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A vortex approach for unsteady insect flight analysis in 2D
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ABSTRACT
This paper considers 2D insect wing motion in which the flow
field does not change in the out-of-plane direction. When
modelling complex phenomena, simpler, but not overly simple,
analysis techniques become imperative. We achieve the balance
of simplicity and accuracy by a technique based on the vortex.
The wing is represented by its chord, described by a line in
2D. During the unsteady flapping, a time-dependent circulation
pattern is developed over the wing, modelled by the distribution
of discrete line vortices. Themagnitudes of the bound vortices on
the wing are determined by the non-penetration condition. Two
vortices at the wing’s leading and trailing edges are shed. The
velocity is determined by the bound and wake vortices using 2D
Biot–Savart law, which is also used to convect wake vortices. The
entire cycle is repeated as the time progresses. While establishing
a simple affordable numerical method for flapping wing analysis
andhighlighting its remarkableperformance, the limitationof the
method is delineated and recommendationsmade in comparison
withmore accurate solutions obtained by a Navier–Stokes solver.
Thiswill ensure the proper use of themethod and avoid itsmisuse
in the unsteady aerodynamics analysis.
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1. Introduction

The study of insect flight has been a relatively new area of research motivated
by the emerging MAV (micro aerial vehicle) technology rather than for its own
interest. In the spirit of biomimicry, learning from nature helps design engineers
come up with new and effective flapping mechanisms used by MAVs. Insects
move their wings using the muscles in the thorax. Unlike birds and bats, which
are equipped with muscles and bones built into the wings, insect wings are free
from these, making them simpler and lighter. This is the major reason we study
insects, rather than other flying animals, for the inspiration of very light weight
MAV design.

Themajor thrust in computational fluid dynamics has been in the steady-state
analysis, in which the fluid field remains constant. The steady-state assumption
serves the majority of the analysis for the flight of fixed-wing aeroplane. With
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the advent of MAVs that use flapping, the importance of reliable computational
techniques for unsteady analysis has been sought. Many have resorted to the ex-
tension of the existingCFD techniques, typically the finite volumemethod (Liu&
Aono, 2009), into the unsteady domain. Some have invented and developed new
techniques suitable for the unsteady problem, such as the immersed boundary
method (Wang, 2005). Common to most of them is the assumption of viscous
flow leading to some form of Navier–Stokes equation solvers. This is because,
for low Reynolds number flow, such as in most of the flapping phenomena, the
effect of viscosity is prevalent. This makes the solution expensive and restricts
the range of solvable problems narrow.

When modelling complex phenomena, such as the flapping flight, simpler
analysis techniques become imperative. However, they cannot be overly simple
such as the quasi-static approximation that misses the essence of the unsteady
phenomena. The balance is achieved by techniques based on the vortex. Quite
a few variations of methods using the vortex exist (Katz & Plotkin, 2001; Lewis,
1991), but they are all equivalent in the sense that the influence function based
on Biot–Savart formula is used, leading to the Boundary Element-like approach
rather than the Finite Element- or Finite Volume-like domain approach. When
the fluid domain is concerned, the former, unlike the latter, does not require
meshing of the domain, leading to less data intensive approach. One of the basic
ideas of this paper comes from (Ansari et al., 2006a, 2006b; von Kármán & Sears,
1938 and McCune & Tavares, 1993), in which the discrete vortex distribution
along the aerofoil and in the wake was used for the solution of unsteady 2D
ideal flow problems. The most remarkable feature, initiated by von Kármán &
Sears and inherited by the rest of the authors listed above, is the use of impulses
(linear and angular) and their derivatives to calculate the force and moment
on the aerofoil. This approach is simpler and more elegant than the alternative
approach using the unsteady Bernoulli equation. However, while the latter can
provide the force and moment locally for any point over the wing, the former
can only give them on the wing as a whole. This impulse approach is suitable for
rigid wings as in this paper. If we need to calculate the local deformation on the
wing, the Bernoulli equation must be used.

The approach outlined above is also inspired by the discrete vortex method
of Belotserkovsky (Belotserkovsky et al., 1993; Belotserkovsky & Lifanov, 2003),
whopioneered the solutionprocedure of the unsteady viscous problemsusing the
discrete vortices coupledwith the boundary layer analysis to deal with the viscous
and turbulent unsteady problems in the framework of potential flow theory. In
applying this approach to the insect flight analysis, the entire domain is divided
into three regions: thin wing, viscous boundary layer around the wing and the
surrounding infinite inviscid fluid. The boundary layer, in turn, is modelled by
an array of discrete vortices bound on the wing. Unlike finite thickness wings,
which were the main focus of Belotserkovsky, there is no need to perform the
viscous boundary layer analysis to find out the flow separation points along the
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Figure 1. Space-fixed (Õ − ξ̃ η̃), wing-fixed (O − ξη) and wing-translating (Ô − ξ̂ η̂) coordinate
systems.

thin wing, at high angles of attack, since these points are known to be the leading
edge (LE) and trailing edge (TE) of the wing. While most of the vortex-based
methods use Kutta condition for the shedding of edge vortices, it is not enforced
at all. Rather, vortices are regularly shed from the LE and TE of the wing. Since
the density of the bound vortex at these edges is reduced to zero immediately after
shedding, it effectively satisfies the Kutta condition at these points. Comparison
of the current shedding approach to the traditional way of enforcing the Kutta
condition gives the outcome in favour of the former. Thus, the flow separation is
modelled by the shedding of vortices from these two edges. Once these vortices
are shed they become wake vortices which convect with the fluid velocity. This
procedure is applicable regardless of the values of the Reynolds number; for
large Reynolds numbers, the number of vortices increases and the problem of
turbulence is reduced to the many-wake-vortices problem in the inviscid fluid.

2. 2Dmotion of flapping insect wing

2.1. Coordinate systems

Three coordinate systems are employed to describe the local and global positions
of the wing as shown in Figure 1. The wing, represented by a solid line in the
figure, is assumed to be thin and rigid. The original infinitely long (in the span
direction) wing is represented by its intersection with the 2D plane. The shape
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of this cross section represents the chord of the wing, which is represented either
locally by the wing-fixed system O − ξη or globally space-fixed system Õ − ξ̃ η̃.
The geometry of the wing is described by a set of (ξ , η) values, which remains
constant; its global position is described by the corresponding set (ξ̃ , η̃), which
varies during the motion of the wing. The wing undergoes two translational
(lunge and heave) and one rotational (pitch) motions. The origin of the third
coordinate system, Ô − ξ̂ η̂, is placed at the centre of rotation of the wing, which
could coincide with the coordinate origin O of the wing-fixed system or, in
general, located at a distance a along the negative ξ axis, defining the rotational
offset. In addition the axes, ξ̂ and η̂, of this last system is parallel to the global ξ̃
and η̃, respectively. While the wing-fixed system rotates and translates with the
wing, the system Ô− ξ̂ η̂ only translates and is called the wing-translating system.

2.2. Wing position

The typical insect flight motion in 3D consists of three components of rotation,
roll, pitch and yaw, in addition to another three translational components. For
insects with a long wing span length, such as dragonflies, damselflies and crane
flies, the flow in the middle of the span approximately remains constant in the
span direction. This justifies the 2D modelling of the wing motion provided the
right and left wing pitch and roll are symmetric and the yaw is absent. This
paper considers such a class of 2D wingmotions, in which the flow field does not
change in the out-of-plane direction. In 2D the pitch remains as original in 3D
but the roll, in 2D, is recast as a translational motion consisting of the heave (up
and down) and lunge (forward and back) components. These motions are added
to the genuine translational motion of the insect.

While the rolling of a finite length insect wing, either right or left wing, in
3D is described by the rotation around the body axis, it is represented, in 2D, by
a translational motion of an infinitely long wing along the stroke line. Figure 2
shows the projection of the stroke plane with the 2D plane as a straight inclined
line (stroke line) with the slope, β , measured positive counterclockwise from the
horizontal line. This angle is called the stroke line angle as shown in Figure 2. This
translational motion is decomposed into the horizontal (lunge), L, and vertical
(heave), H , components. The wing undergoes another kind of rotation around
the wing span, which is called the pitch denoted by α. The forward pitch, in
the down-stroke direction with α < 0, is called the pronation and the backward
pitch, in the direction of the up-stroke with α > 0, is called the supination.

Since the lunge and heave in 2D originate from the rolling in 3D, it is
convenient to introduce a hypothetical 3D wing, of the same chord length as
the 2D wing but with a finite span length l. Also introduce the upper and lower
stroke angles, φT and φB, respectively, undergone by this 3D wing as shown in
Figure 3. These three quantities are taken from the actual insect flight motions
and can be used to specify the extent of the stroke line, which is obtained by
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Figure 2. Stroke line of length d and angle β . Pitch γ and attack angle α.
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Figure 3. The stroke plane view of thewing’s topmost (φT ) and bottommost (φB) positions. Wings
on left and right sides are shown, each at the extreme positions.

projecting the 3D wing geometry into 2D. The time variation of the lunge and
heave is expressed using the sinusoidal functions.

The pitch motion, in principle, is assumed to take place at the extremes of
each stroke as a sudden rotation. The pronation occurs at the top of the stroke by
pitching the wing in the downward direction, while the supination is induced at
the bottomof the stroke in the upwarddirection.However, pitchmotions of some
insects occur before reaching the top or bottom stroke point (advanced pitch)
and others show the pitch after (delayed pitch). Also notice that most insects
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Figure 4. Translational and rotational velocities of thewing-translating andwing-fixed coordinate
systems.

do not have the capability to pitch instantaneously and the rotation is smoothed
out. Our pitch motion reflects this fact and a smoothed out step function is used.

The effect of the ambient air velocity, (U ,V), is incorporated by moving
the wing itself in the direction opposite to the air velocity under zero ambient
velocity. We assume the constant air velocity and the total translational motion
of the wing are obtained by superposing the contributions from the flapping
motion and the air velocity to give (L − Ut,H − Vt), where t is the time.

All the wing position variables introduced are displayed in Figure 1. Here,
(L − Ut,H − Vt) gives the coordinates of the wing-translational system origin
Ô, α gives the slope of the ξ -axis of the wing-fixed system and a is the distance
of the origins of the wing-fixed and wing-translating systems. The details of the
wing motion are given in Appendix 1.

2.3. Wing velocity

Figure 4 shows the translational velocity, (L̇−U , Ḣ−V ), of the wing-translating
system origin and the superposed translational (L̇−U , Ḣ−V ) and rotational (α̇)
velocities of the wing-fixed system origin. The centre of rotation is located at the
origin Ô of the wing-translational system. Given these wing velocity parameters,
we can calculate the velocity of an arbitrary point P = (ξ , η) on the wing, which,
in the wing-translating system, is given by the coordinates (ξ̂ , η̂). The linear
velocity resulting from the rotation of point P̂ around Ô is given by the cross
product
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rÔP̂ × ( − α̇k), (1)

where k is the out-of-plane unit vector.
In 2D, it is convenient to use complex variables. Let ζ̂ = ξ̂ + iη̂ and ζ = ξ + iη

to describe complex-valued positions of the wing in the wing-translating and
wing-fixed systems, respectively. They are related by

ζ̂ = (a + ζ )e−iα.

The complex-valued velocity (1) is given by

[V
ξ̂

+ iVη̂]rot = α̇ζ̂ e−iπ/2 = −iα̇ζ̂ , (2)

where e−iπ/2 rotates the complex position vector ζ̂ by 90◦ in the clockwise
direction. Combined with the complex-valued velocity of the origin Ô,

[V
ξ̂

+ iVη̂]trans = L̇ − U + i(Ḣ − V),

we get the total velocity of the point P̂ (or equivalently P) on the wing

Vζ̃ = V
ξ̂
+iVη̂ = (L̇−U)+i(Ḣ−V)−iα̇ζ̂ = (L̇−U)+i(Ḣ−V)−iα̇(a+ζ )e−iα.

(3)
Since the wing-translating and space-fixed coordinate axes are parallel, this gives
the space-fixed expression of the wing velocity

Vξ̃ = V
ξ̂

= L̇ − U + α̇(η cos (α) − (a + ξ) sin (α)), (4)

Vη̃ = Vη̂ = Ḣ − V − α̇((a + ξ) cos (α) + η sin (α)). (5)

in terms of the wing-fixed coordinates.
In this paper, the wing is assumed straight and the complex unit normal vector

is given by
n = nξ + inη = i (6)

in the wing-fixed system and by

ñ = nξ̃ + inη̃ = ne−iα = ie−iα (7)

in the space-fixed system. The normal velocity of the wing is given, from (4)–(7),
by

Vñ = �(V̄ζ̃ ñ) = Vξ̃nξ̃ + Vη̃nη̃, (8)

where �() is the real part of a complex variable.
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3. Vortex equations

3.1. Single vortex

The complex potential function (Sears, 2011) for a line vortex, with the circula-
tion 
 and location ζ̃0 = ξ̃0 + iη̃0, is given by

ω(ζ̃ ) = − i

2π

log (ζ̃ − ζ̃0), (9)

where ζ̃ = ξ̃ + iη̃ and ζ̃0 are complex position vectors in the space-fixed system.
The circulation is positive counterclockwise. The conjugate of the complex
velocity induced by this vortex at ζ̃ is given by

v(ζ̃ ) = dω

dζ̃
= − i


2π
1

ζ̃ − ζ̃0
, (10)

where v(ζ̃ ) = vξ̃ + ivη̃ and an overbar (̄) indicates the complex conjugate.
When the distance between the observation and vortex points gets closer,

the velocity at the observation point increases. This tendency becomes prevalent
when the number of wake vortices increases. In order to avoid the excessive
magnitude of the velocity, we introduce the Rankine vortex (Acheson, 1990) in
Appendix 2.

All equations in Sections 3 and 4 are based on the formula (10). When the
Rankine vortexmodel, as introduced inAppendix 2, is used, these equations need
to be modified according to the Rankine vortex model Equations (B1 ) and (B2).
Specifically, the velocity within the vortex core should be modified by Equation
(B2), while the velocity outside the core remains as described by Equation (10)
or (B1).

3.2. Discretisation of the wing

Introduce m vortices, 
j at ζ̃0j (j = 1, 2 . . . ,m) and m − 1 collocation points ζ̃i
(i = 1, 2 . . . ,m−1) on the wing. The vortices are placed at the LE and TE and in
between. The spacing of the vortex points could be equidistant at the middle and
gradually narrowed towards the edges. The number of vortices originally placed
at an equal interval ism0; as described in Appendix 3, this arrangement is refined
by adding four more vortices at the two ends of the wing to give m = m0 + 4.
The collocation points are placed at the midpoints of vortex points.

3.3. Influence coefficients

The complex conjugate velocity at the wing collocation point ζ̃i due to a vortex

j at ζ̃0j is given by

v̄ij = − i
j

2π
1

ζ̃i − ζ̃0j
. (11)
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The normal component of this velocity at the collocation point is given, from
Equation (8), by

vñij = �(v̄ijñi) = 
j

2π
�
(

ñi
ζ̃i − ζ̃0j

)
≡ Vñ

ij
j, (12)

where ñi is given by Equation (7) at the collocation point, � is the imaginary part
of a complex variable and

Vñ
ij = 1

2π
�
(

ñi
ζ̃i − ζ̃0j

)
, (13)

is the influence coefficient.

4. System of equations for discrete vortices on the wing

4.1. Contribution from the bound vortices on thewing

Upon the initiation of the flappingmotion, the vortices are developed on thewing
and no wake is present. So the first set of equations consists only of the bound
vortices. The more general equations including the bound and wake vortices are
developed after this.

Add contributions from the entire discrete bound vortices on the wing to get
the normal velocity component at the collocation point ζ̃i,

vñi =
m∑
j=1

Vñ
ij
j, (14)

whereVñ
ij is given by Equation (13). The non-penetration condition requires that

this normal velocity must be equal to the normal velocity of the wing,Vñ
i , at each

collocation point,
m∑
j=1

Vñ
ij
j = Vñ

i , (15)

for collocation points i = 1, 2, . . . ,m − 1. An additional equation, required
to match the number of m unknowns, 
i, is given by the conservation of the
vortices,

m∑
j=1


j = 0, (16)

which is the consequence of Helmholtz’s third theorem (Katz & Plotkin, 2001;
Ashley & Landahl, 1985) for the inviscid flow.
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4.2. Contribution from thewake vortices

At each time step a pair of vortices, from the LE (j = 1) and TE (j = m), are
shed from the wing such that during the p-th time period we have 2(p− 1) wake
vortices,



[1]
1 ,
[1]

m ,
[2]
1 ,
[2]

m , . . . ,
[p−1]
1 ,
[p−1]

m , (17)

located at,

[p]ζ̃ [1]
1 , [p]ζ̃ [1]

m , [p]ζ̃ [2]
1 , [p]ζ̃ [2]

m , . . . , [p]ζ̃ [p−1]
1 , [p]ζ̃ [p−1]

m , (18)

where the pre-superscript [p]() indicates the current step [p] and the post-
superscript ()[k] (k = 1, 2, . . . , p − 1) indicates the originating time step. Notice
that 
’s do not have the pre-superscript since their values remain constant once
the vortices are shed into the flow.

The complex conjugate velocity at the wing collocation point ζ̃i due to the
wake vortex pair 


[k]
1 and 


[k]
m is given by

[p]v̄ñi[k] = − i
2π

(



[k]
1

ζ̃i − [p]ζ̃ [k]
1

+ 

[k]
m

ζ̃i − [p]ζ̃ [k]
m

)
, (19)

for k = 1, 2, . . . , p − 1.
The normal component of this velocity at the collocation point ζ̃i is given,

from Equation (8), by

[p]vñi[k] = �
([p]v̄ñi[k]ñi

)
= 1

2π

(



[k]
1 �

(
ñi

ζ̃i − [p]ζ̃ [k]
1

)
+ 
[k]

m �
(

ñi
ζ̃i − [p]ζ̃ [k]

m

))

≡ [p]W1
i[k]


[k]
1 + [p]Wm

i[k]

[k]
m , (20)

where

[p]W1
i[k] = 1

2π
�
(

ñi
ζ̃i − [p]ζ̃ [k]

1

)
, [p]Wm

i[k] = 1
2π

�
(

ñi
ζ̃i − [p]ζ̃ [k]

m

)
, (21)

are the influence coefficients. The total normal component of the velocity is
obtained by adding all contributions from 2(p − 1) wake vortices to get

[p]vñi =
p−1∑
k=1

([p]W1
i[k]


[k]
1 + [p]Wm

i[k]

[k]
m

)
. (22)

Equation (15) is now modified to give

m∑
j=1

Vñ
ij
j + [p]vñi = Vñ

i , (23)
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Notice that for the first step the wake is absent and [1]vñi = 0. The conservation
of the vortices involves the entire bound and wake vortices and is given by

m∑
j=1



[p]
j +

p−1∑
k=1

(



[k]
1 + 
[k]

m

)
= 0. (24)

5. Convection of wake vortices, shedding of bound edge vortices and
the Kutta condition

A distinctive feature of the discrete vortex method of Belotserkovsky applied to
unsteady problems, such as considered in this paper, is that the Kutta condition
is not enforced at the LE and TE. Instead the bound vortices at these points are
shed regularly at each time step. Right after shedding, the two edges are left with
zero vortices, which effectively satisfy the Kutta condition momentarily until the
new bound vortices are built up in the next time step. This approach is in contrast
to that taken by Ansari et al. (2006a, 2006b) who enforce the Kutta condition
at these edges. We have implemented the approach by Ansari et al. and found
out, while the trailing edge Kutta condition is seamless, once the leading edge
Kutta condition is added the solution breaks down. This is an indication that
the Kutta condition in unsteady problems must be treated differently from the
steady problems.

In addition to the bound edge vortices that are shed, all wake vortices are
convected. Each of these vortices is displaced by the product of the velocity at its
location, calculated at the beginning of each time step and the time increment
�t for that time step. Calculation of the velocity at the vortex site is performed
using the velocity formula (10). The velocity contributions come from the bound
and wake vortices. The effect of its own is excluded in the calculation.

6. TimeMarching solution procedure

The time marching solution procedure is outlined using the concepts and for-
mulas introduced so far. Time Step 1 (t = 0) :

1. Specify the wing position and velocity.
2. Calculate the bound vortices: 
[1]

j (j = 1, 2, . . . ,m)

• Non-penetration condition on the wing

m∑
j=1

Vñ
ij


[1]
j = Vñ

i , (25)

• Conservation of the vortices
m∑
j=1



[1]
j = 0. (26)
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3. Calculate induced velocity, v[1]
1 and v[1]

m , at the LE and TE, ζ̃ [1]
1 and ζ̃

[1]
m .

4. Shed the bound vortices, 
[1]
1 and 


[1]
m , at the LE and TE and determine

the locations, [2]ζ̃ [1]
1 and [2]ζ̃ [1]

m , according to

[2]ζ̃ [1]
1 = ζ̃

[1]
1 + v[1]

1 �t, [2]ζ̃ [1]
m = ζ̃ [1]

m + v[1]
m �t.

Time Step 2 (t = �t):

1. Specify the wing position and velocity.
2. Calculate the bound vortices: 
[2]

j , (j = 1, 2, . . . ,m)

• Non-penetration condition on the wing

m∑
j=1

Vñ
ij


[2]
j + [2]vñi = Vñ

i , (27)

• Conservation of the vortices
m∑
j=1



[2]
j + 


[1]
1 + 
[1]

m = 0. (28)

3. Calculate induced velocity, v[2]
1 and v[2]

m , at the LE and TE, ζ̃ [2]
1 and ζ̃

[2]
m .

4. Shed the bound vortices, 
[2]
1 and 


[2]
m , at the LE and TE and determine

the locations, [3]ζ̃ [2]
1 and [3]ζ̃ [2]

m , according to

[3]ζ̃ [2]
1 = ζ̃

[2]
1 + v[2]

1 �t, [3]ζ̃ [2]
m = ζ̃ [2]

m + v[2]
m �t.

5 Calculate induced velocity, [2]v[1]
1 and [2]v[1]

m , at the wake vortices, [2]ζ̃ [1]
1

and [2]ζ̃ [1]
m .

6. Convect the wake vortices, 

[1]
1 and 


[1]
m and determine the locations,

[3]ζ̃ [1]
1 and [3]ζ̃ [1]

m , according to

[3]ζ̃ [1]
1 = [2]ζ̃ [1]

1 + [2]v[1]
1 �t, [3]ζ̃ [1]

m = [2]ζ̃ [1]
m + [2]v[1]

m �t.

Repeat the processes for Time Step 3, where four wake vortices are present and
two new vortices will be shed from the LE and TE. More time steps are followed
as required. The selection of the time increment �t that is consistent with the
spacial resolution, determined by the spacing of bound vortices on the wing, is
discussed in Appendix 3.
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7. Impulses and force/moment

7.1. Space-fixed system

According to Helmholtz’s third theorem (Katz & Plotkin, 2001; Ashley & Lan-
dahl, 1985) for the inviscid flow, multiple vortices present in 2D must be con-
served and its total magnitude remains zero if the problem started with zero
vorticity. Each discrete vortex in 2D is a line vortex with an infinite length in the
out-of-plane direction. This vortex is not closed. In order to form a closed vortex
loop, we need to amend this vortex with another vortex having the circulation of
the same magnitude but opposite signs. These two vortices are joined at infinity
to form a closed, albeit infinitely long, vortex loop in the extended 3D space.

In the presence of multiple bound and wake vortices, it may not be possible
to find out the exact partner of a selected vortex that has the same magnitude of
circulation as the original with the opposite sign. However, as long as the sum of
the circulation of all vortices is zero, it is always possible to break down the given
distribution into an alternative, but equivalent, distribution of vortices consisting
of pairs of vortices each with the same magnitude but opposite signs.

We consider a pair of line vortices
 and−
 (located at ζ̃1 and ζ̃2, respectively)
with the circulation of the same magnitude 
 but opposite signs. The sign of the
counterclockwise circulation is positive. The goal is to calculate the impulses
induced by this pair onto the air in terms of the velocity potential function
(Lamb, 1932). Since the air extends to infinity, the problem becomes unbounded,
if a single line vortex is considered. Treating a pair of vortices of the property
described above will eliminate this problem. In the derivation, we have used the
complex variable potential function (9) for the line vortex. The complex variable
linear impact vector for the pair is given (Ansari et al., 2006a;McCune&Tavares,
1993) by

Ĩ = −iρ
(ζ̃1 − ζ̃2), (29)

where ρ is the air density. The angular impulse (a real value) is given (Ansari et
al., 2006a; McCune & Tavares, 1993) by

ĨA = −1
2
ρ
(|ζ̃1|2 − |ζ̃2|2). (30)

In the applications, it is possible to assign impulses for individual vortex with
the linear−iρ
ζ̃ andangular−1

2ρ
|ζ̃ |2 impulses,where
 is a signed circulation
with positive counterclockwise. The time derivatives of the linear and angular
impulses will provide the force and moment exerted by the vortex onto the air.
It is important to recognise that the force and moment acting on the wing are
obtained by reversing the signs of these obtained for the air mass.

7.2. Wing-translating system

Although the linear and angular impulses must be calculated in the space-
fixed system, angular momentum around the origin of the space-fixed system
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is undesirable in practical applications. Rather, the angular momentum should
be calculated about the origin of the wing-translating system, which, for the
insect, is where the wing is attached to its body. The problem however is that its
origin is not stationary and the formula for the angular momentum obtained by
replacing the complex coordinate ζ̃ with ζ̂ does not represent the real angular
impulse. To resolve this issue, we introduce another space-fixed system that has
the same origin as the wing-translating system and calculate the angular impulse
in this coordinate system. Although this system needs to be updated as the wing-
translating system moves on, each one of them in time history is a space-fixed
system and is the legitimate system for the calculation of the impulses.

Consider, first, the original space-fixed system Õ−ξ̃ η̃ and thewing-translating
system Ô − ξ̂ η̂. The transformation between the two systems is given by

ζ̃ = r + ζ̂ , (31)

where r = L − Ut + i(H − Vt). Substitute this relation into Equations (29) and
(30) and simplify to get

Ĩ = Î , ĨA = ÎA + �(r̄Î), (32)

where
Î = −iρ
ζ̂ , ÎA = −1

2
ρ
|ζ̂ |2. (33)

Now take the time derivative in Equation (32) to get the force and moment,

F̃ = ˙̃I = ˙̂I , M̃ = ˙̃IA = ˙̂IA + �(˙̄rÎ) + �(r̄ ˙̂I) (34)

At this point we switch from the original space-fixed system to the much talked
about space-fixed system that is placed on top of the wing-translating system, for
which r = 0, giving the updated relations

F̃ = ˙̃I = ˙̂I , M̃ = ˙̃IA = ˙̂IA + �(˙̄rÎ), (35)

where ˙̄r = L̇−U − i(Ḣ −V) is the conjugate complex velocity of the coordinate
origin Ô of the wing-translating system. The force and moment acting on the
wing are obtained by reversing the signs.

The force andmoment in 2D are calculated per unit depth in the out-of-plane
direction. Consider an insect with the span length l. In 3D, the wing undergoes
a radial flapping motion about the wing base. In 2D adaptation of this flapping
motion, we determine its stroke line length d by projecting the 3D flapping
motion of themid-point at 0.5 l rather than the wing tip, at l of the wing, in order
to represent the average (over the span) stroke line length of the 3D flapping
wing.

Note that, the program inputs the half span length 0.5 l and obtains the force
and moment per unit span length. The total force and moment are calculated by
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Table 1. Flight parameters for the crane fly.

Translational velocity U = 100 cm/s, V = 0 cm/s
Span and chord lengths l = 1 cm, c = 0.5 cm
Top and bottom stroke angles φT = 30◦ , φB = −90◦
Stroke line angle 0◦ ≤ β < 90◦
Flapping frequency f = 50 Hz
Pitching speed, amplitude, offset p = 5, 45◦ , 0
Pitch axis offset a = 0 cm

multiplying the span length l. For two wings, on the right and left, we further
double the total force and moment.

8. Evaluation of numerical performance

8.1. Effect of the spacial and time resolution

The spacial resolution is determined by the number of equally spaced bound
vortices,m0, which determines the spacing between bound vortices. As described
in Appendix 3, m0 vortices are, originally, placed at an equal interval, which is
refined by adding four more vortices near the two ends of the wing to make the
totalm = m0 + 4.

Theminimumnumber of bound vortices is three (m0 = 3), one each at the LE
and TE and one at themiddle of the wing. Once the spacial resolution is specified
by m0, the first candidate for the time increment is determined in terms of m0
and the stroke line length d; this time increment depends on the heave motion
(Appendix 3) and denoted by�td . Another time increment�tp is determined by
the pitch speed p (Appendix 1). The smaller of the two is used for the actual time
increment. The time increment used is nondimensionalised by the half-period of
flapping. Notice thatm0 is the only non-physical parameter that can be selected
independently from all other physical parameters, including d and p, that define
the problem.

Figure 5 shows the variation of lift and drag forces for a single period for
various values of m0 in a combined flapping (heave and lunge) and rotation
(pitching). The input parameters are obtained from the flight data of a crane fly
and are given by Table 1 with the stroke line angle β = 10◦. The nondimensional
time increment determined by Equation (C1), using the parameters from Table
1, is �td = 0.267/(m0 − 1). The time increment determined by the pitch using
Equation (C3) with p = 5 and rp = 0.1 gives �tp = 0.08. Figure 5(a) shows
the lift force, for a period, form0 = 3, 5, 10, 15, 20 and Figure 5(b) shows the lift
force form0 = 20, 25, 30, 35. The corresponding drag force is plotted in Figures
5(c) and (d). For both groups of m0, except for m0 = 3, the time increment is
determined by �td (lunge and heave time increment). This is because the speed
of pitch is slow. Notice that the solution jumps quickly for the first small values
of m0 as we increase m0, but the rate of change slows down after m0 = 20.
Whether the solution converges to the correct solution as we increase m0 is
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Table 2. Parameters for pure heave. See Figure 6.

Translational velocity U = 20 cm/s, V = 0 cm/s
Span and chord lengths l = 2000 cm, c = 100 cm
Top and bottom stroke angles φT = 5.739◦, φB = −5.739◦
Stroke line angle 90◦
Flapping frequency f = 0.028 Hz
Pitching speed, amplitude, offset p = 30, 0◦ , 0
Pitch axis offset a = 0 cm

Table 3. Parameters for combined heave and pitch. See Figure 7.

Translational velocity U = 20 cm/s, V = 0 cm/s
Span and chord lengths l = 2000 cm, c = 100 cm
Top and bottom stroke angles φT = 5.739◦, φB = −5.739◦
Stroke line angle 90◦
Flapping frequency f = 0.028 Hz
Pitching speed, amplitude, offset p = 30, 19.27◦, 0
Pitch axis offset a = 0 cm

Table 4. Computing time comparison for the VM and OpenFOAM. See Figures 6 and 7.

Problem VM (m0=15) (S) VM (m0=35) (S) OenFOAM (S)
pure heave 166.8 183.6 3300
heave and pitch 177 186.6 3468

answered below in comparison with the solution obtained by a Navier–Stokes
solver, OpenFOAM (Weller, Tabor, Jasak, & Fureby, 1998).

8.2. Comparisonwith results obtained by a Navier–Stokes solver

After studying the effects of m0 in the previous subsection, we need to verify if
the solution converges to themore accurate reference solution as we increasem0.
We have used a Navier–Stokes solver, OpenFOAM, to provide such a reference.
Figure 6(a) shows comparison of drag and lift forces for pure heave obtained by
our vortex method, with m0 = 15 and m0 = 35, and OpenFOAM. The flight
parameters are given by Table 2. The time increment determined by the heave
only, using the data inTable 2 andEquation (C1), is given by�td = 0.5/(m0−1).
Figure 6(b) shows the corresponding vortex fields produced by twomethods. The
values m0 = 15 and m0 = 35 give the results that best fit to the OpenFOAM
solution among other values tried as described below.

Next, Figure 7(a) shows the comparison of the heave and pitch combination
obtained by two methods with the flight parameters for the vortex method given
by Table 3. The time increment based on the heave is the same as above and the
time increment for pitching, with p = 30 and rp = 0.1, is�tp = 1/75 ∼ 0.0133.
The comparison of the corresponding vortex fields is given in Figure 7(b). The
number of m0 used in the vortex method is m0 = 15 and m0 = 35 for this case
also, which give the best fit to the OpenFOAM solution. The time increment is
determined by the pitch time increment �tp.
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Table 4 shows the comparison of time required to calculate the two problems
by the two methods. For two cases above, the OpenFOAM simulations were
performed in parallel on 6 cores, while the vortex method simulation on 1 core.
For both m0 = 15 and m0 = 35, the speed up is approximately 20 in favour
of the vortex method. During the simulation, we have used different values
of m0. As we increased the number of m0, the solution has improved rapidly
for m0 = 3, 5, 10, 15, 20. The solution stabilised and approached towards the
OpenFOAM solution aroundm0 = 20, 25, 30, 35, but began to deviate from the
OpenFOAM solution after m0 = 35. The important lesson is that the solution
does not seem to converge to the viscous solution as we increase the value ofm0.
For a large number of m0, the wake is packed with vortices and, unless special
techniques such as lumping nearby vortices or allowing vortex decay, numerical
difficulties are expected evenwith the use of the Rankine vortex designed to avoid
this problem. Rather than attempting to achieve the convergence to the reference
solution obtained by the Navier–Stokes solver, it would be wise to know the limit
of the present method and use it in the range that gives the optimum results.

Finally, the Reynolds number in the OpenFOAM calculation was very low at
1,100 to make sure the flow is laminar. Note that the vortex method proposed
here is based on the inviscid flow theory and does not involve the Reynolds
number.

8.3. Optimumnumber ofm0

Our surprising discovery is that, although the results using a small number ofm0
is quantitatively inferior, they still preserve the essence of the solution, obtained
using a much higher number of m0 qualitatively. We have found that for the
value of m0 bigger than 35, the computational time increases exponentially but
the numerical results deteriorate as compared to the viscous solution obtained
by a Navier–Stokes solver. Although more numerical study on the influence of
m0 coupled with p is required, the optimum number of m0, determined by the
accuracy and the computation time, found so far is around 35.

The above observation on the method gives us the best use of the proposed
method as a quick solver for the unsteady flapping problems. Using a small
number of m0, such as m0 = 5 and m0 = 10, we can explore the unknown un-
steady behaviour of the flapping flight. Once we discover interesting phenomena
or behaviours, we can increase the number of m0 (up to m0 = 35) for more
accurate results. If the phenomena need to be further scrutinised, then we switch
onto one of the Navier–Stokes solvers. We can remain confident that use of this
method with a small number of m0 does not miss the essential behaviour and is
quick to calculate. The method is also useful in the design process of the MAVs.

9. Insect flight analysis example

We have analysed the crane fly flight using the proposed vortex method to find
out if the method can predict the enough lift force to support the weight of a
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Figure 8. Crane fly with its wing span l and chord length c.

crane fly. The picture of a crane fly is shown in Figure 8 and its flight parameters
in Table 1. The motion parameters are taken from the high-speed Movie 1
(Supplemental online material) of the crane fly in tethered flight, except for the
stroke line angle. Due to the constraint in the tethered flight, the stroke line angle
was not determined reliably. Therefore, we opted to vary the stroke line angle,
in the analysis, to determine the stroke line angle that gives the best lift force.
Figure 9(b) shows the variation of the lift force for a single period for various
values of stroke line angle β between 0◦ and 90◦. The average (over the period)
lift force for each stroke line angle is shown in Figure 9(a). We have found that
the best lift force is obtained for the stroke line angle β = 10◦ (Figure 9(c))
and the worst at 90◦ (Figure 9(d)). Notice that the best stroke line angle is close
to the angle observed in a natural flight movie, Movie 2 (Supplemental online
material). The average (over a period) lift force for β = 10◦ is 11 dyne per unit
depth of 1 cm.Multiply this by the span length of 2 cm and doubling the product,
for two wings, will give 44 dyne of lift force. This exceeds the weight of a crane
fly, 30 dyne. The value ofm0 = 35 was used in the analysis.

Next example is the flight of the honey bee in hover. The flight parameters,
except for the stroke line angle, for the honey bee were taken from the high-speed
Movie 3 (Supplemental online material) of the honey bee and listed in Table 5.
The analysis was performed with various stroke line angles to determine the best
stroke line angle to produce the maximum lift. Figure 10(b) shows the variation
of the lift force for a single period for various values of stroke line angleβ between
−80◦ and 80◦ for the honey bee in hovering (U = 0 cm/s). The average (over
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Figure 10. (a) The average lift force (over the period) for various stroke line angles β for the
honey bee. (b) The corresponding variations of the lift force over a period, (c) with the best case
(β = 0◦) and (d) and the worst case β = 80◦. (e) The average drag force (over the period) for
various stroke line angles β .

the period) lift force for each stroke line angle is shown in Figure 10(a). We have
found that the best lift force is obtained for the stroke line angle β = 0◦ (Figure
10(c)) and the worst at 80◦ (Figure 9(d)). The average (over a period) lift force
for β between −40◦ and +40◦ produces more than 60 dyne per unit depth of
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Figure 11. Perfect pronation and supination.

Figure 12. Smoothed pitch motion with symmetric (solid), advanced (dashed) and delayed
(dotted) pitch.

1 cm. Multiply this by the span length of 1.2 cm and doubling the product, for
two wings, will give 144 dyne of lift force. This exceeds the weight of a honey bee,
120 dyne. The value ofm0 = 35 was used in the analysis.

Figure 10(e) shows the variation of the average drag force. Notice that for the
positive stroke line angle, thrust (and impending forward motion) is produced,
while for the negative stroke line angle, drug (and inpending backward motion)
is produced. According toWigglesworth (1972), the honey bee in hovering flight
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Figure 13. Approximate pitch velocity variation.

Table 5. Flight parameters for the honey bee.

Translational velocity U = 0 cm/s, V = 0 cm/s
Span and chord lengths l = 1.2 cm, c = 0.5 cm
Top and bottom stroke angles φT = 70◦ , φB = −30◦
Stroke line angle −80◦ ≤ β < +80◦
Flapping frequency f = 200 Hz
Pitching speed, amplitude, offset p = 20, 45◦ , 0
Pitch axis offset a = 0 cm

increases its stroke line angle to start the forwardmotion and decreases the angle
in the backward motion. He also describes the increase in the lift force as the
stroke line angle decreases. Our analysis has verified these observations.

10. Concluding remarks

Despite the myth that the inviscid fluid theory cannot deal with the unsteady
viscous problems, numerical results obtained from the analysis suggest that this
method can predict the unsteady phenomena reliably through comparisons with
numerical results obtained using a more precise Navier–Stokes solver. The main
advantage is the remarkably less time required to solve the problems compared
to Navier–Stokes solvers. It should be warned that the method proposed, how-
ever, does not replace the more elaborate and accurate, albeit time-consuming,
solutions by Navier–Stokes solvers. The method, instead, is best used for getting
the quick estimate of unsteady flapping flight of insects flight withoutmissing the
essence of the unsteady phenomena involved. The proposedmethod provides an
affordable tool in the exploration of yet unknown world of unsteady flapping
dynamics to discover and identify new effects and phenomena. Once such
discoveries aremade, we can always turn on themore advanced, albeit expensive,
Navier–Stokes solvers for more precise scientific investigation. The proposed
method also provides an affordable tool in the design of MAVs.
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In this paper, the wings are assumed rigid and straight. However, the wings of
real insects are flexible and curvedor cambered.The introductionof the camber is
straightforward within the framework of the rigid wing. All we need is to specify,
in Section 2.3, the camber by the function η = f (ξ) and derive the equations
for the unit normal and normal velocity for the curved wing. The effects of the
motion-induced wing deformation are more difficult to accommodate and the
full fluid–structure interaction problem must be addressed. To make the matter
more complex, the deformation is large and the nonlinear treatment is required.

The proposed method can readily be extended to multiple wing problems in
2D to analyse the flight of dragonflies and lacewings. Themain issue there will be
the effect of the synchronisation of the wing motion of forward and hind wings.

Yet, another direction for future study is the extension of the current approach
to 3D. Instead of the infinite vortex lines in 2D, vortex rings must be used in 3D.
For each iteration step, a single vortex ring is shed from the bounding edge of
the 3D wing.

The ultimate goal of the current line of work is to develop the flight simulator
for insect flapping flight in 3D. For that purpose, six degrees of freedomequations
ofmotion consisting of theNewton andEuler equationsmust be developed based
on the input force generated by the fluid analysis code with the possible inclusion
of the effects of wing deformation generated by the structural analysis code.
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Appendix 1. Wingmotion

A.1. Lunge and heave

Using the hypothetical wing length 0.5 l and top and bottom stroke angles φT and φB, we can
calculate the stroke line length

d = dT + dB, (A1)

where dT = 0.5 l sin (φT ) and dB = 0.5 l sin ( − φB), the minus sign is required since the
default sign for φB is negative. The origin Ô of the wing-translating system is located on the
stroke line andmoves along it. Its global position is given by (L−Ut,H −Vt), in terms of the
heave H , lunge L and the ambient air velocity components, U and V . The lunge and heave
are described by the sinusoidal function

L = 1
2

(
d cos

2π(t + τ)

T
+ e

)
cosβ , (A2)

H = 1
2

(
d cos

2π(t + τ)

T
+ e

)
sin β , (A3)

where e = dT − dB is the stroke length difference parameter between the top and bottom
strokes, τ and T are the phase shift and the period of motion and β is the stroke line angle.
When τ = 0, the motion starts from the top, while for τ = T/2 the motion starts from the
bottom. By varying the phase shift, between 0 and T , we can produce sinusoidal motions with
various starting positions. The rates of lunge and heave are obtained by the time derivatives

L̇ = −πd
T

sin
2π(t + τ)

T
cosβ , (A4)

Ḣ = −πd
T

sin
2π(t + τ)

T
sin β. (A5)

A.2. Pitch (Rotation)

The rotation (pitch) γ of the wing occurs around the origin Ô of the wing-translating system,
as shown in Figure 2. It is positive clockwise. Without the pitch, the wing chord line remains
perpendicular to the stroke line. With a non-zero pitch γ , the attack angle of the chord line
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is given by α = π/2 − (β − γ ). The perfect pitch occurs instantaneously at the ends of
the down and up strokes; pronation at the top and supination at the bottom of the stroke.
While each sudden pitch is described by a step function, the periodic series of pronations
and supinations are described by a superposition of the step functions as shown in Figure 11,
which corresponds to the lunge and heave motion (A2) with τ = 0. If the perfect pitch occurs
exactly at the top or bottom of the stroke, then it is called symmetrical pitch. The timing of the
pitch can be either before the top or bottom (advanced pitch) or after them (delayed pitch).
These timings are specified by a timing offset parameter μ.

Actual insects can never achieve the perfect pitch, rather the pitch motion is smoothed
significantly. This smoothed pitch motion is conveniently described by the function

fti = 2
1 + e−2p(t−ti)

, (A6)

which describes the step function that jumps from 0 to 1 at t = ti when p → ∞. Each
supination and pronation is obtained using the amplitudes +2γm and −2γm, respectively.
The entire series of smooth pitching in one period is given by the superposed smooth step
functions by

γ = γm(1 − f0 + fT/2 − fT ). (A7)

Figure 12 shows variations of smooth pitching with symmetric, advanced and delayed pitch-
ing.

The pitch rate is obtained by the time derivative

ḟti = 4pe−2p(t−ti)

(1 + e−2p(t−ti))2
, (A8)

in
γ̇ = γm( − ḟ0 + ḟT/2 − ḟT ). (A9)

If the timing of the pitch is offset, then replace ti above by ti + μ, where μ < 0 for advanced
and μ > 0 for delayed pitch.

A.3. Physical meaning of pitch parameter p

Let �tp be the time the approximate step function fti takes to complete the smooth increase
of pitch by the amount 2γm. The velocity variation has a bell shape, as shown in Figure 13,
and its maximum value that occurs at t = ti is calculated, from Equation (A8), to be γmp.
Replace the bell-shaped velocity distribution by an inscribing triangle with base length �tp
and the height γmp. The average velocity over this period is calculated to be 1/2γmp, which is
multiplied by �tp to produce the total jump 2γm. This process will produce a relation

p = 4
�tp

. (A10)

This is a key relation that gives the physical interpretation of the parameter p. Since the
maximum transition time for the pitch is half period, (�tp)max = T/2, the minimum value
of the pitch parameter is pmin = 8/T . This gives the slowest pitchmotionwe can achieve and it
looks almost like a portionof the sinusoidal function.The estimationhere is approximate since
the bell-shaped velocity variation is replaced by a triangle and the base length of the inscribing
triangle, (�tp)max, can never reach the maximum value T/2. Therefore, the minimum value
of p needs to be set at slightly higher than 8/T .
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Appendix 2. Rankine vortex
As the distance r between the observation and vortex points approaches zero, the velocity
at the observation point is unbounded. This tendency becomes prevalent when the number
of wake vortices increases. In order to avoid excessive magnitude of velocity, we introduce a
vortex coremodel such that the velocity within the vortex core of radius rc is made to decrease
linearly to zero from the value taken at the outer boundary of the circular vortex core. Let
ζ̃ and ζ̃0 be the observation and vortex points, respectively. The conjugate of the complex
velocity at ζ̃ is given by the standard formula,

v(ζ̃ ) = − i

2π

1
ζ̃ − ζ̃0

, (B1)

for r = |ζ̃ − ζ̃0| ≥ rc . It is shown the corresponding complex conjugate velocity within the
vortex core is given by

v(ζ̃ ) = − i

2π

1
ζ̃ − ζ̃0

(
r
rc

)2, (B2)

for r = |ζ̃ − ζ̃0| ≤ rc .
We propose that the vortex core radius rc is given by the distance between a vortex point

and its closest collocation point, which is

rc = 0.5
c

m0 − 1
, (B3)

where c is the chord length of the wing andm0 is the number of equally spaced vortex points
on the wing (see Appendix 3). This model is called the Rankine vortex (Acheson, 1990).

Appendix 3. Spacial and time increment resolutions
The bound vortices are spaced at an equal distance on the wing, except in the neighbourhood
of the LE and TE. After placing m0 vortices at an equal interval δc = m0/c, two vortices,
one at each end, are placed at 1/2δc from the end; here c is the chord length of the wing. In
addition, two more vortices, one at each end again, are placed at 1/4δc from the end. This
refinement scheme is similar to that used in fracturemechanics near the crack tips. The actual
number of bound vortices is m = m0 + 4. However, when we refer to the number of bound
vortices in this paper, with the exception of Sections 3 and 4, we use the original m0, which
is the number of originally placed vortices at an equal distance. Note that the bound vortex
spacing discussed below is δc, which is obtained in terms ofm0.

This spacing controls the spacial resolution of the problem. If some vortices penetrate
the wing or go through the wing, then one may increase m0 to decrease the bound vortex
spacing. This will enforce the non-penetration condition of the flow on the wing by reducing
the distance between collocation points.

With decreasing time increments, further details of the vortex movement are revealed.
But how small the time increment should be, given the spacial resolution? To answer this
question, we select the non-dimensional time increment to be

�td = c
d

1
m0 − 1

, (C1)

where c and d are the chord and stroke line lengths, respectively. In order to justify this
selection of time increment, imagine a simple heaving motion of the wing with the stroke
line length of d. First, we select the non-dimensional time to cover the stroke line length
to be 1. Thus, during a non-dimensional time increment �td , the wing heaves by d ∗ �td ,
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which gives the spacial resolution in the vertical direction. While the spacial resolution in
the horizontal wing direction is given by c/(m0 − 1). By equating the spacial resolutions in
two directions, we get d ∗ �td = c/(m0 − 1), which gives (C1). This time increment is called
heave time increment since it is determined by the heave motion.

In addition, since the non-dimensional duration of pitch (rotation) is given, from (A10),
by

�t∗p = 4
p
, (C2)

it is necessary to select the time increment �t much smaller than �tp,

�tp = rp�t∗p , (0 < rp < 1) (C3)

in order to capture the beginning, middle and the end of rotation. The optimum size of
rp to properly capture the rotation will be around 0.1. This time increment is called pitch
time increment. Finally, select the minimum of (C1) and (C3) for the time increment of the
analysis.
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