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ABSTRACT
We have been investigating applications of a level set-based
topology optimisation for wave devices with the boundary
element method. For two-dimensional electro-magnetic wave
problems, we have, so far, proposed a topology optimisation
which can find a configuration of dielectric materials to locally
minimise an objective functional such as the intensity of
transverse electric (TE) or transverse magnetic (TM) polarised
wave with a specific frequency. As an extension of our
methodology, this paper presents a multi-objective topology
optimisation, which can deal with some objective functionals
simultaneously. The present method, for instance, can find a
material distribution which can locally minimise the intensity
of both TM and TE waves with multiple frequencies. The basic
idea of the proposed method is to use the weighted sum or
the Kreisselmeier–Steinhause function of the original objective
functionals as a newobjective functional. We present a derivation
of the topological derivative for the newobjective functional, and
a detailed algorithm of the optimisation process with the derived
topological derivative.We also present somenumerical examples
to illustrate the validity and efficiency of the proposed method.
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1. Introduction

Structural optimisations have intensively been studied, and have successfully
been applied to design problems in some engineering fields. The topology opti-
misation (Bendsøe & Kikuchi, 1988) is now considered to be the most flexible
optimal design method among structural optimisations since it can design not
only the shape but also the topology (i.e. the number of holes or inclusions)
of devices. Since the original aim of the topology optimisation was to design
stiff materials with a preset volume constrain, the topology optimisation has
been developed mainly in the field of structural mechanics (Bendsøe & Kikuchi,
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1988; Sethian & Wiegmann, 2000; Wang, Wang, & Guo, 2003; Yamada, Izui,
Nishiwaki, & Takezawa, 2010).

Recently, one of the main trends in the community of the optimal design
is to enhanced the applicability of the topology optimisation to problems in
various engineering fields other than structural mechanics, such as thermal
problems (Jing, Isakari, Matsumoto, Yamada, & Takahashi, 2015; Yamada, Izui,
& Nishiwaki, 2011), fluid problems (Papoutsis-Kiachagias & Giannakoglou,
2015; Yaji et al., 2014), wave problems (Isakari et al., 2014; Jensen, 2007;Novotny,
Feijóo, Taroco, & Padra, 2007), etc. Let us review some publications for topology
optimisations inwave problems. Jensen (2007) proposed a topology optimisation
to manipulate reflection and dissipation of elastic waves, and Byun and Park
(2007) designed a waveguide for electromagnetic waves, both of which employ
a continuous material function as the design variable. When the continuous
material function is used, the obtained material distribution may suffer from
so-called grayscale problems. In order to overcome the grayscale problem,
Otomori et al. (2013) utilised the level set function (Wang et al., 2003; Yamada
et al., 2010) to design optical cloaks. With the level set function, they have
successfully designed optimal cloaks with clear boundaries. We think, however,
that the applicability of the above methods to real engineering problems is still
limited because all of them utilise the finite element method (FEM) to solve
the wave problems involved in the process of the sensitivity analysis. When the
FEM is utilised to solve wave scattering problems in an unbounded domain, the
unbounded domain is approximated with a large one, which leads to unexpected
large-scale problems. Further, an artificial boundary condition, such as perfect
matched layer (PML) (Turkel & Yefet, 1998), is required to let the numerical
solutions satisfy the radiation condition. Thus, the domain-type solvers like FEM
are not suitable for optimisation problems in wave problems.

To overcome the difficulties to deal with the wave problem in unbounded
domain, we have been investigating applications of a level set-based topology
optimisation for wave devices with the boundary element method (BEM).When
the BEM is utilised for wave problems, the unbounded domain can exactly be
expressed with the small number of elements since only boundary element mesh
is required in the BEM, and the numerical solution automatically satisfies the
radiation condition.We have developed topology optimisations for sound waves
in 3D (Isakari et al., 2014; Kondo, Isakari, Takahashi, & Matsumoto, 2014) and
electro-magnetic wave problems in 2D (Abe, Isakari, Takahashi, & Matsumoto,
2013) and in 3D (Kourogi, Isakari, Takahashi, Yamada, & Matsumoto, 2013).
We have, so far, got stuck in so-called single-objective optimisation problems,
in which a single-objective functional is considered. In Abe et al. (2013), the
objective functional is defined as the intensity of either transverse electric (TE)
or transverse magnetic (TM) polarised wave with a specific frequency at some
observation points. In order to use the topology optimisation to design industrial
products, it is important, for instance, to minimise the intensity of both TM and
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Figure 1. Domains.

TEwaves with multiple frequencies.We propose, in this paper, a multi-objective
optimisation method to find a configuration of dielectric material(s) which
minimises multiple objective functionals in two-dimensional electro-magnetic
wave problems.

The paper is organised as follows. After reviewing the fundamental equa-
tions for two-dimensional electro-magnetic wave problems in Section 2.1, the
topological derivative, which characterises the sensitivity of objective functionals
to a change of the topology, for multiple objective functionals is presented in
Section 2.2. Section 2.3 is devoted to present the fast multipole boundary element
method (FMBEM) which is utilised to evaluate the topological derivative. In
Section 3, we present the formulation of the proposed topology optimisation
method by the topological derivative along with a detailed re-meshing procedure
in the optimisation problems. We show some numerical examples to show
the validity and the efficiency of the proposed methodology in Section 4, and
summarise the paper in Section 5.

2. Topological derivative and its numerical evaluation

In this section, we derive the topological derivative (Novotny, Feijóo, Taroco, &
Padra, 2003) formulti-objective optimisation problems, and present a numerical
method to evaluate the topological derivative with the FMBEM.

2.1. Electro-magnetic wave problems inR
2

In this subsection, we review fundamental equations for electro-magnetic wave
problems in R

2.
Let us consider a domain defined in Figure 1. �i (i = 1, 2) is filled with a

dielectric material with permittivity εi and permeabilityμi while�p is filled with
perfect electrical conductor (PEC), both of which are uniform in x3 direction.We
assume that �1 is an infinite domain, and �2 and �p are bounded. We denote
∂� and ∂�p as � and �p, respectively.
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When � := �1 ∪�2 ∪�p is impinged by the TE incident wave H in =
(0, 0, uin)t , the total magnetic field H = (0, 0, u)t is governed by the following
equations:

∇2u(x)+ k2i u(x) = 0 x ∈ �i (i = 1, 2), (1)
lim

x∈�1→x∈� u(x) = lim
x∈�2→x∈� u(x), (2)

lim
x∈�1→x∈�

(
1
ε1

∂u(x)
∂n

)
= lim

x∈�2→x∈�

(
1
ε2

∂u(x)
∂n

)
, (3)

∂u(x)
∂n

= 0 x ∈ �p, (4)

u(x) → uin(x) as |x| → ∞, (5)

where ki := ω
√
εiμi is the wave number, ω is the angular frequency and n is the

outward normal vector of� on� ∪ �p. When� is impinged by the TM incident
wave Ein = (0, 0, vin)t , the total electric field E = (0, 0, v)t is governed by the
following equations:

∇2v(x)+ k2i v(x) = 0 x ∈ �i (i = 1, 2), (6)
lim

x∈�1→x∈� v(x) = lim
x∈�2→x∈� v(x), (7)

lim
x∈�1→x∈�

(
1
μ1

∂v(x)
∂n

)
= lim

x∈�2→x∈�

(
1
μ2

∂v(x)
∂n

)
, (8)

v(x) = 0 x ∈ �p, (9)
v(x) → vin(x) as |x| → ∞. (10)

We henceforth denote the boundary value problems (1)–(5) and (6)–(10) as
TE problem and TM problem, respectively. Note that functions u and v are
considered to be independent solutions of two-dimensional electro-magnetic
wave problems.

The TM and TE problems can be written in the following unified notation:

αi∇2w(x)+ βiw(x) = 0 x ∈ �i (i = 1, 2), (11)
lim

x∈�1→x∈�w(x) = lim
x∈�2→x∈�w(x), (12)

lim
x∈�1→x∈�

(
α1
∂w(x)
∂n

)
= lim

x∈�2→x∈�

(
α2
∂w(x)
∂n

)
, (13)

(γw)(x) = 0 x ∈ �p, (14)
w(x) → win(x) as |x| → ∞, (15)
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where w, αi, βi (i = 1, 2) and γ are chosen, in the case of TE problem, as

w = u (16)

αi = 1
εi
, (17)

βi = ω2μi, (18)

γ = ∂

∂n
, (19)

and, in the case of TM problem, as:

w = v (20)

αi = 1
μi

, (21)

βi = ω2εi, (22)
γ = 1. (23)

2.2. Topological derivative ofmulti-objective functionals

In this section, let us present the topological derivative of an objective func-
tional for multi-objective optimisation problems. We consider, for example, the
following composite function J of two objective functionals Je and Jm:

J = F(Je, Jm), (24)

where F is a functional, and Je and Jm have the following representations:

Je = 1
2

M∑
m=1

f (u(xobsm )), (25)

Jm = 1
2

M∑
m=1

f (v(xobsm )), (26)

where u and v are solutions of TE problem (1)–(5) and TM problem (6)–(10),
respectively. Also, f is a functional, and xobsm (m = 1, . . . ,M) is an observation
point where the functional f is defined.

The rest of this subsection is devoted to derive the topological derivative of the
objective functional (24). To this end, we first evaluate the topological derivative
of the following functional J :

J = 1
2

M∑
m=1

f (w(xobsm )), (27)

where w, which represents either magnetic or electric field, is a solution of the
boundary value problem (11)–(15).



170 H. ISAKARI ET AL.

The topological derivative T is defined as follows:

δJ(x) = T (x)a(r)+ o(a(r)) x ∈ �1 ∪�2, (28)

where δJ(x) represents a perturbation of the objective functional J when an
infinitesimal circular dielectric material of radius r with material constants of
(ε1,μ1) is introduced in x ∈ �2 (or, an infinitesimal circular dielectric material
with (ε2,μ2) is introduced in x ∈ �1), and a(r) is a monotonically increasing
function for r > 0. Let us now evaluate the perturbation δJ , which is associated
with the perturbation δw of w as follows (Isakari et al., 2014):

δJ = �
[ M∑
m=1

∂f (xobsm )

∂w
δw(xobsm )

]
. (29)

In the case that �r with (ε2,μ2) appears on x ∈ �1, and w becomes as w(x) +
δw(x) for x ∈ �i (i = 1, 2) and ŵ(x) for x ∈ �r , δw and ŵ are governed by the
following boundary value problem:

α1∇2δw(x)+ β1δw(x) = 0 x ∈ �1 \�r , (30)
α2∇2δw(x)+ β2δw(x) = 0 x ∈ �2, (31)
α2∇2ŵ(x)+ β2ŵ(x) = 0 x ∈ �r , (32)

lim
x∈�1→x∈� δw(x) = lim

x∈�2→x∈� δw(x), (33)

lim
x∈�1→x∈�r

(w(x)+ δw(x)) = lim
x∈�2→x∈�r

ŵ(x), (34)

lim
x∈�1→x∈�

(
α1
∂δw(x)
∂n

)
= lim

x∈�2→x∈�

(
α2
∂δw(x)
∂n

)
, (35)

lim
x∈�1→x∈�r

(
α1
∂(w(x)+ δw(x))

∂n

)
= lim

x∈�2→x∈�r

(
α2
∂ŵ(x)
∂n

)
, (36)

(γ (w + δw))(x) = 0 x ∈ �p, (37)
δw(x) → 0 as |x| → ∞, (38)

where �r represents ∂�r . Note that, if we use (29) to evaluate δJ , δw is required
to be evaluated on all observation points xobsm , (m = 1, . . . ,M), which is totally
impractical. That requires to solve the boundary value problem (30)–(38) as is. In
order to eliminate δw(xobsm ) in the expression for δJ in Equation (29), an adjoint
variable w̃, which is governed by the following boundary value problem (Bonnet
& Nemitz, 2007), is introduced:
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αi∇2w̃(x)+ βiw̃(x)+ δ1i

M∑
m=1

∂f (xobsm )

∂w
δ(x − xobsm ) = 0 x ∈ �i, (39)

lim
x∈�1→x∈� w̃(x) = lim

x∈�2→x∈� w̃(x), (40)

lim
x∈�1→x∈�

(
α1
∂w̃(x)
∂n

)
= lim

x∈�2→x∈�

(
α2
∂w̃(x)
∂n

)
,

(41)
(γ w̃)(x) = 0 x ∈ �p, (42)

w̃(x) → 0 as |x| → ∞, (43)

where δ(x) is the Dirac delta. Note that, to derive the adjoint Equation (39),
we have assumed xobsm ∈ �1. δw(xobsm ) in Equation (29) can be replaced by the
adjoint variable w̃ with the help of the reciprocal theorem. In the limit of r → 0,
δJ is asymptotically expressed (Carpio & Rapún, 2008) as follows:

δJ(x) = �
⎡
⎣2α1(α1 − α2)

α1 + α2

2∑
j=1

∂w(x)
∂xj

∂w̃(x)
∂xj

+ (β2 − β1)w(x)w̃(x)

⎤
⎦

×
∫
�r

d�+ o(r2). (44)

By comparing Equation (28) with Equation (44), we have the topological deriva-
tive of the single-objective functional in Equation (27) as follows:

T (x) = �
⎡
⎣2α1(α1 − α2)

α1 + α2

2∑
j=1

∂w(x)
∂xj

∂w̃(x)
∂xj

+ (β2 − β1)w(x)w̃(x)

⎤
⎦ . (45)

Note that we have chosen a(r) in Equation (28) as a(r) = πr2.
In this study, we employ μi = 1 (i = 1, 2) as is often the case. Then, the

topological derivative Te of the objective functional Je in Equation (25) for the
TE problem is represented as:

Te(x) = �
⎡
⎣ 2(ε2 − ε1)

ε1(ε2 + ε1)

2∑
j=1

∂ũ(x)
∂xj

∂u(x)
∂xj

⎤
⎦ , (46)

and the topological derivative Tm in TM problem is represented as:

Tm(x) = �[ω2(ε2 − ε1)ṽ(x)v(x)], (47)

where ũ and ṽ are the solutions of the adjoint problem (39)–(43) with Equations
(17)–(19) and Equations (21)–(23), respectively. In the case that an infinitesimal
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material with (ε1,μ1) appears in�2, the associated topological derivative can be
obtained by interchanging (ε1,μ1) and (ε2,μ2) in the expressions (46) and (47).

The topological derivative T of the composite function (24) can be evaluated
with the following chain rule:

T = ∂F
∂Je

Te + ∂F
∂Jm

Tm, (48)

where the partial derivatives can be evaluated in a standard manner.
In multi-objective optimisations, the weighted sum of objective functionals

Jsum with some constants ce and cm as:

Jsum = ceJe + cmJm, (49)

is often used as the objective functional. According to Equation (48), the topo-
logical derivative Tsum of the weighted sum (49) is evaluated as follows:

Tsum = ceTe + cmTm. (50)

Another possible choice of the multi-objective functional can be, for exam-
ple, the Kreisselmeier–Steinhause (KS) function which enables us to minimise
max{Je, Jm}, represented as follows:

JKS = ln
(
exp (ceJe)+ exp (cmJm)

)
, (51)

and the topological derivative for (51) is evaluated by Equation (48) as follows:

T = ceTe exp (ceJe)+ cmTm exp (cmJm)
exp (weJe)+ exp (wmJm)

. (52)

Above formulations for the topological derivative (48) can trivially be exten-
ded to a more general objective function J = F(J1, J2, . . . , Jn) of the arbitrary
number n of objective functions Ji (i = 1, . . . , n) as T = ∑n

i=1
∂F
∂Ji Ti, where Ti

represents the topological derivative of Ji.

2.3. The fastmultipole boundary elementmethod

In order to evaluate the topological derivatives (50) or (52), it is required to solve
the forward (11)–(13) and the adjoint (39)–(41) problems, both of which are
defined in an unbounded domain. When we use a domain-type solver to handle
the boundary value problems, we have to truncate the unbounded domain. We
also need some manipulations on the truncated boundary such as PML (Turkel
&Yefet, 1998) to let the numerical solution satisfy the radiation condition. In this
paper, we use the FMBEM (Greengard & Rokhlin, 1987; Rokhlin, 1985), which
can deal appropriately with wave problems in unbounded domain, to solve the
forward and adjoint problems. In this section, we briefly present the formulation
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of the FMBEM for the forward problem. The adjoint problem can be solved in
the exact same manner.

The forward problem in Equations (11)–(13) can be reformulated with the
following boundary integral equation:

⎛
⎝γ ∗

x win
p

win

α1qin

⎞
⎠ =

⎛
⎜⎝

1
2I + γ ∗

x X −γ ∗
x D1

1
α1
γ ∗
x S1

X −(D1 + D2)
1
α1

S1 + 1
α2

S2

α1X
′ −(α1N1 + α2N2) (DT

1 + DT
2 )

⎞
⎟⎠

⎛
⎝γ ∗

x wp
w
α1q

⎞
⎠ , (53)

where q and qin are the normal derivative of the total fieldw and the incident field
win, respectively. Also, Si, Di, DT

i and Ni for i = 1, 2 are the integral operators,
respectively, defined as follows:

(Siq)(x) =
∫
�

Gi(x − y)q(y)dS(y), (54)

(Diu)(x) =
∫
�

∂Gi(x − y)
∂n(y)

u(y)dS(y), (55)

(DT
i q)(x) =

∫
�

∂Gi(x − y)
∂n(x)

q(y)dS(y), (56)

(Niu)(x) =
∫
�

∂2Gi(x − y)
∂n(x)∂n(y)

u(y)dS(y), (57)

In the TE problem, X ,X ′
and γ ∗

x are, respectively, defined as follows:

(Xu)(x) = −
∫
�p

∂G1(x − y)
∂n(y)

u(y)dS(y), (58)

(X ′
u)(x) = −

∫
�p

∂2G1(x − y)
∂n(x)∂n(y)

u(y)dS(y), (59)

γ ∗
x = 1. (60)

In TMmode, X ,X ′
and γ ∗

x are defined as follows:

(X q)(x) =
∫
�p

G1(x − y)q(y)dS(y), (61)

(X ′
q)(x) =

∫
�p

∂G1(x − y)
∂n(x)

q(y)dS(y), (62)

γ ∗
x = ∂

∂n(x)
. (63)

In Equation (53), the operator γ ∗
x A is defined as:

(γ ∗
x Au)(x) = γ ∗

x (Au)(x), (64)
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for an operatorA. Also,Gi is the fundamental solution of theHelmholtz equation
defined as follows:

Gi(x − y) = i
4
H(1)
0 (ki|x − y|), (65)

where i = √−1 and H(1)
n is the Hankel function of the first kind and nth order.

The boundary integral Equation (53) is known as the PMCHWT formulation
(Chew, 1995) which has the unique solution.

Krylov-based algebraic solvers require a (fast) evaluation technique of the
integrals (54)–(57), (58), (59), (61) and (62) which is carried out by the fast
multipole method (FMM) (Greengard & Rokhlin, 1987; Rokhlin, 1985) in this
paper. The FMM is summarised in what follows. We are now interested in
evaluating the following integral ψ(x):

ψ(x) =
∫
S
Gi(x − y)q(y)dS(y), (66)

where S is a subset of � which is far from the evaluation point x. We take a point
X near x, and a point Y near y which satisfy the following relation:

|x − X + Y − y| < |X − Y |. (67)

With these settings, the fundamental solution (65) can be expanded as follows:

Gi(x − y) = i
4

∞∑
m=−∞

∞∑
k=−∞

(− 1)mO−k−m(
−→
YX)Im(

−→
Yy)Ik(

−→
Xx), (68)

where In and On are the entire solutions of Helmholtz’ equation and radiating
solutions of Helmholtz’ equation which are singular at the origin, respectively.
By substituting (68) into (66), we obtain the following local expansion of ψ(x):

ψ(x) = i
4

∞∑
k=−∞

Ik(
−→
Xx)L−k(X), (69)

where L−k is the coefficient of the local expansion as follows:

L−k(X) =
∞∑

m=−∞
O−k−m(

−→
YX)Mm(Y), (70)

whereMm is the multipole moment as follows:

Mm(Y) = (− 1)m
∫
S
Im(

−→
Yy)q(y)dS(y). (71)

Equation (70) is called the M2L formula. The FMM algorithm requires us to
move the multipole moment and the coefficient of the local expansion, which is
achieved by the following formulae:
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M
(Y ′) =
∞∑

m=−∞
I
−m(

−→
YY ′)Mm(Y), (72)

L
(X ′) =
∞∑

m=−∞
I
−m(

−→
XX ′)Lm(X). (73)

Equations (72) and (73) are called M2M and L2L formula, respectively. All
infinite sums in (70), (72) and (73) are appropriately truncated in numerical
experiments according to the wave number (Ohnuki & Chew, 2003). In the
implementation of the FMM, a hierarchical quad tree is utilised to letX,Y , x and
y satisfy Equation (67).

We can now compute RHS of (53) for a given boundary data since evaluation
of Equations (54)–(57), (58), (59), (61) and (62) can be done in a similar manner
as the aboveprocedure.Hence,we cannowsolve the algebraic equations obtained
as discretised Equation (53) using an iterative solver. Oncewe obtain the solution
(w and q) in (53), w and its derivative in the fixed design domain D which are
required to evaluate the topological derivative, can be evaluated by the following
representation:

w(x) = δi1win(x)+ (Siq)(x)− (Diu)(x)+ (Xγ ∗
x wp)(x) x ∈ �i, (74)

∂w(x)
∂xj

= δi1
∂win

∂xj
(x)+ ∂(Siq)

∂xj
(x)− ∂(Diu)

∂xj
(x)+ ∂(Xγ ∗

x wp)

∂xj
(x) x ∈ �i,

(75)

which can also be evaluated with the FMM.

3. A level set-based topology optimisation

In this section, we present a topology optimisation method with the level set
function and the topological derivative presented in the previous section.

3.1. Optimisation problem and associated level setmethod

Our objective is to find a shape and a topology of �2 ⊂ D which minimise
the multi-objective functional (24), where D is a bounded fixed design domain.
To this end, we here utilise the level set-based topology optimisation (Sethian
& Wiegmann, 2000). The level set method can be classified into two types, one
of which utilises the shape derivative (Allaire, Jouve, & Toader, 2004; Sethian
& Wiegmann, 2000; Wang et al., 2003) while the other utilises the topological
derivative (Amstutz & Andrä, 2006; Burger, Hackl, & Ring, 2004; He, Kao, &
Osher, 2007; Yamada et al., 2010). In this paper, we adopt the latter type of
optimisation since it can naturally deal with topological changes. We specifically
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use the one proposed by Yamada et al. (2010), which employs the reaction-
diffusion equation to evolve the level set function. The level set function, denoted
as φ(x), is defined as follows:⎧⎨

⎩
0 < φ(x, t) ≤ 1 ∀x ∈ �1(t),
0 = φ(x, t) ∀x ∈ �(t),
−1 ≤ φ(x, t) < 0 ∀x ∈ �2(t),

(76)

where t is a fictitious time which corresponds to an optimisation step. With the
help of the level set function (76), our optimisation problem is defined as ‘Find
an optimal distribution of φ which minimises J in Equation (24) subject to
both TE and TM problems’. Since the optimisation problem is difficult to solve
directly, we explore the optimum distribution of φ from an initial guess φ0 by
the following time evolution equation:

∂φ(x, t)
∂t

= sgn(φ(x, t))CT (x, t)+ τ
2�φ(x, t) x ∈ D, t ∈ R
+, (77)

φ(x, 0) = φ0(x) x ∈ D, (78)

where C > 0 is a constant, 
 is a characteristic length of D and τ > 0 is a
regularisation parameter. The first term of RHS of the evolution Equation (77)
works to decrease the objective functional (49). When the topological derivative
at x ∈ � is negative, it is favourable to put a scatterer at x. This can be achieved by
decreasingφ in the case that x is located in�1, and by increasingφ in the case that
x is located in �2. The second term of RHS of Equation (77) is a regularisation
term, which prohibits a sharp spatial change of the level set function. When φ
is concave up in the neighbourhood of x, φ(x) is increased. We also introduce a
boundary condition on ∂D for φ to limit�2 inside D as follows:

φ(x, t) = d x ∈ ∂D, (79)

where d is a positive constant. Note that the initial-boundary value problem for
the evolution of the level set function (77), (78) and (79) can appropriately be
solved by a domain-type solver such as the FEM since the problem is defined on
the bounded domain D and D is irrelevant to the fictitious time t. Solving the
evolution Equation (77) by the BEM is possible but not efficient since Equation
(77) involves the source term (the first term in RHS). In this case, a domainmesh
is required even when the BEM used. Hence, in the present study, the FEM is
employed to solve the evolution equation.

3.2. Meshing procedure

In order to run the FMBEM for the calculation of the topological derivative T in
Equation (77), it is required to generate boundary element mesh corresponding
to the distribution of the level set function. In this subsection, the meshing
procedure is presented.
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Figure 2. Generation of the boundary mesh.

Figure 3. Definition of symbols related to boundary elements.

The value of the level set function is stored on a grid point of lattice ex-
panding the design domain D. We explore a set of nodes Xnode of boundary
elements defined as Xnode = {x|φ(x) = 0 and x is on a lattice edge} by linearly
interpolating the value of the level set function φ on the lattice edge (Figure 2).
By connecting the nodes x ∈ Xnode, we have n boundary elements denoted as
�i (i = 1, . . . , n). With this construction, theminimum value of the length of the
boundary elements are not necessarily bounded from below, which may give an
ill-conditioned coefficient matrix. In order to avoid this situation, we improve
the boundary mesh by the following strategy. Let us denote the length of �i as li,
and nodes of �i as x1i and x2i for i = 1, . . . , n as in Figure 3. Using the Ferguson
curve, the interval between x1i and x2i are interpolated as follows:

x(u) = (2u3 − 3u2 + 1)x1i + (− 2u3 + 3u2)x2i + (u3 − 2u2 + u)t1i
+ (u3 − u2)t2i , (80)

where u ∈ [0, 1] is a local coordinate and t1i and t2i are tangent vectors at x
1
i and

x2i , respectively. t
1
i and t2i are evaluated as follows:

t1i = li(x2i−1 − x1i−1)

li−1
, (81)

t2i = li(x2i+1 − x1i+1)

li+1
. (82)
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We improve the boundary mesh using the Ferguson curve. First, we search
boundary elements �i whose length li is less than a preset value ls. When li
satisfies the condition, we eliminate �i by merging x1i and x2i to x(0.5) (Figure
4 left). We henceforth denote the length of the shortest edge after applying this
process to all of the boundary elements as lmin. Second, we divide each boundary
element into c parts by putting new nodes at u = 1/c, . . . , (c − 1)/c on the
Ferguson curve (80). c is a constant defined as follows:

c =
[
cdiv li
lmin

]
(i = 1, . . . , n), (83)

where cdiv is a constant with which fineness of the mesh is defined and [x]
represents the largest integer which is smaller than x. For instance, in the case of
c = 2, the point x(0.5) is added as a new node (Figure 4 right). By following this
procedure, the length of each boundary element will be about the same degree
of lmin/cdiv.

3.3. Algorithm

Combining all techniques presented above, the algorithm of the proposed topol-
ogy optimisation is summarised as follows:

(1) The fixed design domain D is divided into finite elements.
(2) An initial distribution of the level set function φ0 is given on nodes of the

finite elements.
(3) Boundary elements are generated from the distribution of φ by the proce-

dure presented in Section 3.2.
(4) The forward boundary value problem in Equations (11)–(15) is solved by

the FMBEM presented in Section 2.3.
(5) The objective functional is evaluated by the FMBEM. When the objective

function converges, stop.
(6) The adjoint boundary value problem in Equations (39)–(43) is solved by

the FMBEM presented in Section 2.3.
(7) Topological derivative in Equation (48) is evaluated on the nodes of the

finite elements.
(8) Distribution of the level set function φ is obtained as the solution of the

boundary value problem in Equations (77), (78) and (79) by the FEM. Go
to 3.

4. Numerical experiments

In this section, we present some numerical examples to show the validity and the
efficiency of the proposedmethod.We first state common issues for all examples:

• The boundary integral Equation (53) is discretised with the constant
element.
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Figure 5. Settings for the verification of the topological derivatives (50) and (52).

• To solve algebraic equations involved in the BEM, we used GMRES whose
tolerance is set to be 10−10.

• Rectangular isoparametric finite elements are used to solve the evolution
Equation (77). The number of the finite elements is approx. 10,000.

4.1. Verification of the topological derivative

We first check the validity of the topological derivative (48) of the composite
objective functional (24). In this example, we consider the settings in Figure 5,
i.e. four dielectric materials �2 of ε2 = 3 are set in the host dielectric material
with ε1 = 1, the incident wave is set as the plane wave with frequency ω = 0.5
propagating in x1 direction. The objective functionals are defined as the sum
of the intensity of electric (Jm) and magnetic (Je) fields on observation points
xobsm = {x|x1 = −35, x2 = 20 + 2m} (m = 1, . . . , 10) as:

Je = 1
2

10∑
m=1

|u(xobsm )|2, (84)

Jm = 1
2

10∑
m=1

|v(xobsm )|2. (85)

With these settings, we have computed the topological derivatives of the
weighted sum (49) and the KS function (51) of Je and Jm with ce = cm = 1.
As a reference solution, we calculated the ‘topological difference D’, which is
calculated in the following procedure:

(1) The objective function is calculated for the initial configuration of�1∪�2.
The calculated objective function is denoted as Jbefore.

(2) A small spherical scatterer�r of radius r = 0.05 is introduced in�1∪�2.
The objective function is calculated for (�1 ∪ �2) \ �r . The calculated
objective function is denoted as Jafter.
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Figure 6. Topological derivatives of (left:) the weighted sum (right:) the KS function.

(3) The topological difference D is calculated as follows:

D = Jafter − Jbefore
πr2

. (86)

For this experiment, we used the conventional BEM without FMM because
the difference between Jbefore and Jafter is tiny. To keep significant digits of the
difference Jafter − Jbefore, it is crucially important to calculate Jbefore and Jafter in
a considerably accurate manner. We typically need to calculate Jbefore and Jafter
in 10-digits accuracy or more. On the other hand, the accuracy for the FMM
is controled by the truncation number for the infinite sums involved in the
formulations for the FMM (Equations (69), (70), (72) and (73)). When we try to
guarantee the 10-digits accuracy for the FMM, the computational efficiency of
the FMM is less than that of the conventional BEM due to the huge truncation
number for the infinite sums. Hence, we have chosen to use the conventional
BEM to validate the topological derivative with the topological difference.

In Figure 6, we have plotted the topological derivatives Tsum and TKS on
x1 = 30 along with the topological differenceD. We observe that the topological
derivatives agree well with the references, from which we confirm the validity of
the topological derivative of the composite function calculated by the chain rule
in Equation (48).

4.2. Optimisation of dielectric materials with perturbed permittivity

In this section, we consider a topology optimisation problem in Figure 7 to find
�2 ⊂ D = [0, 90]⊗[0, 90]whichminimises the following 10 objective functions
simultaneously:
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Figure 7. Settings for the perturbed permittivity problem.

J(i)e = 1
2

M∑
m=1

|u(i)(xobsm )|2 (i = 1, . . . , 5), (87)

J(i)m = 1
2

M∑
m=1

|v(i)(xobsm )|2 (i = 1, . . . , 5), (88)

where u(i) for i = 1, 2, 3, 4 and 5 are the solutions of the TE problem in Equations
(1)–(5) with ε1 = 1.0 and ε2 = 2.0, 2.5, 3.0, 3.5 and 4.0, respectively. Also,
v(i) is the TM counterpart of u(i). xobsm are 12 observation points set as xobsm =
{xobsm |x1 = 80 + 2n for n = 0, . . . , 6, x2 = −20 and 110}. As the incident wave,
plane wave with frequency ω = 0.333 propagating in x1 direction is used. This
model is regarded as a problem to find an allocation of dielectric material(s)
which minimises the intensity of both electric and magnetic fields regardless of
the permittivity of the dielectric material(s) to be used. To deal with the multiple
objective functions (87) and (88), we consider the weighted sum and the KS
function of J(i)e and J(i)m . An optimal distribution of �2 is explored from the
initial guess indicated in Figure 7, i.e. four dielectric materials of radius r =
9.75. Although we have used non-dimensional variables, one can appropriately
convert the variables to ones with units. For example, when the radius of the
initial dielectric rod r = 9.75 is assumed to be r = 487.5mm, the frequency of
the incident wave corresponds to 0.5GHz (microwave).

Figure 8 shows the obtained configurations in the case of the weighted sum
and the KS function. In both cases, the topology of the dielectric materials has
changed from that of the initial guess (Figure 7). As a reference, we have solved
single-objective optimisation problems, i.e. an allocation of dielectric material(s)
�2 which minimises either J(3)e or J(3)m (Figure 9). One observes that the obtained
configurations for the single-objective optimisation problems are considerably
different from ones for the multi-objective optimisation problems (Figure 8). In
what follows, we examine the performance of each configuration.
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Figure 8. Obtained optimal configurations for (left:) the weighted sum (right:) the KS function.

Figure 9. Optimal configurations to minimise (left:) J(3)m (right:) J(3)m .

Figure 10 shows the sum of the intensity of electric and magnetic fields on
the observation points against ε2. While the single-objective optimisation can
effectively decrease the intensity by the specific dielectric material of ε2 = 3.0,
the performance for other materials of different permittivity is not sufficient. For
materials with larger permittivity, the intensity is even increased compared with
the initial value in the case of the single-objective problem. For the case that the
multi-objective optimisations are used, although the intensity with ε2 = 3.0 is
slightly larger than the single-objective one, the intensity is decreased for wide
range of ε2. Especially, when the KS function is employed, the obtained curves
are almost flat, from which it is concluded that the KS function is effective when
the multiple objective functions are concerned.
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Figure 10. Objective functional values vs ε2 for the case of (left:) TMmode (right:) TE mode.

4.3. Wideband optimisation

We next consider another multi-objective topology optimisation problem in
Figure 11 to find �2 ⊂ D = [0, 90] ⊗ [0, 90] which minimises the following 6
objective functionals simultaneously:

J(i)e = 1
2

M∑
m=1

|u(i)(xobsm )|2 (i = 1, . . . , 3), (89)

J(i)m = 1
2

M∑
m=1

|v(i)(xobsm )|2 (i = 1, . . . , 3), (90)

where u(i) for i = 1, 2 and 3 are the solutions of TE problem in Equations (1)–
(5) with ω = 3.0, 4.0 and 5.0, respectively. Also v(i) is the TM counterpart of
u(i). xobsm are 12 observation points set as xobsm = {xobsm |x1 = 120 + 10j for j =
0, 1, 2, x2 = 40 + 5k for k = 0, 1, 2}. As the incident wave, plane wave with
frequencyω propagating in x1 direction is used. The initial guess of the allocation
of dielectric materials are the same with the ones in the previous subsection. For
this example, only the KS function of the objective functions (89) and (90),
with ce = cm = 1, is concerned since the effectiveness of the KS function is
already confirmed in the previous subsection. Figure 12 shows the obtained
configuration which minimises the KS function of (89) and (90). The topology
of the obtained configuration is different from the initial guess (Figure 11).
Table 1 shows the objective functions, and Figures 13 and 14 show the electric
intensity of TMmode and the magnetic intensity of TE mode around the design
domain D, respectively. One observes that the obtained configuration of the
dielectric materials (Figure 12) can decrease the intensity of the fields on the
observation points for all frequencies concerned. With these observations, we
conclude that the proposed methodology can appropriately deal with wideband
optimisation problems.
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Figure 11. Settings for the wideband optimisation problem.

Figure 12. Optimal configuration for the wideband optimisation problem.

Table 1. Objective functions for the initial and optimised configurations in the case of the
wideband optimisation.

Initial Optimised

ω = 0.3 ω = 0.4 ω = 0.5 ω = 0.3 ω = 0.4 ω = 0.5

TE 6.361 6.856 2.302 0.2067 0.2692 0.1508
TM 7.673 7.299 3.077 0.7555 0.2694 0.1948

4.4. Optimal design of a cloaking device for both TE and TMmodes

To show that the proposed method can also effectively solve a relatively compli-
cated problem, we consider an optimal design of a cloaking material. We here
define the optimisation for the cloakingdesign as to find anoptimal configuration
of the dielectric material which minimises the KS function (51) of the following
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Figure 15. Settings for the cloaking problem.

Figure 16. (Left:) Initial (right:) optimal configuration. The black circle represents the PEC to be
cloaked. Grey coloured domains represent dielectric materials.

Figure 17. History of the objective functional for the cloaking problem.
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Figure 18. Electric fields (TMmode) for (left:) bare PEC, (right:) initial configuration, (left:) optimal
configuration.

functionals Je and Jm:

Je =
M∑

m=1

|u(xobsm )− uin(xobsm ))|2, (91)

Jm =
M∑

m=1

|v(xobsm )− vin(xobsm ))|2, (92)

where u and v are, respectively, the solution of the TE in Equations (1)–(5) and
TM in Equations (6)–(10) problem with a circular PEC �p of radius r = 10
located at (50, 50) and dielectric materials of (ε1, ε2) = (1.0, 3.0). The incident
wave is defined as a plane wave with frequency ω = 0.314 propagating in x1
direction. Also, the observation points are collocated in equal interval λ/10 in
a grey area in Figure 15, where λ = 20 is the wave length of the incident wave.
These settings are considered as design of cloaking for visible light. Indeed, for
example, when the radius of the PEC r = 10 is assumed to be r = 283.5nm,
the frequency of the incident wave corresponds to 628.5THz. Total number of
the observation points ends up with M = 2290 with this setting. The objective
functionals (91) and (92) indicate that the intensity of scattering fields by the
PEC�p is minimised in this optimisation problem.

Since, for this problem, the shape of the PEC �p does not change in the
optimisation process, the design domain D is defined as D = ([0, 100] ⊗
[0, 100]) \ �p. An optimal configuration of �2 ⊂ D is explored from the initial
configuration in the left figure of Figure 16. The initial configuration of dielectric
materials is set by putting dielectric materials where the topological derivative
(52) for the case of �2 = ∅ is negative. After 200 steps of the optimisation
process, an optimal configuration in the right figure of Figure 16 is obtained.

Figure 17 shows the convergence history of each objective functional. Both
objective functionals are decreased to comparable level. Figures 18 and 19,
respectively, show electric and magnetic fields around the design domain for
the case without cloaking, for initial configuration and for the obtained cloak.
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One observes that the scattering from the PEC is reduced by the obtained cloak,
and plane incident wave is reconstructed by the cloak in the right figures.

5. Conclusions

Wehave presented a topology optimisationmethod to find an optimal configura-
tion of dielectric material(s) which minimises some objective functionals simul-
taneously. We have shown that the composite functional of objective functions
can appropriately evaluated with the chain rule. After the topological derivative
is validated with a numerical experiment with the FMBEM, we have shown some
numerical examples with the level set method in which some objective functions
are minimised simultaneously. We have shown that the proposed methodology
can be used to solve wideband optimisation problem, optimal design problem of
cloaking, etc. Although we have restricted ourselves to two-dimensional electro-
magnetic wave problems, the proposed methodology can straightforwardly be
used in other fields of engineering, including acoustics, elasticity and thermal
problems in two- or three-dimensions.
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