987) are extracted as our
starting point. For the details of the derivation, interested readers may find them
in the work of Mura (1987). The expressions are given by

Gij(x) = 1
8π2r

∮
S
K−1
ij (ξ)dψ , (6)

Gij,k(x) = 1
8π2r2

∮
S

[
−x̄kK−1

ij (ξ)

+ ξkclpmq(x̄pξq + ξpx̄q)K−1
li (ξ)K

−1
mj (ξ)

]
dψ , (7)
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Gij,kl(x) = 1
8π2r3

∮
S

{
2x̄kx̄lK−1

ij (ξ)− 2[(x̄kξl + ξkx̄l)(x̄pξq + ξpx̄q)+ ξkξl x̄px̄q]
× chpmqK−1

ih (ξ)K
−1
jm (ξ)+ ξkξlchpmq(x̄pξq + ξpx̄q)csatb(x̄aξb + ξax̄b)

× [K−1
jm (ξ)K

−1
is (ξ)K

−1
ht (ξ)+ K−1

ih (ξ)K
−1
js (ξ)K

−1
mt (ξ)]

}
dψ , (8)

where x̄ is the unit vector of x and ψ is a parameter on the unit circle.
Now,we present an alternative formof theGreen’s function and its derivatives

based on Equations (6)–(8). Using

ξ = n cosψ + m sinψ , (9)

where n and m are any twomutually orthogonal unit vectors in the oblique plane,
the line integrals over theunit circle are transformed to line integrals over (-π2 ,

π
2 ),

or (0,π) if necessary, because the period of the integrands in Equations (6)-(8)
after substituting Equation (9) is π . The three newly introduced line integrals are

Aij(x̄) = 1
4π

∮
S
Nij(ξ)D−1(ξ)dψ = 1

2π

∫ π/2

−π/2
Nij(ψ)D−1(ψ)dψ , (10)

Pijk(x̄) = 1
4π

∮
S
ξkHij(ξ)D−2(ξ)dψ = 1

2π

∫ π/2

−π/2
ξkHij(ψ)D−2(ψ)dψ , (11)

Qijkl(x̄) = 1
4π

∮
S
ξkξlMij(ξ)D−3(ξ)dψ = 1

2π

∫ π/2

−π/2
ξkξlMij(ψ)D−3(ψ)dψ ,

(12)

where Nij and D are, respectively, cofactors and determinant of the matrix Kij,
and Hij andMij are defined as

Hij = FimNjm, Mij = Lij − RijD, (13)

with

Fim = EhmNih, Ehm = cphmq(x̄pξq + x̄qξp),
Lij = FjhHih, Rij = x̄px̄qcphmqNihNjm. (14)

Note that the argument in Equations (13) and (14) could be ξ or ψ or even p
introduced in the following. Then the reformulated line integral expressions of
the Green’s function and its derivatives are given by
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Gij(x) = 1
2πr

Aij(x̄), (15)

Gij,k(x) = 1
2πr2

[−x̄kAij(x̄)+ Pijk(x̄)
]
, (16)

Gij,kl(x) = 1
πr3

{
Aij(x̄)x̄kx̄l −

[
Pijk(x̄)x̄l + Pijl(x̄)x̄k

] + Qijkl(x̄)
}
. (17)

These integral expressions are equivalent to those proposed by Barnett (1972)
and Mura (1987). It should be mentioned that the symmetry of cijkl and Kij is
used to deduce Equations (16) and (17).

The line integrals presented in Equations (10)–(12) ranging from −π/2 to
π/2 are expressed in terms of the matrices in a unified form which are in-
dependent of their eigenvalue features. In other words, these basic direct line
integrals can be applied to any kinds of anisotropic materials no matter whether
their Stroh’s eigenvalues are distinct or repeated. Quadrature rules such as
the standard Gaussian quadrature can be applied on Equations (10)–(12) to
calculate the Green’s function and its derivatives by Equations (15)–(17). The
numerical implementation of the reformulated line integral expressions of the
Green’s function and its derivatives associated with other methods is discussed
in Section 3. Note that the direct line integral method could be particularly useful
when dealing with the Green’s function issues in half or bimaterial spaces. For
example, by virtue of the direct line integral, the half-space Green’s functions can
be expressed in terms of the Stroh matrices and Stroh eigenvalues in a unified
form Pan and Chen (2015).

2.2. Explicit expressions of the Green’s function and its derivatives for
non-degenerate cases

In the following, we investigate the explicit Green’s function and its derivatives in
terms of Stroh eigenvalues. Here, explicit expressions have mainly two meanings:
firstly, they have no integrals; and secondly, they become algebraically analytical
as long as the Stroh eigenvalues and/or the Stroh eigenvectors are algebraically
analytical.

For the easy use of the residue calculus, the interval of the line integrals
in Equations (10)–(12) is further transformed to (-∞, +∞). To illustrate the
procedure, we take Aij(x̄) as an example.

By setting p = tanψ , we have

ξ = cosψ(n + pm), dp = 1
cos2 ψ

dψ. (18)

Note that due to the definition of Kij(ξ) we have

Nij(ξ) = cos4 ψNij(n + pm), D(ξ) = cos6 ψD(n + pm). (19)
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Then we can obtain

Nij(ψ)D−1(ψ) = Nij(ξ)D−1(ξ) = 1
cos2 ψ

Nij(p)D−1(p), (20)

where n and m are omitted in the last term for simplicity, andNij(p) andD(p) are
cofactors and determinant of the matrix Kij(p) = cikjlξ∗

k ξ
∗
l , where ξ∗ = n + pm.

Substitution of Equation (20) into Equation (10) leads to

Aij(x̄) = 1
2π

∫ +∞

−∞
Nij(p)D−1(p)dp. (21)

Similarly, Pijk(x̄) and Qijkl(x̄) become

Pijk(x̄) = 1
2π

∫ +∞

−∞
ξ∗
k Hij(p)D−2(p)dp, (22)

Qijkl(x̄) = 1
2π

∫ +∞

−∞
ξ∗
k ξ

∗
l Mij(p)D−3(p)dp, (23)

where Hij(p) andMij(p) are determined by Equations (13) and (14), in which ξ

is replaced by ξ∗. All ξ∗, Nij(p), Hij(p) andMij(p) are polynomials in p.
Suppose f (p) is a rational polynomial function of the following form

f (p) = P(p)
Q(p)

, (24)

where P(p) and Q(p) are polynomials in p, and the order of Q(p) is higher than
that of P(p). Then using the Cauchy residue theorem, it is easy to conclude that
if there are n different poles pk, k = 1, 2, . . . , nwith Im (pk) > 0 among the poles
of f (p), we have

∫ +∞

−∞
f (p)dp = 2π i

n∑
k=1

Res(pk). (25)

If pk is a pole ofmth order, then

Res(pk) = 1
(m − 1)! lim

p→pk

dm−1

dpm−1 [(p − pk)mf (p)]. (26)

Under the assumption that the Stroh eigenvalues, which are zeros of the
polynomial D(p) with positive imaginary parts, are distinct, Aij(x̄), Pijk(x̄) and
Qijkl(x̄) have the same 3 poles. The orders of the 3 poles are the same in Aij(x̄),
Pijk(x̄) or Qijkl(x̄), but the orders of each pk in Aij(x̄), Pijk(x̄) and Qijkl(x̄) are,
respectively, 1, 2 and 3. In virtue of Equations (25) and (26), Equations (21)–(23)
become
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Aij(x̄) = − Im
3∑

n=1

Nij(pn)
D′(pn)

, (27)

Pijk(x̄) = − Im
3∑

n=1

D′(pn)Ĥ ′
ijk(pn)− D′′(pn)Ĥijk(pn)

D′3(pn)
, (28)

Qijkl(x̄) = − Im
3∑

n=1

1
2D′5(pn)

{
D′2(pn)M̂ ′′

ijkl(pn)− 3D′(pn)D′′(pn)M̂ ′
ijkl(pn)

+ [
3D′′2(pn)− D′′′(pn)D′(pn)

]
M̂ijkl(pn)

}
, (29)

where

Ĥijk(p) = ξ∗
k Hij(p), M̂ijkl(p) = ξ∗

k ξ
∗
l Mij(p), (30)

in which Ĥijk(p) and M̂ijkl(p) are polynomials of 10th and 16th order, respec-
tively.

Substitution of Equation (27) into Equation (15) yields the following explicit
Green’s function

Gij(x) = − 1
2πr

Im
3∑

n=1

Nij(pn)
D′(pn)

. (31)

Equation (31) is equivalent to Equation (5) and known as Fredholm’s formula
in the early literature (Dederichs & Liebfried, 1969). Sales and Gray (1998)
firstly gave explicit derivatives of the Green’s function in terms of the Stroh’s
eigenvalues. The starting point of Sales and Gray (1998) was a modulation
function like Aij(x̄) in Equation (21). The explicit derivatives of the Green’s
function were obtained after the differentiation of the modulation function
with respect to two angles, namely polar angle and azimuthal angle in the
spherical coordinate system, which determine the orientation of x. Based on
the three integrals, Lee (2003) presented explicit derivatives of the Green’s
functionwith respect toCartesian coordinates.Note that theFredholm’s formula,
explicit expressions presented by Sales and Gray (1998) and Lee (2003), as
well as Equations (27)–(29) are only applicable when the Stroh eigenvalues
are distinct. For a general evaluation, a small perturbation on the material
constants is suggested to keep the Stroh eigenvalues distinct. Usingmultiple pole
residue calculus, Phan et al. (2004, 2005) extended the work of Sales and Gray
(1998) by giving explicit Green’s function and its derivatives for the repeated or
degenerated Stroh eigenvalues. Buroni et al. (2011) extended the work of Lee
(2003). The explicit expressions by Sales and Gray (1998) and Lee (2003) were
either with respect to spherical coordinates or contained tensors of the orders
higher than 4. Our newly proposed explicit derivatives of the Green’s function
have two beneficial features: they are given in Cartesian coordinates and contain
only low-order tensors.
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2.3. Explicit expressions of the Green’s function and its derivatives for
non-degenerate and degenerate cases

In this section, we present unified explicit expressions of the Green’s function
and its derivatives which are applicable in both non-degenerate and degenerate
cases. The word unified is used to emphasise the difference from the explicit
expressions by using multiple pole residue calculus. It should be mentioned that
the authors derived recently novel unified explicit expressions of the Green’s
function and its derivatives, (Xie et al., 2013; Xie et al., 2016) which are briefly
described in the following for the completeness and comparison purposes.

The determinant D(p) is a sixth-order polynomial in p. Because the elasticity
tensor cijkl is positive definite, the roots of the determinant D(p) are three pairs
of complex conjugates. So D(p) can be written as

D(p) = α(p − p1)(p − p2)(p − p3)(p − p̄1)(p − p̄2)(p − p̄3)

= α

3∏
i=1

(p − pi)(p − p̄i), (32)

where α is the coefficient of p6 in D(p), and the overbar denotes the complex
conjugate. SinceD(p) is the determinant ofKij(p) = cikjlξ∗

k ξ
∗
l , it canbe concluded

that the Stroh eigenvalues depend on the material constants, the direction of the
observation point x and the chosen coordinates n and m in the oblique plane.

SinceNij(p), Ĥijk(p) and M̂ijkl(p) are polynomials with the highest order 4, 10
and 16, respectively, we can express them as

Nij(p) =
4∑

n=0

anijp
n, (33)

Ĥijk(p) =
10∑
n=0

anijkp
n, (34)

M̂ijkl(p) =
16∑
n=0

anijklp
n, (35)

where anij, a
n
ijk and anijkl are independent of p. Substituting Equations (33)–(35)

and Equation (32) into Equations (21)–(23), the three integrals can be rewritten
as

Aij(x̄) = 1
α

4∑
n=0

anijI
n
3 , (36)

Pijk(x̄) = 1
α2

10∑
n=0

anijkI
n
6 , (37)
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Qijkl(x̄) = 1
α3

16∑
n=0

anijklI
n
9 , (38)

where

In3 =
∫ +∞

−∞
pn

f (p)
dp, 0 ≤ n ≤ 4, (39)

In6 =
∫ +∞

−∞
pn

f 2(p)
dp, 0 ≤ n ≤ 10, (40)

In9 =
∫ +∞

−∞
pn

f 3(p)
dp, 0 ≤ n ≤ 16, (41)

with

f (p) =
3∏

i=1

(p − pi)(p − p̄i). (42)

Although the coefficients anij, a
n
ijk and anijkl are complicated, they can be obtained

nearly exactly in a program by polynomial algorithms (Press et al., 2007). Besides
it is not difficult to show that both the coefficients and the integrals In3 , I

n
6 and In9

are real-valued.
If p1, p2 and p3 are distinct, the orders of the poles in Equations (40) and

(41) are, respectively, 2 and 3, which makes the resulting explicit expressions by
residue calculus complicated. Therefore, instead of Equations (40) and (41) we
consider

In6 =
∫ +∞

−∞
pn∏6

i=1 (p − pi)(p − p̄i)
dp, 0 ≤ n ≤ 10, (43)

In9 =
∫ +∞

−∞
pn∏9

i=1 (p − pi)(p − p̄i)
dp, 0 ≤ n ≤ 16, (44)

which are identical to Equations (40) and (41) when p4 and p7, p5 and p8, and
p6 and p9 are, respectively, set to p1, p2 and p3. Further, In3 , I

n
6 and In9 can be

expressed by the following two elementary integrals

I0m =
∫ +∞

−∞
1∏m

i=1 (p − pi)(p − p̄i)
dp, (45)

I1m =
∫ +∞

−∞
p∏m

i=1 (p − pi)(p − p̄i)
dp. (46)

It can be shown that I0m (1 ≤ m ≤ 3) and I1m (2 ≤ m ≤ 3) are needed for the
calculation of In3 which is required by the Green’s function, I0m (4 ≤ m ≤ 6) and
I1m (4 ≤ m ≤ 6) are needed for the calculation of In6 which is required by the first
derivative of the Green’s function, and I0m (7 ≤ m ≤ 9) and I1m (7 ≤ m ≤ 9)
are needed for the calculation of In9 which is required by the second derivative
of the Green’s function. So unified explicit expressions of I0m (1 ≤ m ≤ 9)
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and I1m (2 ≤ m ≤ 9) are required by unified explicit Green’s function and its
derivatives.

The expressions of In3 in terms of I0m and I1m are given by

I23 = I02 + 2 Re (p3)I13 − |p3|2I03 ,
I33 = I12 + 2 Re (p3)I23 − |p3|2I13 ,
I43 = I01 + 2 Re (p2 + p3)I33 − [|p2|2 + |p3|2 + 4 Re (p2)Re (p3)

]
I23

+ 2
[
Re (p2)|p3|2 + Re (p3)|p2|2

]
I13 − |p2|2|p3|2I03 , (47)

while for n = 0, 1,

I01 = π

β1
,

In2 = − π

β1β2
Im

(
pn1

p1 − p̄2

)
,

In3 = − π

2β1β2β3
Re

[
pn1

(p1 − p̄2)(p1 − p̄3)
+ pn2
(p2 − p̄1)(p2 − p̄3)

+ pn3
(p3 − p̄1)(p3 − p̄2)

]
, (48)

in which βi is the imaginary part of pi. It should be mentioned here that Inm are
real-valued.

The explicit expressions of In6 and I
n
9 required by the derivatives of the Green’s

function can be found in the Appendix 1.
Themost important advantage of Equation (48) is that the explicit expressions

are applicable not only when pi are distinct but also when some pi are identical
or any two of pi are very close to each other. This advantage will be verified by
the following numerical evaluation. Besides, the Green’s function in terms of the
unified explicit Inm (n = 0, 1,m = 1, 2, 3) can be easily proved to be equivalent to
the explicit expressions derived by Ting and Lee (1997).

3. Numerical implementations and results

In the previous sections,we presented three formulae of the 3Danisotropic elastic
Green’s function and its derivatives. In this section, we discuss and describe their
implementations. For convenience, the threemethods are, respectively, named as
the NIM, the residue calculusmethod (RCM), and the improved residue calculus
method (iRCM).

In contrast to the RCM and the iRCM, the NIM avoids the need of the Stroh
eigenvalues. Therefore, it is applicable in both non-degenerate and degener-
ate cases. The Gaussian quadrature is used for the numerical integration. The
number of the Gaussian points is 25 to ensure a comparable accuracy to the
other two methods. The Stroh eigenvalues required by the RCM and iRCM
can be obtained by finding the roots of D(p), or finding the eigenvalues of the
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fundamental elasticity matrix N (Hwu, 2010; Ting, 1996)

N =
(
N1 N2
N3 NT

1

)
, (49)

N1 = −T−1RT , N2 = T−1 = NT
2 , N3 = RT−1RT − Q,

in which
Qij = ckijlnknl , Rij = ckijlnkml , Tij = ckijlmkml , (50)

where n and m are two mutually orthogonal unit vectors on the oblique plane
perpendicular to x.

The material for the numerical examples is taken as the transversely isotropic
material Mg. When the symmetry axis of the material is along the x3-axis of the
Cartesian coordinate system, the non-zero components of the elasticity tensor
cijkl in Voigt notation are

C11 = C22 = 59.7GPa, C33 = 61.7GPa, C13 = C23 = 21.7GPa,
C12 = 26.2GPa, C44 = C55 = 16.4GPa, C66 = 16.75GPa. (51)

In order to check the correctness of the three formulae, the numerical results
of the three methods for the Green’s function and its derivatives at the point
(1, 2, 3) are compared with the analytical expressions (Pan & Chou, 1976). The
three methods are implemented by FORTRAN while the analytical expressions
are evaluated by MATHEMATICA. Tables 1 and 2 are the numerical results of
the NIM, the RCM and the iRCM as well as the analytical results. The underlined
digits agree perfectly with the analytical results. Therefore, we can conclude that
all the three formulae are correct.

It is easy to prove that for a transversely isotropic material whose symmetry
axis is along the x3-axis, there are usually three distinct Stroh eigenvalues, except
at the points on the x3-axis where there is only one Stroh eigenvalue pi = i, i.e.
we have a fully degenerate case. So the three formulae are evaluated around the
point (0, 0, 1) to investigate their ability to deal with nearly degenerate case. In
particular, the chosen evaluation points are x = (0, sin θ , cos θ) around θ = 0.
Figures 1–3 are the numerical results by the three methods evaluated near the
degenerate point (0, 0, 1). The results of the Green’s function and its derivatives
evaluated by the NIM and the iRCM agree well with each other, and are stable.
But the results evaluated by the RCMbecome unstable near the degenerate point.
Besides, the NIM and the iRCM can calculate the results at the fully degenerate
point, while theRCMcannot. It is observed that in theRCM, theGreen’s function
has the smallest unstable area while the second derivative of the Green’s function
has the largest one.

The FORTRAN programs of the three different methods are implemented
under the same computing environment. Figure 4 is a comparison of the com-
puting time required by the threemethods. Thematerial isMg, and the evaluated
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Table 1. Components of the Green’s function and its derivatives by the NIM with 25 Gaussian
points and analytical solutions for transversely isotropic material Mg at point (1, 2, 3).

NIM Pan and Chou (1976) Unit

G11 8.3782981337130575 × 10−4 8.3782981337130640 × 10−4

10−9m

G12 6.0007221557104541 × 10−5 6.0007221557104690 × 10−5

G13 8.0163881274800664 × 10−5 8.0163881274800705 × 10−5

G22 9.2784064570696238 × 10−4 9.2784064570696325 × 10−4

G23 1.6032776254960144 × 10−4 1.6032776254960141 × 10−4

G33 1.0578889644135979 × 10−3 1.0578889644135983 × 10−3

G11,1 −5.9117971638181820 × 10−6 −5.9117971638178034 × 10−6

1

G12,1 4.7768458294984388 × 10−5 4.7768458294984570 × 10−5

G13,1 6.1775349906881231 × 10−5 6.1775349906880784 × 10−5

G22,1 −8.4277163614102321 × 10−5 −8.4277163614102660 × 10−5

G23,1 −3.6777062735840222 × 10−5 −3.6777062735839842 × 10−5

G33,1 −1.2597090883943352 × 10−4 −1.2597090883943393 × 10−4

G11,11 −1.5317520185559242 × 10−5 −1.5317520185560475 × 10−5

109m−1
G12,11 −3.2300147619148905 × 10−5 −3.2300147619146344 × 10−5

G13,11 −4.7740579505162444 × 10−5 −4.7740579505166856 × 10−5

G22,11 −6.2581146860783276 × 10−5 −6.2581146860784102 × 10−5

G23,11 −2.1927033538652794 × 10−5 −2.1927033538654044 × 10−5

G33,11 −8.3977103691749630 × 10−5 −8.3977103691742474 × 10−5

Table 2. Components of the Green’s function and its derivatives by the residue calculus method
(RCM) and the improved residue calculus method (iRCM) for transversely isotropic materials Mg
at point (1, 2, 3).

RCM iRCM Unit

G11 8.3782981337141092 × 10−4 8.3782981337130402 × 10−4

10−9m

G12 6.0007221556859634 × 10−5 6.0007221557104867 × 10−5

G13 8.0163881274806153 × 10−5 8.0163881274800475 × 10−5

G22 9.2784064570683217 × 10−4 9.2784064570696130 × 10−4

G23 1.6032776254963158 × 10−4 1.6032776254960092 × 10−4

G33 1.0578889644135944 × 10−3 1.0578889644135964 × 10−3

G11,1 −5.9117971643756500 × 10−6 −5.9117971638177865 × 10−6

1

G12,1 4.7768458294935781 × 10−5 4.7768458294984333 × 10−5

G13,1 6.1775349906918487 × 10−5 6.1775349906880689 × 10−5

G22,1 −8.4277163613431945 × 10−5 −8.4277163614102633 × 10−5

G23,1 −3.6777062735798426 × 10−5 −3.6777062735839781 × 10−5

G33,1 −1.2597090883938349 × 10−4 −1.2597090883943341 × 10−4

G11,11 −1.5317520228453641 × 10−5 −1.5317520185560367 × 10−5

109m−1
G12,11 −3.2300147602260451 × 10−5 −3.2300147619146337 × 10−5

G13,11 −4.7740579727232704 × 10−5 −4.7740579505166646 × 10−5

G22,11 −6.2581147470664643 × 10−5 −6.2581146860783736 × 10−5

G23,11 −2.1927033545174070 × 10−5 −2.1927033538653885 × 10−5

G33,11 −8.3977104326935273 × 10−5 −8.3977103691742231 × 10−5

point is (1, 2, 3). The bottom box of each method represents the computing time
for the Green’s function which includes the time for determining the Gaussian
points and the weights in the NIM, and for finding the Stroh eigenvalues in
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Figure 1. Numerical evaluation of the Green’s function near the degenerate point (0, 0, 1) by the
three methods.

Figure 2. Numerical evaluation of the first derivative of the Green’s function near the degenerate
point (0, 0, 1) by the three methods.

the RCM and the iRCM. The middle box represents the additional computing
time for the first derivative of the Green’s function excluding the time for the
Green’s function. The total computing time for the second derivative of the
Green’s function is represented by the three boxes, i.e. the stacked column. From
Figure 4, the explicit methods, namely the RCM and the iRCM, have a higher
efficiency for computing the Green’s function and its first derivative compared
to the NIM, but may lose the advantage for computing the second derivative
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Figure 3. Numerical evaluation of the second derivative of the Green’s function near the
degenerate point (0, 0, 1) by the three methods.

Figure 4. Comparison of the computing time for the Green’s function and its derivatives by the
three methods.

of the Green’s function, especially, in the RCM. Besides, the iRCM has great
advantage in computing the first derivative of the Green’s function and is the
most efficient one among the three different methods for computing the first and
second derivatives of the Green’s function.

4. Conclusions

Three different methods for computing the Green’s function and its first and
second derivatives are presented in this paper. The Green’s function and its
derivatives are expressed in terms of three different kinds of line integrals. The
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first method is based on the direct numerical integration of the line integrals.
The second method is based on the explicit expressions derived by applying the
residue calculus with the distinctness assumption on the Stroh eigenvalues to the
line integrals, which are valid for non-degenerate cases. The used line integrals in
the first and second methods are the same. In the third method, the original line
integrals are expressed in terms of two elementary line integrals first. Then, they
are evaluated by simple pole residue calculus to obtain explicit expressions which
are recast into the novel unified explicit expressions. Although the unified explicit
expressions in the third method are derived with the distinctness assumption on
the Stroh eigenvalues, after the rewritten they are applicable also for degenerate
cases with repeated Stroh’s eigenvalues. The correctness of the expressions in
the three methods is confirmed by the numerical results of the Green’s function
and its derivatives for a transversely isotropic material at an arbitrary point, and
validated by the analytical results. The numerical results of the second method
near a degenerate point may become unstable, while the third method remains
applicable near the degenerate point as well as at the degenerate point. According
to the CPU times used by the three different methods for calculating the Green’s
function and its derivatives, the third method seems to be the most efficient one.
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Appendix 1. Explicit expressions of the auxiliary integrals for the
Green’s function and its derivatives
In this appendix, the explicit expressions of the auxiliary integrals required by the Green’s
function and its derivatives are given. More details to the explicit expressions can be found in
the recent works by Xie et al. (2013, 2016).

A.1. Auxiliary integrals for the Green’s function

For computing the Green’s function, the auxiliary integrals In3 (n = 0, 1, . . . , 4) are given by
Equations (47) and (48), which are not repeated here.

A.2. Auxiliary integrals for the first derivative of the Green’s function

For computing the first derivative of the Green’s function, the auxiliary integrals In6 (n =
0, 1, . . . , 10) in terms of I0m (m = 1, 2, . . . , 6) and I1m (m = 2, 3, . . . , 6) are needed, which are
determined by

I2k6 = I06−k −
2k∑
i=1

(− 1)iE(6(7−k))
i I2k−i

6 , (k = 1, 2, . . . , 5), (A1)

I2k+1
6 = I16−k −

2k∑
i=1

(− 1)iE(6(7−k))
i I2k+1−i

6 , (k = 1, 2, . . . , 4), (A2)

while for n = 0, 1 we have

In4 = π

4β21β2β3
Im

[ −ipn1
β1(p1 − p̄2)(p1 − p̄3)

+ pn2
(p2 − p̄1)2(p2 − p̄3)

+ pn3
(p3 − p̄1)2(p3 − p̄2)

+ 2F(n)0 (1, 2, 1̄, 3̄)+ F(n)0 (1, 1, 2̄, 3̄)
]
,

In5 = π

8β21β
2
2β3

Re
[ −pn1 i
β1(p1 − p̄2)2(p1 − p̄3)

+ −pn2 i
β2(p2 − p̄1)2(p2 − p̄3)

+ pn3
(p3 − p̄1)2(p3 − p̄2)2

+ 4F(n)1 (1, 2, 1̄, 2̄, 3̄)+ 2F(n)1 (1, 3, 1̄, 2̄, 2̄)

+ 2F(n)1 (2, 3, 1̄, 1̄, 2̄)+ F(n)1 (1, 1, 2̄, 2̄, 3̄)+ F(n)1 (2, 2, 1̄, 1̄, 3̄)
]
,

In6 = −π
16β21β

2
2β

2
3
Im

[ −pn1 i
β1(p1 − p̄2)2(p1 − p̄3)2

+ −pn2 i
β2(p2 − p̄1)2(p2 − p̄3)2

+ −pn3 i
β3(p3 − p̄1)2(p3 − p̄2)2

+ 4F(n)2 (1, 2, 1̄, 2̄, 3̄, 3̄)+ 4F(n)2 (1, 3, 1̄, 2̄, 2̄, 3̄)

+ 4F(n)2 (2, 3, 1̄, 1̄, 2̄, 3̄)+ F(n)2 (1, 1, 2̄, 2̄, 3̄, 3̄)+ F(n)2 (2, 2, 1̄, 1̄, 3̄, 3̄)

+ F(n)2 (3, 3, 1̄, 1̄, 2̄, 2̄)+ 4F(n)3 (1, 2, 3, 1̄, 2̄, 3̄)+ 2F(n)3 (1, 1, 2, 2̄, 3̄, 3̄)

+ 2F(n)3 (1, 2, 2, 1̄, 3̄, 3̄)+ 2F(n)3 (1, 1, 3, 2̄, 2̄, 3̄)
]
. (A3)
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In Equations (A1) and (A2),

E(kl)i =
⎧⎨
⎩
ei(pk , p̄k , . . . , pl , p̄l), l < k,

ei(pk , p̄k), l = k,
(A4)

where ei(x1, . . . , xn) is the elementary symmetric polynomial defined by

e1(x1, . . . , xn) =
n∑

i=1

xi ,

e2(x1, . . . , xn) =
∑

1≤i1<i2≤n

xi1xi2 ,

...

em(x1, . . . , xn) =
∑

1≤i1<···<im≤n

xi1 . . . xim ,

...

en(x1, . . . , xn) = x1x2 . . . xn. (A5)

In Equation (A3), the abbreviations pk=k and p̄k=k̄ are introduced for the variables of the
functions F(n)m ( . . . ) (n = 0, 1,m = 1, 2, 3), which are given by

F(0)0 (x1, . . . , x4) =
[ 4∏
i=3

(x1 − xi)(x2 − xi)

]−1

× (
x1 + x2 − x3 − x4

)
,

F(0)1 (x1, . . . , x5) =
[ 5∏
i=3

(x1 − xi)(x2 − xi)

]−1

× [(x1 − x3)(x1 − x4)+ (x1 − x3)(x2 − x5)+ (x2 − x4)(x2 − x5)],

F(0)2 (x1, . . . , x6) =
[ 6∏
i=3

(x1 − xi)(x2 − xi)

]−1

× [(x1 − x3)(x1 − x4)(x1 − x5)+ (x1 − x3)(x1 − x4)(x2 − x6)
+ (x1 − x3)(x2 − x5)(x2 − x6)+ (x2 − x4)(x2 − x5)(x2 − x6)],

F(0)3 (x1, . . . , x6) =
[ 6∏
i=4

(x1 − xi)(x2 − xi)(x3 − xi)

]−1

× [y22 − y1y3 + y3y4 + y2(− y1y4 + y24 − 2y5)

+ (y1 − y4)y6 + y5(y21 − y1y4 + y5)],
F(1)0 (x1, . . . , x4) = [

(x1 − x3)(x2 − x3)
]−1 + x4F

(0)
0 (x1, . . . , x4),

F(1)1 (x1, . . . , x5) = F(0)0 (x1, . . . , x4)+ x5F
(0)
1 (x1, . . . , x5),

F(1)2 (x1, . . . , x6) = F(0)1 (x1, . . . , x5)+ x6F
(0)
2 (x1, . . . , x6),

F(1)3 (x1, . . . , x6) = F(0)1 (x4, x5, x1, x2, x3)+ x6F
(0)
3 (x1, . . . , x6). (A6)
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In Equation (A6), the elementary symmetric polynomials yi are defined by

yi =
⎧⎨
⎩
ei(x1, x2, x3), i = 1, 2, 3,

ei−3(x4, x5, x6), i = 4, 5, 6.
(A7)

A.3. Auxiliary integrals for the second derivative of the Green’s function

For computing the second derivative of the Green’s function, the auxiliary integrals In9 (n =
0, 1, . . . , 6) in terms of I0m (m = 1, 2, . . . , 9) and I1m (m = 2, 3, . . . , 9) are required, which are
determined by

I2k9 = I09−k −
2k∑
i=1

(− 1)iE(9(10−k))
i I2k−i

9 , (k = 1, 2, . . . , 8), (A8)

I2k+1
9 = I19−k −

2k∑
i=1

(− 1)iE(9(10−k))
i I2k+1−i

9 , (k = 1, 2, . . . , 7). (A9)

Similarly to the integrals In4 , I
n
5 and In6 (n = 0, 1) given by Equation (A3), the other auxiliary

integrals In7 , I
n
8 and In9 (n = 0, 1) can be also expressed as regular functions of the Stroh

eigenvalues pi (i = 1, 2, 3). However, they are not listed here for the sake of brevity because
they are quite lengthy.

It should be mentioned here that the key idea to obtain the unified explicit expressions of
the auxiliary integrals In3 (n = 0, 1, . . . , 4) for the Green’s function, In6 (n = 0, 1, . . . , 10) for
the first derivative, and In9 (n = 0, 1, . . . , 16) for the second derivative of the Green’s function
is the elimination of the terms like (pi − pj) and (p̄i − p̄j) in the denominators of the auxiliary
integrals by proper rearrangements of the explicit expressions obtained by the simple pole
Cauchy residue calculus. Thus, they are valid for both non-degenerate and degenerate cases.
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