
European Journal of Computational Mechanics, 2016
VOL. 25, NOS. 1–2, 147–164
http://dx.doi.org/10.1080/17797179.2016.1181041

Boundary element analysis of 2D and 3D thermoelastic 
problems containing curved line heat sources

M. Mohammadia, M. R. Hematiyanb   and A. Khosravifardb 
aDepartment of Mechanical Engineering, College of Engineering, Shiraz Branch, Islamic Azad University, 
Shiraz, Iran; bDepartment of Mechanical Engineering, Shiraz University, Shiraz, Iran

ABSTRACT
Temperature and stress analysis of a medium with 
concentrated heat sources has some important applications 
in engineering. In this paper, a boundary element method 
for analysis of two- and three-dimensional thermoelastic 
problems containing curved line heat sources in isotropic 
media is presented. In these problems, the heat generation 
within the problem domain is concentrated over a 
curved path. In the conventional integral equations of 
thermoelasticity, the domain integrals are expressed in terms 
of the temperature function. In this work, modified integral 
equations, in which the domain integrals are expressed in 
terms of the heat source function is used. The shape of the 
curved line heat source and the intensity function along the 
source can be arbitrary. Temperature, displacement and stress 
analyses are performed without considering internal points 
and without any need to find the temperature distribution in 
the domain. Three numerical examples are presented to show 
the effectiveness and accuracy of the proposed method for 
two- and three-dimensional problems. Highly accurate results 
are obtained by the proposed method. It is concluded that the 
presented boundary element formulation is more efficient in 
comparison with the domain methods in which one needs to 
consider condensed nodes near the curved line heat source.

1.  Introduction

The thermoelastic analysis of problems with point and/or line heat sources has 
some important applications in electrical heating, modelling of electronic parts, 
laser heating (Khan & Yilbas, 2004) and internal cooling of single crystal alloys 
(Shiah, Guao, & Tan, 2005). Numerical methods are usually used for analysis of 
practical thermoelastic problems. The boundary element method (BEM) is an 
attractive and accurate tool for analysis of thermoelastic problems. The research 
on the boundary element analysis of thermoelastic problems started from 1977 
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(Rizzo & Shippy, 1977) and this subject is still an active area of research; see for 
example (Chekurin & Sinkevych, 2015; Liu, Li, & Huang, 2014; Ochiai, Sladek, 
& Sladek, 2013; Shiah & Tan, 2012).

There are limited studies on the modelling and analysis of thermoelastic prob-
lems involving heat sources. On the other hand, studies focusing on the ther-
moelastic problems involving line heat sources are rare. Shiah and Tan (2003) 
presented a 2D BEM formulation for steady-state anisotropic thermoelastic prob-
lems involving uniform heat sources. They transformed the domain integrals 
exactly into boundary integrals.

Shiah and Lin (2003) and Shiah and Huang (2005) analysed 2D anisotropic 
thermoelastic problems involving non-uniform heat sources using the multiple 
reciprocity BEM. Ochiai (2005) presented a triple-reciprocity BEM formula-
tion for 3D thermoelasticity involving non-uniform heat sources. Hematiyan, 
Mohammadi, Marin, and Khosravifard (2011) presented a BEM for analysis of 
two- and three-dimensional uncoupled thermoelastic problems involving time- 
and space-dependent distributed heat sources.

In the conventional boundary element (BE) formulation of thermoelastic 
problems, the domain integrals are expressed in terms of the temperature rise 
function. It is usually assumed that the temperature rise function is known 
over the domain and an attempt is made to evaluate the domain integrals with 
or without domain discretisation; see e.g. (Cheng, Chen, Golberg, & Rashed, 
2001; Gao, 2003). These domain integrals can be exactly transformed to the 
boundary in the cases where the temperature function is harmonic (Aliabadi, 
2002). In problems with a source of heat generation in the domain, the varia-
tion of temperature in the domain cannot be expressed by a harmonic function 
and it can be very complicated. In general cases with an arbitrary temperature 
function, the domain integrals should be evaluated with special methods such 
as the dual reciprocity method (Partridge & Brebbia, 1990; Partridge, Brebbia, 
& Wrobel, 1992), multiple reciprocity method (Neves & Brebbia, 1991; Nowak 
& Brebbia, 1989), triple reciprocity method (Ochiai, 2001a,b), radial inte-
gration method (Gao, 2002; Gao & Peng, 2011), or Cartesian transformation 
method (Hematiyan, 2007, 2008).

The temperature distribution in domains containing a point or a line heat 
source may be very complicated. Mohammadi, Hematiyan, and Aliabadi (2010) 
have formulated the displacement and stress integral equations of thermoelas-
ticity in a form in which domain integrals are expressed in terms of heat source 
function instead of temperature. By this formulation, the thermoelastic problems 
can be analysed with no need to find the temperature distribution in the domain.

As previously mentioned, there are only a few published papers regarding ther-
moelastic problems with concentrated heat sources (point and line heat sources). 
Shiah et al. (2005) presented a BEM formulation for the thermoelastic analysis 
of an anisotropic medium with point heat sources. They successfully analysed 
the problem with a boundary-only discretisation. Hematiyan, Mohammadi, and 



European Journal of Computational Mechanics    149

Aliabadi (2011) presented a boundary element method for analysis of 2D and 
3D thermoelastic problems involving concentrated heat sources. They success-
fully formulated the problem with boundary-only discretisation; however, they 
limited their attention to straight-line heat sources with a linear variation of the 
heat source intensity.

This study presents a boundary element method for analysis of 2D and 3D 
uncoupled linear thermoelastic problems in isotropic media containing curved 
line heat sources. The shape of the curved line heat source and its strength along 
the source can be arbitrary. The presented boundary element formulation for ther-
moelastic problems with curved line heat sources is more efficient in comparison 
with domain methods such as meshless methods or the finite element method. 
An accurate modelling of a curved line heat source using the domain methods 
requires the use of very condensed nodes near the heat source; however, in this 
study, only boundary discretisation is required and domain integrals are evaluated 
without internal cells and without any need to find the temperature distribution 
through the domain.

2.  Integral equations of 2D and 3D steady-state thermoelasticity 
involving heat sources

The governing equations of steady-state thermoelasticity can be expressed as 
follows:
 

 

where T is the temperature rise, k is the thermal conductivity, g is the heat source 
function, σij are components of the stress tensor, bi are components of body force 
vector and x is a point of the domain.

Strain components ɛij in terms of the displacement vector components ui can 
be expressed as follows:

 

Strain components in terms of stress components can be expressed as follows:

where E is Young’s modulus, ν is Poisson’s ratio and α is the coefficient of linear 
thermal expansion.

(1)kT,ii(x) + g(x) = 0

(2)�ij,j(x) + bi(x) = 0

(3)�ij =
1

2
(ui,j + uj,i)

(4)�ij =
1

E

[

(1 + �)�ij − ��ij�kk

]

+ �T�ij
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The temperature integral equation of steady-state heat conduction in an  
isotropic domain Ω with a boundary Γ is expressed as follows (Wrobel, 2002):

where � is the source point (singular point) and n represents the direction per-
pendicular to the boundary. C is a coefficient related to the local geometry at the 
source point. For an internal source point, C(�) is 1.0, for a source point located 
on a smooth boundary, C(�) is 1/2 and for a boundary source point located at a 
corner of a 2D problem, C(�) is �∕2� where γ is the corner angle. In this work, 3D 
problems are analysed using constant quadrilateral boundary elements and each 
boundary source point is located on a smooth part of the boundary (the middle 
point of the boundary element) and therefore, C(�) is 1/2. T* is the fundamental 
solution of the Laplace problem, which can be expressed by the following equation 
in 2D problems (Wrobel, 2002):

and in three dimensions is written as:

where r is the Euclidian distance between � and x.
The displacement integral equation of thermoelasticity without body force can 

be expressed as follows (Aliabadi, 2002):

where, tj represents the components of the traction vector and Cij are the free-term 
coefficients. For an internal source point, Cij(�) is δij, for a source point located 
on a smooth boundary, Cij(�) is �ij

/

2 and the free-term coefficients for a bound-
ary source point located at a corner point can be evaluated by consideration of 
rigid body motion (Aliabadi, 2002). For 3D problems with constant quadrilateral 
boundary elements, the source point is located at the middle point of the bound-
ary element and therefore, Cij(�) is �ij

/

2. U∗
ij and S∗ij in Equation (8) are Kelvin 

fundamental solutions for displacement and traction, respectively, which can be 
expressed as:

(5)C(�)T(�) = ∫
Γ

(

T∗(�, x)
�T(x)

�n
− T(x)

�T∗(�, x)

�n

)

dΓ +
1

k ∫
Ω

T∗(�, x)g(x)dΩ

(6)T∗ =
1

2�
ln

(

1

r

)

(7)T∗ =
1

4�r

(8)
Cij(�)uj(�) = ∫

Γ

(

U∗
ij (�, x)tj(x) − S∗ij(�, x)uj(x)

)

dΓ

+
E�

1−2�
∫
Ω
T(x)U∗

ik,k(�, x)dΩ

(9)U∗
ij =

1

8�G(1 − �)

[

(3 − 4�)�ij ln
1

r
+ r,ir,j

]
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for plane strain problems and as:

for 3D problems. G in the above equations represents the shear modulus. It is 
worth mentioning that a plane stress problem can be analysed as a plane strain 
problem, by a replacement of material constants (Noda, Hetnarski, & Tanigawa, 
2003).

The domain integral in Equation (8) is expressed in terms of the tempera-
ture function, i.e. T(x). In the thermoelastic problems with line heat sources, the 
distribution of the temperature in the domain is very complicated and accurate 
computation of this domain integral is very difficult. Mohammadi et al. (2010) 
have converted the domain integral in Equation (8) into a domain integral in 
terms of the heat source function. They showed that the displacement integral 
equation in Equation (8) could be expressed as follows:

For plane strain problems ωi is:

and in three dimensions ωi is expressed as:

Stress integral equation in terms of the heat source function is expressed as follows 
(Mohammadi et al., 2010):

(10)S∗ij =
−1

4�(1 − �)r

{

�r

�n

[

(1 − 2�)�ij + 2r,ir,j

]

− (1 − 2�)(r,inj − r,jni)
}

(11)U∗
ij =

1

16�G(1 − �)r

[

(3 − 4�)�ij + r,ir,j

]

(12)S∗ij =
−1

8�(1 − �)r2

{

�r

�n

[

(1 − 2�)�ij + 3r,ir,j

]

− (1 − 2�)(r,inj − r,jni)
}

(13)
Cij(�)uj(�) = ∫

Γ

(
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)

dΓ

+
�(1+�)

8�(1−�)
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Γ

(

T
��i
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�T
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)

dΓ −
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8�(1−�)k
∫
Ω
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(14)�i = −
�

�xi
(r2 ln r) = −ri(2 ln r + 1)

(15)�i =
�

�xi
(r) = r,i =

ri
r

(16)
�ij(�) = ∫

Γ

(

U∗
ijktk − S∗ijkuk

)
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Γ

(

�∗
ij
�T
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− �∗∗

ij T
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+
1

k
∫
Ω
�∗
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E�

(1−2�)
T(�)�ij
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where U∗
ijk and S∗ijk are the commonly used functions in the BEM formulation 

of elastostatic problems (Aliabadi, 2002; Paris & Canas, 1997). The singular 
functions �∗

ij and �∗∗
ij  are expressed for plane strain problems as (Mohammadi 

et al., 2010):

and for 3D problems as:

In the following sections, formulations for curved line heat sources in 2D and 3D 
thermoelastic problems are presented.

3.  The formulation for curved line heat sources in 2D thermoelastic 
problems

Consider a curved line heat source in a 2D domain Ω as shown in Figure 1. The 
shape of the source and its intensity function can be arbitrary and sufficiently 
complicated. At first, a formulation for a quadratic line heat source is presented. 

(17)�∗
ij =

E�

4�(1 − �)

[

(

ln
1

r
−

1 + 2�

2

) �ij

(1 − 2�)
− r,ir,j

]

(18)�∗∗
ij =

E�

4�(1 − �)r

[(

2r,ir,j −
�ij

1 − 2�

)

�r

�n
− (r,inj + r,jni)

]

(19)�∗
ij =

E�

8�(1 − �)r

(

�ij

1 − 2�
− r,ir,j

)

(20)�∗∗
ij =

E�

8�(1 − �)r2

[(

3r,ir,j −
�ij

1 − 2�

)

�r

�n
− (r,inj + r,jni)

]

Figure 1. A 2D domain containing a curved line heat source with only one quadratic segment and 
a general curved line heat source.
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An arbitrary curved line heat source can be modelled by considering several 
quadratic heat sources. It is also assumed that the intensity of the source has a 
quadratic variation along the heat source.

The intensity per unit length of the quadratic source at the starting point (x1, y1), 
middle point (x2, y2) and end point (x3, y3) are represented by g1, g2 and g3, respec-
tively. This source is modelled as a distributed heat source over a quadratic curved 
region with infinitely small width ɛ as shown in Figure 2.

Considering Equation (6), the heat source integral in the temperature integral 
equation, i.e. Equation (5), becomes:

 

Euclidian distance r from the singular point � = (xs, ys) to a point x = (x, y) on 
the quadratic heat source is:

x and y can be expressed as follows:

where the quadratic shape functions Nn are:

η is a local coordinate attached to the quadratic heat source that varies from −1 
to 1. The infinitesimal arc length dl can be written as:

(21)Ig =
−1

2�k ∫
lsource

g(x)

�
ln
[

r(�;x)
]

�dl

(22)r =

√

(

x − xs
)2

+ (y − ys)
2

(23)x =

3
∑

n=1

Nnxn y =

3
∑

n=1

Nnyn

(24)N1 =
1

2
�(� − 1)N2 = −(� + 1)(� − 1)N3 =

1

2
�(� + 1)

(25)dl =

√

dx2 + dy2 = Jd�

Figure 2. A quadratic heat source and its local coordinate system.



154    M. Mohammadi et al.

where J is the Jacobian of transformation and can be expressed as:

Considering a quadratic variation for intensity of the heat source, g(x) becomes:

Substituting Equation (25) and Equation (27) into Equation (21) leads to:
 

By using Equation (14), Equation (25) and Equation (27), the heat source integral 
in the displacement integral equation, i.e. Equation (13) becomes:

 

where ri are
 

Similarly, the heat source integral in the stress integral equation, i.e. Equation 
(16), can be expressed as:

 

Integrals in Equation (28), Equation (29) and Equation (31) can be evaluated 
using standard numerical integration methods.

4.  The formulation for curved line heat sources in 3D thermoelastic 
problems

Consider a quadratic heat source in a 3D domain Ω. This source is modelled as 
a distributed heat source over a bar-like geometry with infinitely small radius ɛ 
as shown in Figure 3. The intensity per unit length of the quadratic heat source 

(26)J =

√

√

√

√

√
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3
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d�

)2

+

(

3
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d�

)2

(27)g(x) =

3
∑
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−1

2�k

1

∫
−1

(

3
∑
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)
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∫
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3
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(30)r1 =
(
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(
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)
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−E�
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∫
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3
∑
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1 + 2�
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(1 − 2�)
+ r,i(�)r,j(�)

]

Jd�
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at the starting point (x1, y1, z1), middle point (x2, y2, z2) and end point (x3, y3, z3) 
are g1, g2, and g3, respectively.

Considering Equation (7), the heat source integral in the temperature integral 
equation, i.e. Equation (5), becomes:

 

Euclidian distance r from the singular point � = (xs, ys, zs) to a point x = (x, y, z) 
on the quadratic heat source is:

 

x, y and z can be written as:
 

where Nn are the quadratic shape functions, as expressed in Equation (24)
The infinitesimal arc length dl can be written as:
 

where J is the Jacobian of transformation and is expressed as follows:
 

Substituting Equation (35) and Equation (27) into Equation (32) leads to:
 

(32)Ig =
1

4�k ∫
lsource

g(x)

��2
1

r(�;x)
��2dl

(33)r =

√

(
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)2

+ (y − ys)
2 + (z − zs)

2

(34)x =

3
∑

n=1
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3
∑
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3
∑
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(35)dl =

√

dx2 + dy2 + dz2 = Jd�
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√

√

√

√

√

(

3
∑
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dNn
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)2
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(

3
∑

n=1
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dNn
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)2
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(

3
∑
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1
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∫
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r(�)
Jd�

Figure 3. The local coordinate η along the 3D quadratic line heat source.
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By using Equation (35), Equation (27) and Equation (15), the heat source integral 
in the displacement integral equation, i.e. Equation (13), becomes:

 

where ri are
 

Similarly, the heat source integral in the stress integral Equation (16) can be 
expressed as:

 

Similar to the 2D case, the integrals in Equation (37), Equation (38) and Equation 
(40) can be evaluated using standard numerical integration methods. The eight-
point Gaussian integration method is used in this work.

(38)Igi =
�(1 + �)

8�(1 − �)k

1

∫
−1

3
∑

n=1

Nngn

r(�)
ri(�)Jd�

(39)r1 =
(

x − xs
)

, r2 =
(

y − ys
)

, r3 =
(

z − zs
)

(40)Igij =
E�

8�(1 − �)k

1

∫
−1

3
∑

n=1

Nngn

r(�)

�

�ij

1 − 2�
− r,i(�)r,j(�)

�

Jd�

Figure 4. The BEM discretisation and boundary conditions of the circular domain with a circular 
heat source.
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5.  Numerical examples

In this part, two 2D examples and a 3D example are presented. In each example, 
the results obtained by the proposed BEM are compared with those of the FEM.

5.1.  A circular heat source with uniform intensity in a circular domain

In the first example, a circular domain with R = .5 m is considered. The struc-
tural and thermal boundary conditions of the problem are shown in Figure 4. 
This problem is analysed under plane strain condition with E = 200 GPa, ν = .3, 
� = 11.7 × 10−6 1∕ ◦C, k = 60 W∕m ◦C. The problem boundary is modelled by 32 
linear boundary elements. A curved heat source, which is distributed over a circle 
with radius r = .25 m is considered. The strength of the heat source is considered 
to be constant over the circle and equal to s = 4000 Wm−1.

In the BEM analysis, the circular heat source is modelled by only four quad-
ratic heat sources. The acquired BEM results are compared with the FEM results 
obtained using ANSYS. In the FEM analysis, the circular heat source is modelled 
by a distributed heat source in a ring with a small width, w = .01 m. The FEM 
mesh (9461 quadratic elements) is shown in Figure 5.

The obtained results for the temperature, vertical displacement and the nor-
mal stress in the x- and y- directions, along the y-axis are shown in Figure 6. The 
results obtained by the proposed BEM show a good agreement with those of the 
FEM with the fine mesh.

Figure 6 implies that the presented BEM formulation yields accurate results for 
the distribution of the temperature, displacement and stress fields.

Figure 5. The FEM mesh of the circular domain with the circular heat source.
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Figure 6.  The FEM and BEM results along the y-axis for the first example: (a) temperature,  
(b) vertical displacement, (c) normal stress in the x-direction and (d) normal stress in the  
y-direction.

Figure 7. The problem geometry and boundary conditions of the rectangular domain with an 
elliptic heat source.
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5.2.  A heat source with an elliptical shape and non-uniform intensity in a 
rectangular domain

In the second example, a rectangular .15 m  ×  .3 m domain is considered. The 
structural and thermal boundary conditions of the problem are shown in Figure 
7. This problem is analysed under plane strain condition with E = 200 GPa, ν = .3, 
� = 11.7 × 10−6 1∕ ◦C, k = 60 W∕m ◦C. The problem boundary is modelled by 
48 linear boundary elements. A curved heat source with an elliptical shape, cen-
tred at (.085, .065) is considered. The lengths of the major and minor radii of the 
ellipse are r1 = .04 m and r2 = .02 m, respectively.

The strength of the heat source is considered to be a function of � ∈ [0 2�] 
with the following form:

 

where β is the angular coordinate on the heat source, measured from the x-axis. 
In the BEM analysis, the elliptical heat source is modelled by only eight quadratic 
heat sources. The presented BEM results are compared with those of the FEM, 
obtained using ANSYS. In the FEM analysis, the elliptic heat source is modelled 
by a distributed heat source in an elliptic ring with a small width, w = .0025 m. 
The FEM mesh (4356 quadratic elements) is shown in Figure 8.

The obtained results for the temperature, vertical displacement, and the normal 
stress along line A-B are shown in Figure 9. Here again, the results obtained by the 
proposed BEM show a good agreement with those of the FEM with a fine mesh.

(41)s = 40, 000[1 + cos (�)] (Wm−1)

Figure 8. The finite element mesh of the rectangular domain with the elliptic heat source.
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5.3.  Two circular heat sources with non-uniform intensity in a cube

In this example, a cube, of length L = 10 m, as shown in Figure 10, is considered. 
All faces are kept at T = 0∘C and the displacements in the direction normal to all 
faces are zero. Thermomechanical properties of the material are E = 200 GPa, 
ν = .3, � = 11.7 × 10−6 1∕◦C, k = 60 W∕m ◦C. 600 constant boundary elements are 
used to model the problems with the BEM. This example problem is also analysed 
by the finite element method as a means of comparison of the numerical results. 
The commercial software package, ANSYS, is employed for the FE analysis; and 
quadratic 3D elements are utilised for meshing of the problem domain.

In this example, two curved heat sources, which are distributed over two circles 
with radius R = 2.5 m are considered. The first circular heat source is centred at 
(5,6,5) and the second one is centred at (5,4,5).

The strengths of the sources are considered to be functions of � ∈ [0 2�] with 
the following forms:

 

(42)
s1 = 10000[1 + cos (�)] (Wm

−1
)

s2 = 20000[1 + cos (�)] (Wm
−1
)

Figure 9.  The FEM and BEM results along line A-B for the second example: (a) temperature,  
(b) vertical displacement and (c) normal stress in the x-direction.

Figure 10. Schematic representation of (a) the problem domain and its geometry, and (b) the 
corresponding BEM discretisation.
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where β is the angular coordinate on the heat sources, measured from the x axis 
(see Figure 10).

In the BEM analysis, each circular heat source is modelled by only four quad-
ratic heat sources. The obtained BEM results are compared with those of the 
FEM. In the FEM analysis, each circular heat source is modelled by a distributed 
heat source in a torus with the small minor radius r = .2 m. The finite element 
meshing of the domain with quadratic 3D elements is shown in Figure 11. The 
whole domain is meshed with 56,669 quadratic elements and 77,182 nodes. In 

Figure 11.  The FE mesh of the cube with two circular heat sources: (a) 56,669 quadratic 3D 
elements, and (b) 77,182 nodes.

Figure 12.  The BEM and FEM results for (a) the temperature, (b) the displacement in the  
y-direction and (c) the normal stress in the x-direction, along the line x = z = 5.

Figure 13.  The BEM and FEM results for (a) the temperature, (b) the displacement in the  
z-direction and (c) the normal stress in the x-direction along the line x = y = 5.
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order to visualise the position of the curved heat sources inside the domain, only 
a cut-out of the FE mesh is shown in Figure 11(a). The nodal arrangement of the 
mesh is depicted in Figure 11(b).

The obtained results for the temperature, displacement and stress along the 
line x = z = 5 and the line x = y = 5 are shown in Figures 12 and 13, respectively. 
As it can be seen, the results obtained by the BEM are in an excellent agreement 
with the FEM solutions.

6.  Conclusions

A boundary element formulation for the analysis of 2D and 3D thermoelastic 
problems in isotropic media containing internal curved line heat sources was 
presented. The shape of the curved line heat source can be arbitrary and compli-
cated. The variation of the intensity of the curved line heat source can be arbitrary 
along the source as well. For accurate modelling of a curved line heat source in 
the domain methods such as the FEM, a distributed heat source over a small 
part of the domain and a large number of nodes should be considered. However, 
curved line heat sources can be efficiently modelled in the proposed BEM without 
considering additional degrees of freedom. Three examples were presented to 
show the effectiveness of the presented BEM formulation. The obtained numerical 
results show that the proposed method gives accurate results even with a small 
number of boundary elements. Extension of the proposed method to anisotropic 
thermoelastic problems can be useful too; however it is somewhat cumbersome 
because of the complicacy of the fundamental solutions for anisotropic problems.
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