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ABSTRACT
The problem of a point mass in a rotating system subjected 
to inertial force is theoretically and analytically solved, to get 
a more complete understanding of the different scenarios 
of motion in rotating system with friction being neglected. 
Subsequently, the solution is quantitatively verified by experi
mental data, solving nonlinear least squares problems, based 
on Levenberg–Marquardt’s and Gauss–Newton methods by 
minimising the sum of squares of errors between the data and 
model prediction. The process of model fitting is closely related 
to parameter identification. The optimisation parameters 
of the model (initial velocity of a point mass and angular 
velocity) are estimated. Experimental observation of the 
trajectories of a point mass rolling on a turntable is analysed 
from a video capture webcam in a mechanics laboratory. 
A good fit of the theoretical study with experimental data 
using optimisation methods output shows that there are 
instruments to directly verify rather abstract mechanical 
formulation in a noninertial frame. It also demonstrates that 
a relatively simple theoretical background can be used for 
describing real different types of motion in mechanics and 
for explaining experimental results. Moreover, combining 
the theoretical description of the problem with experimental 
data and computational optimisation procedures gives a very 
easy understanding of the different scenarios of motion in a 
rotating system and parameters identification, which can be 
obtained in classical mechanics. On the other hand, this study 
represents an important and instructive topic in classical 
mechanics that cannot be omitted in physical modelling on 
the undergraduate university level.

Introduction

The study of point mass motion in rotating frames is a crucial part of an undergrad-
uate mechanics course (Agha, Gupta, & Joseph, 2015). This motion is generally 
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explained by invoking inertial forces and introduces many complex features. While 
this approach simplifies some problems, there is often little physical insight into 
the motion, in particular into the effects of the Coriolis force (McIntyre, 2000). 
Fundamentally, the acceleration of the rotating observer causes motion that is 
well behaved as viewed by an inertial observer to become distinctly non-intuitive 
when viewed by the rotating observer. The inertial forces are fictitious forces that 
arise in the description of the motion of test particles when the reference frame 
is not inertial (Costa & Natário, 2015; Kim, Kido, Rangel, & Madou, 2008; Taylor, 
1974; Wagner, Altherr, Eckert, & Jodl, 2006). These forces do not exist; they are 
invented to preserve the Newtonian world view in reference systems where it does 
not apply (Kirkpatrick & Francis, 2009). Centrifugal and Coriolis forces arise in 
rotating reference systems (i.e. that are accelerated) and are examples of inertial 
forces. For instance, a point mass is launched directly away from the centre of 
the rotating turntable. The point mass will be rolling without forces acting on 
it; therefore its trajectory of motion is a straight line (path relative to laboratory 
reference) if we neglect friction and a path curved to the right on the rotating 
turntable surface (from the view of the rotating reference system) (Persson, 2000a, 
2000b) (See Figure 1).

An observer standing next to the rotating turntable sees the point mass rolling 
straight and the rotating turntable rotate at angular velocity ω underneath it. In 
the accelerated coordinate system, we explain the apparent curve to the right using 
a fictitious force, called the Coriolis force that causes the point mass to curve to 
the right (Persson, 2000a, 2000c).

In other hand, the inertial force study is the key to the explanation of many 
phenomena in connection with the winds (e.g. the Coriolis effect is that wind 
directions in the Northern Hemisphere are deflected to the right, while those in 
the Southern Hemisphere are deflected to the left) and currents of the ocean. The 
cause of the Coriolis effect is the earth’s rotation. Those phenomena are crucial to 
any analysis of weather systems and the large-scale climatology of the earth. The 
use of a rotating frame can also simplify the study of certain mechanics problems 
that involve rotating bodies in the laboratory.

The general approach in model fitting is to select a merit or objective function 
that is a measure of the agreement between observed and modelled data, and 
which is directly or indirectly related to the adjustable parameters to be fitted. The 
goodness of fit parameters are obtained by minimising (or maximising, depending 
on how the function is defined) this objective function (Simuunek & Hopmans, 
2000). Many techniques have been developed to solve the non-linear minimisa-
tion or maximisation problem (Bard, 1970; Yeh, 1986). Most of these methods 
are iterative algorithms (e.g. Levenberg–Marquardt’s, Gauss–Newton, gradient 
descent … etc.) used to solve non-linear least squares problems.

The Levenberg–Marquardt’s method is actually a combination of two  
minimisation methods: the gradient descent method and the Gauss–Newton 
method (Haddout, Maslouhi, & Igouzal, 2015). In the gradient descent method, 
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the sum of the squared errors is reduced by updating the parameters in the direction 
of the greatest reduction of the least squares objective (Gavin, 2011). In the Gauss–
Newton method, the sum of the squared errors is reduced by assuming the least 
squares function is locally quadratic, and finding the minimum of the quadratic. 
The Levenberg–Marquardt’s method acts more like a gradient descent method 
when the parameters are far from their optimal value, and act more like the Gauss–
Newton method when the parameters are close to their optimal value (Gavin, 2011).

In the presented paper, a problem of a point mass in a rotating system subjected 
to inertial force is theoretically and analytically solved, to get a more complete 
understanding of the different types of motion of point mass with respect to a 
non-inertial reference frame using Maple and Matlab programmes. Additionally, 
the non-linear model fitting of the motion observed of a point mass in a non- 
inertial system, with the Levenberg–Marquardt’s and Gauss–Newton algorithms 
for parameters optimisation is treated. The trajectories obtained are in good agree-
ment with theoretical predictions. This shows that even the theoretical solution of 
an abstract problem typical for theoretical mechanics can be accompanied by effec-
tive experimental verification and computational optimisation. In order to compare 
the two optimisation methods, we will give an explanation of each method’s steps.

The mathematical model of the point mass in rotating system

Recall that Newton’s second law applies specifically in inertial frames, in fact, 
in exactly those frames for which the first law holds; therefore, definitely not in 
rotating axes. This means that it is usually best to use frames related by Galilean 
transformations. Sometimes, it is far more convenient to do the calculations in a 

Figure 1. to the stationary observer, the ball follows a straight-line path, so the observer in the 
rotating frame system is forced to invoke a combination of centrifugal and Coriolis forces to 
provide the net force required to cause the curved trajectory.



EuROpEAN JOuRNAL Of COMpuTATIONAL MECHANICS  305

non-inertial frame. In such cases, the thing to do is to apply the second law in an 
inertial frame and then transform to the non-inertial frame.

We consider a turntable is rotating about the OZ1 axis with an angular velocity 
ω. Let k1 be a unit vector along the axis.

R1(O1, x1, y1, z1) is the coordinates of the rotating reference frame and 
R(O, x, y, z) is the coordinates of an inertial reference frame (Figure 2).

On the rotating reference frame (assuming negligible friction), a point mass 
(M) with mass m and gravity centre G moves freely in a horizontal plane.

The basic equation in Newtonian mechanics: F = m.ain, ain is the acceleration 
relative to the inertial frame. Alternatively, the forces apply on the point mass as 
seen by an observation co-moving with non-inertial system (Arya, 1990; Bligh, 
Ferebee, & Hughes, 1982):

 

 

It is not that the physics dealt with Newtonian mechanics cannot be analysed in 
a non-inertial frame, but that the form of the equations of motion is different.

The other terms on the right-hand side are the Coriolis and centrifugal forces 
(Arya, 1990; Bligh et al., 1982).

The velocity in the rotating reference frame is the function of the point mass 
position:

 

(1)
m�⃗𝛾(M∕R1) =

�⃗R + �⃗P − 2m ⋅ ��⃗𝜔 (R1∕R) ∧
��⃗V (M∕R1)

�������������������������������������
Coriolis force

−m ⋅ ��⃗𝜔 (R1∕R) ∧
[

��⃗𝜔 (R1∕R) ∧
������⃗O1G

]

���������������������������������������������������
Centrifugal force

(2)������⃗O1G = x1⃗i1 + y1
�⃗j1

(3)��⃗V =
∙
x1

�⃗i1 +
∙
y1

�⃗j1

Figure 2. the scheme of the problem.
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The Coriolis force is proportional to the rotation rate and the centrifugal force is 
proportional to its square. The Coriolis force acts in a direction perpendicular to 
the rotation axis and to the velocity of the body in the rotating reference systems 
(Boyd & Raychowdhury, 1981; McIntyre, 2000; Persson, 2000a). The centrifugal 
force acts outwards in the radial direction and is proportional to the distance of 
the body from the axis of the rotating reference systems. Equation (1) is a math-
ematical representation of what is meant by the statement that Newton’s second 
law does not apply in a non-inertial reference frame.

Acceleration in the rotating reference frame is the function of the position of 
the point mass:

 

The expression for differential equations of motion in the rotating reference frame 
can be written and decomposed into x1, y1 as follows:
 

 

Initial coordinates are:

The x1 and y1 coordinates specify the position of the point mass as seen by an 
observer on rotating frame.

Differential equations of motion seen below can be described by the system of 
coupled equations. The following is an analytic solution of the point mass in the 
rotating frame system, using a change of variable (complex number).

 

Multiply the Equation (5) by I and add the Equation (6).
 

The initial coordinates are:

(4)�⃗𝛾(M∕R1) =
∙∙
x1

�⃗i1 +
∙∙
y1

�⃗j1

(5)m ⋅

∙∙
x1 −2 ⋅m ⋅ � ⋅

∙
y1 −m ⋅ �2

⋅ x1 = 0

(6)m ⋅

∙∙
y1 +2 ⋅m ⋅ � ⋅

∙
x1 −m ⋅ �2

⋅ y1 = 0

x1(0) = x10, y1(0) = y10

∙
x1(0) =

∙
x10,

∙
y1(0) =

∙
y10

(7)Z = x1 + Iy1

(8)
∙∙
x1 +I

∙∙
y1 +2� I(

∙
x1 +I

∙
y1) − �2(x1 + Iy1) = 0

x(0) + Iy(0) = (x10 + Iy10)

∙
x1(0) + I

∙
y1(0) = (

∙
x10 +I

∙
y10)
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The auxiliary variable Z occurs naturally in the unique differential equation as 
follows:
 

with:

The solution for Z is well known, the final expression is of the form:
 

Differential equations of motion can be described by the system of coupled equa-
tions. The analytical solution for differential equations of the rotating system in 
term of x1(t) and y1(t) is as follows (Haddout, Rhazi, & EL kenikssi, 2014):
 

where x10 and y10 is the initial position vector of launch, ω is the angular velocity, 
vx0 and vy0 is the initial condition of point mass launch.

Algorithms explanation

The non-linear least squares problem is closely related to the problem of solving 
a non-linear system of equations, and is a special case of the general optimisa-
tion problem in Rn (Häußler, 1983). Suppose that M data points (tm, ym), m = 1, 
2 … M, are fitting into a model ψ(t; p) that depends on the parameter vector 
p = (p1, p2,   … pk)

T(the superscript T denotes matrix transposition). The least 
squares method finds its optimum by minimising the objective function: (Häußler, 
1983; Transtrum & Sethna, 2012; Wang, Cai, Zhu, Huang, & Zhang, 2015):
 

where rm(p) stands for the error between the model ψ(t;  p) and the data ym, 
r(p) = (r1(p), r2(p),  … rk(p))T is the error vector and ‖

‖

r(p)‖
‖

 stands for the norm 

(9)
∙∙

Z +2� ⋅ I ⋅
∙

Z −�2Z = 0

Z(0) = Z0

∙

Z(0) =
∙

Z0

(10)Z(t) = Z0 ⋅ (1 + � ⋅ I ⋅ t) ⋅ exp(−I ⋅ � ⋅ t) + V0 t exp(−I ⋅ � ⋅ t)

(11)

x1(t) =
(

x10 − y10 ⋅ � ⋅ t + vx0 ⋅ t
)

⋅ cos(� ⋅ t) +
(

y10 + x10 ⋅ � ⋅ t + vy0 ⋅ t
)

⋅ sin(� ⋅ t)

y1(t) =
(

y10 + x10 ⋅ � ⋅ t + vy0 ⋅ t
)

⋅ cos(� ⋅ t) +
(

−x10 + y10 ⋅ � ⋅ t − vx0 ⋅ t
)

⋅ sin(� ⋅ t)

(12)

min F(p) = min

M
∑

m=1

r2m(p)

= min

M
∑

m=1

(�(tm;p) − ym)
2 = min ‖

‖

r(p)‖
‖

2
= min rT (p) ⋅ r(p)
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of the vector r(p). It is well known that when ψ(t; p) is linear with the parame-
ter p, Equation (12) is referred to as a linear least squares problem, otherwise a 
non-linear least squares problem.

If ψ(t; p) is non-linear with the parameter p, Equation (12) is referred to as a 
linear least squares problem. Newton’s method is the fundamental method for 
non-linear least squares problem. Suppose that the function r(p) has continu-
ous derivative of second order, its Hessian matrix ∇2r(p) is positive definite and 
has explicit expression. Suppose that have the jth trial parameter p(j), the target 
function r(p) is approximated by a quadratic from of the Taylor series as follows 
(Wang et al., 2015):

 

Set
 

Then
 

If the Hessian matrix ∇2r(p(j)) is positive definite, 
[

∇2r(p(j))
]−1 exists. Then, the 

Newton’s method can be written as:
 

The (j + 1)th trial parameter p(j + 1) is the new approximation of the minimum point 
of the function r(p).

The beauty of Newton’s method is in its universality and fast convergence. 
However, if the function r(p) only has first derivatives, the Newton’s method is 
not applicable to solve the minimisation problem. Then, the solution of the non- 
linear least squares problem can be approximated by one of the linear least squares 
problems through linearisation of the function r(p). Set

 

where the right side is the linear terms of the Taylor series of the error rm(p) near 
the current point p = p(j). Then
 

(13)r(p) ≈ � (p) = r(p(j)) +
[

∇r(p(j))
]T
(p − p(j)) +

1

2
.(p − p(j))T∇2r(p(j))(p − p(j))

(14)∇�(p) = ∇r(p(j)) + ∇2r(p(j))(p − p(j)) = 0

(15)∇2r(p(j))(p − p(j)) = −∇r(p(j))

(16)p(j+1) = p(j) − [∇2r(p(j))]−1.∇r(p(j))

(17)

�
m
(x) = r

m
(p(j)) + [∇r

m
(p(j))]T(p − p

(j))

= [∇r
m
(p(j))]T ⋅ p − {[∇r

m
(p(j))]T ⋅ p

(j) − r
m
(p(j))},

m = 1, 2,… ,M,

(18)�(p) =
M
∑

m=1

�2m(p)



EuROpEAN JOuRNAL Of COMpuTATIONAL MECHANICS  309

The target function r(p) is approximated by θ(p), thus the minimum of r(p)is 
estimated by the minimum of θ(p). Then the non-linear least squares problem 
can be transformed into a linear least squares problem as:
 

Set the Jacobian matrix:
 

And
 

where r(j ) stands for the vector [r1(p
(j)), r2(p

(j)),… , rM(p
(j))]T. Then Equation (18) 

can be written as:
 

And
 

If J(p(j)) is a column filled matrix, [J(p(j))]TJ(p(j)) is a symmetric positive definite 
matrix, and thus {[J(p(j))]TJ(p(j))}−1 exists.

The Gauss–Newton method is obtained: a start with an initial guess x(0) for the 
minimum, the method proceeds by the iterations (Björck, 1996; Gavin, 2011; 
Gratton, Lawless, & Nichols, 2007; Wang et al., 2015).

 

where the increments is:
 

(19)min �(p) = min

M
∑

m=1

�2m(p)

(20)J(x) =

⎡

⎢

⎢

⎢

⎢

⎣

�

∇r1(p)
�T

�

∇r2(p)
�T

⋮

�

∇rM(p)
�T

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�r1(p)

�x1

�r1(p)

�x1
…

�r1(p)

�xP
�r2(p)

�p1

�r2(p)

�p1
…

�r2(p)

�pP

⋮ ⋮ ⋮ ⋮

�rM (p)

�p1

�rM (p)

�p2
…

�rM (p)

�pP

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(21)S =

⎡

⎢

⎢

⎢

⎢

⎣

[∇r1(p
(j))]Tp(j) − r1(p

(j))

[∇r2(p
(j))]Tp(j) − r2(p

(j))

⋮

[∇rM(p
(j))]Tp(j) − rM(p

(j))

⎤

⎥

⎥

⎥

⎥

⎦

= J(p(j))p(j) − r(j)

(22)�(p) = [J(p(j)) ⋅ p − S]T[J(p(j)) ⋅ p − S]

(23)[J(p(j))]TJ(p(j)) ⋅ (p − p(j)) = −[J(p(j))]Tr(j)

(24)p(j+1) = p(j) −
[

[J(p(j))]TJ(p(j))
]−1

⋅ [J(p(j))]Tr(j)

(25)Δpj = −
[

[J(p(j))]TJ(p(j))
]−1

⋅ [J(p(j))]Tr(j)
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Also, the assumption M ≥ N in the algorithm statement is necessary, as otherwise 
the matrix Jr

TJr is not invertible and the normal equations cannot be solved (at least 
uniquely). The Gauss–Newton algorithm can be derived by linearly approximating 
the vector of functions rm.

From this, it is evident that the advantage of Gauss–Newton method over the 
standard Newton’s method is that it does not require calculation of the second- 
derivative matrix (Hessian matrix) but compute the approximate Hessian matrix 
H = [J(p)]TJ(p). However, the matrix H = [J(p)]TJ(p) may not be invertible, in 
which case the Gauss–Newton method does not work (Wang et al., 2015). This 
can be overcome by adding a damping factor � to the approximate Hessian matrix:

 

where � is a damping factor; we will adjust it based on estimates of how close we 
are to a solution or adjusted at each iteration to assure a reduction in the error ε.

Where I is the identity matrix. To make this matrix invertible, suppose that 
the eigenvalues and eigenvectors of H  =  [J(p)]TJ(p) are [�1, �2, … ,�P] and 
[z1, z2, … , zP]. Then

 

Therefore, the eigenvectors of G are the same as the eigenvectors H = [J(p)]TJ(p), 
and the eigenvalues of G are (� + �m).

The matrix G can be made positive definite by increasing � until (𝜆 + 𝜇m) ≻ 0 
for all m, and therefore G will be invertible. This leads the Levenberg–Marquardt 
algorithm (Marquardt, 1963; Ranganathan, 2004)

 

This method adaptively varies the parameter updates between the gradient descent 
update and the Gauss–Newton update. Also, the method adjusts � by either mul-
tiplying or dividing it by a small constant scaling factor δ on each step. A typical 
δ might be between 2 and 10 (Schwartz, 2008).

Where small values of the algorithmic parameter � result in a Gauss–Newton 
update and large values of � result in a gradient descent update. The parameter � 
is initialised to be large. If an iteration happens to result in a worse approxima-
tion, � is increased. As the solution approaches the minimum, � is decreased, the 
Levenberg–Marquardt’s method approaches the Gauss–Newton method, and the 
solution typically converges rapidly to the local minimum (Gavin, 2011; Lourakis, 
2005; Madsen, Nielsen, & Tingleff, 2004; Marquardt, 1963).

Model simulation of the different types of motion

The simulation results y1(x1) (Equation 11) show the effect of inertial forces 
(assuming negligible friction). Figures 3 and 4 above are in function of the effect 

(26)G = H + �I = [J(p)]TJ(p) + �I

(27)Gzm = [H + �I]zm = Hzm + �zm = �mzm + �zm = (� + �m)zm

(28)p(j+1) = p(j) −
[

[J(p(j))]TJ(p(j)) + �(j)
]−1

⋅ [J(p(j))]Tr(j)
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of the extreme sensitivity of the trajectories an in rotating reference system, the 
initial conditions of launch point mass V0 = (Vx0, Vy0), the angular velocity ω 
and initial position vector of launch(x10, y10).

•  Effect of the initial position (x10, y10) and direction of launch V0 = (Vx0, Vy0)

•  We fix � = 0.9 rad∕s, (x10,  y10)  =  (0,  −1) and V0 = (Vx0, Vy0) such as: 
V0 = (−0.9, 0.57), V0 = (−0.57, 0.9) and V0 = (−0.9, 0.9) (Figure 3(a)). Also, 
(x10, y10) = (0, −1),  (x10, y10) = (0, 1),(x10, y10) = (1, 0), (x10, y10) = (−1, 0) 
(Figure 3(b)).

•  We fix � = 0.9 rad∕s, and V0 = (Vx0, Vy0) such as: V0 = (0, −0.9), 
V0 = (0, −0.6) and V0 = (0, −1.15) (Figure 3(c)).

•  Effect of initial velocity of launch V0 = (Vx0, Vy0)

•  We fix � = 0.5 rad∕s, (x10,  y10)  =  (0,  0) and V0 = (Vx0, Vy0) such as: 
V0 = (0, 0.1), V0 = (0, 0.4) and V0 = (0, 0.6), V0 = (0, 0.04) (Figure 
4(a)).

•  Effect of angular velocity ω
•  We fix (x10,  y10)  =  (0,  0) and V0 = (0, 0.6) such as: � = 0.2 rad∕s, 
� = 0.6 rad∕s and � = 1.5 rad∕s (Figure 4(b)).

The results show, that all motions will be reduced outwards, w the right, the 
degree of deflection determined by the motion relative to the rotating turntable. 
The difference between the deflections constitutes the Coriolis effect (Persson, 
2000a). For some angles of launch, a path has portions where the trajectory is 

Figure 3. spatial trajectory simulation, initial position and direction of launch effect (X10, Y10), (Vx0, 
Vy0) (a, b, c) in a rotating frame.
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approximately radial, and Coriolis force is primarily responsible for the apparent 
deflection of the point mass (centrifugal force is radial from the centre of rotation, 
and causes little deflection on these segments). When a path curves away from 
radial, however, centrifugal force contributes significantly to deflection.

On the other hand, it is noted that the radius of curvature of the trajectory 
decreases with increasing the angular velocity (Figure 4(b)) and decreases with 
the initial velocity (Figure 4(a)). Additionally, it is possible to obtain the different 
situations in rotating system, for example: if the vector of launch is perpendicular 
on axis (y), the motion is circular (Figure 3(c)), also, if the vector of launch is 
angled on (y) axis, the motion is elliptical (Figure 3(a)).

Theory and experiment compared

Parameters optimisation of motion in a rotating system based on Levenberg–
Marquardt and Gauss–Newton methods

A brief description of iterative algorithms (i.e. L–M and G–N) for parameters 
identification used in a rotating system.

It is desired to find a curve (model function) of the form:
 

Starting with the initial estimates of V0 and ω, after 5 iterations of the Gauss–
Newton algorithm and 10 iterations of the Levenberg–Marquardt algorithm, the 
optimal values V0 and ω are obtained. The plot in the Figure 5 shows the curve 

(29)

x1(t) =
(

x10 − y10 ⋅ � ⋅ t + vx0 ⋅ t
)

⋅ cos(� ⋅ t) +
(

y10 + x10 ⋅ � ⋅ t + vy0 ⋅ t
)

⋅ sin(� ⋅ t)

y1(t) =
(

y10 + x10 ⋅ � ⋅ t + vy0 ⋅ t
)

⋅ cos(� ⋅ t) +
(

−x10 + y10 ⋅ � ⋅ t − vx0 ⋅ t
)

⋅ sin(� ⋅ t)

Figure 4. spatial trajectory simulation, initial velocity and angular velocity effect (V0), (ω) (a, b) in 
a rotating frame.
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determined by the model for the optimal parameters vs. the observed data: effect 
of angular velocity, initial velocity and direction of launch. Comparisons of the 
field data with computed trajectory are summarised in Table 1. Our experimental 
results are in good agreement with theoretical calculations.

On the whole, it can be said that the model fitting of the motion in rotating 
frame performs well in representing the field data and a good estimation of param-
eters optimisation.

Note that the experimental arrangement was designed to be inexpensive (see 
Appendix 1). Hence, although better results for the problem surely could be 
obtained, we can declare that the agreement of theoretical calculations with the 
experimental data is very satisfactory.
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Error analysis and algorithms comparisons

Non-linear least squares problem are an incredibly useful tool for analysing sets of data 
and determining whether or not a mathematical model is a good fit for data obtained 
experimentally. Although it involves the solving of a system of non-linear equations, 
it provides us with a powerful, rapidly converging tool that provides answers to a 
system of equations that does not have an absolute solution. We have shown, in our 
problem that given a system that does have a known solution, the Gauss–Newton 
and Levenberg–Marquardt’s methods will provide the correct answer. There are 
drawbacks to the Gauss–Newton method, such as the fact that it will not converge 
if the initial guesses are not in a suitable range; however, it is nonetheless a powerful 
computational tool that provides answers where analytic methods fail. However, the 
Levenberg–Marquardt’s method finds a solution even if it starts very far from the 
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Figure 5.  field data and model computed spatial trajectory, showing initial velocity, angular 
velocity effect (V0), (ω) (a, b), initial position and direction of launch effect (X10, Y10), (Vx0, Vy0) (c, d, e) 
in a rotating reference frame.
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final minimum. On the other hand, the robustness of Levenberg–Marquardt’s and 
Gauss–Newton algorithms is tested using statistical indicators (standard deviation 
(SD) and root mean square error (RMSE)), see Table 2 for each condition value.

At a large distance from the function minimum, the steepest descent method 
is utilised to provide steady and convergent progress towards the solution. As the 
solution approaches the minimum, damping parameter � is adaptively decreased, 
the Levenberg–Marquardt’s algorithm approaches the Gauss–Newton algorithm, and 
the solution typically converges rapidly to the minimum (Gavin, 2011; Madsen et al., 
2004; Wang, Mi, Su, & Zhao, 2012).

Conclusion

This study aims to understand the rotating frame of reference and the inertial 
force through some analyses that are conducted on the parameters in a rotating 
frame. Also, the two algorithms Levenberg–Marquardt’s and Gauss–Newton for 
parameters optimisation of the motion observed of a point mass in a non-inertial 
reference frame in Newtonian mechanics are used. The obtained experimental 
results are in good agreement with the theory. Moreover, it turns out that the study 

Table 2. Error statistical indicators of the two algorithms.

Algorithms

ω fixed 
(Sd %; 
RMSE)

Vi(i = 1..3) 
varied 
Vi(Sd %; 
RMSE)

V0 fixed 
(Sd %; 
RMSE)

ωi(i = 1..3) 
varied 
ωi(Sd %; 
RMSE)

Elliptical 
Trajectory 
(V0, ω)

Circular 
trajectory 
(V0, ω)

Spiral 
trajectory 
(V0, ω)

l–m (0; 0) V1(0.7%; 
0.0070)

(3.9; 
0.0460)

ω1(0.8%; 
0.0078)

(0.3%; 
0.0024

(0.3%; 
0.0021)

(0.2%; 
0.0027)

V2(1.1%; 
0.012)

ω2(0.9%; 
0.0360)

V3(0.1%; 
0.0022)

ω3(0.6%; 
0.0057)

G–n (0.2; 
0.0036)

V1(2.2%; 
0.029)

(3.7; 
0.0480)

ω1(2.9%; 
0.0375)

(0.3%; 
0.0023)

(0.3%; 
0.0024)

(0.3%; 
0.0030)

V2(2.2%; 
0.021)

ω2(0.7%; 
0.0042)

V3(1.6%; 
0.015)

ω3(0.5%; 
0.0058)

Table 1. Comparison of algorithms/experimental data with different condition.

Rotating 
frame situa
tions

Angular 
velocity 

fixed 
(rad/s)

Initial 
velocity 
varied 
(m/s)

Initial 
velocity 

fixed (m/s)

Angular 
velocity 
varied 
(rad/s)

Elliptical 
Trajectory 

(rad/s); 
(m/s)

Circular 
trajectory 

(rad/s); 
(m/s)

Spiral 
trajectory 

(rad/s); 
(m/s)

Experimental 
data

ω = 1.50 V1 = 0.50 V0 = 0.83 ω1 = 2.15 V0 = 0.96 
ω = 2.08

V0 = 0.96 
ω = 2.08

V0 = 0.3 
ω = 1.28V2 = 1.05 ω2 = 1.44 

V3 = 1.50 ω3 = 1.11
levenberg–

marquardt’s
ω = 1.50 V1 = 0.50 V0 = 0.79 ω1 = 2.09 V0 = 0.93 V0 = 0.93 V0 = 0.27 

V2 = 1.08 ω2 = 1.45 ω = 2.01 ω = 1.95 ω = 1.25
V3 = 1.51 ω3 = 1.06

Gauss–newton ω = 1.52 V1 = 0.48 V0 = 0.80 ω1 = 2.10 V0 = 0.93 
ω = 1.98

V0 = 0.93 
ω = 1.86

V0 = 0.23 
ω = 1.23V2 = 1.03 ω2 = 1.48 

V3 = 1.48 ω3 = 1.07
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of such theoretically rather complicated (but also realistic) problems can be very 
instructive for physics education, when accompanied by a simple quantitative 
experimental verification. On the other hand, an optimal value has been demon-
strated in this study. In addition, the algorithms’ accuracy of parameters opti-
misation using statistical test has been evaluated, shows Levenberg–Marquardt’s 
algorithm is more robust than Gauss–Newton algorithm at small error values. 
Using algorithms methods for parameters optimisation in Newtonian mechanics 
can help problem study in practical and theoretical physics.

In the other hand, the knowledge and skills studied separately in the courses of 
mechanics, theoretical mechanics, optimization methods, computational software, 
laboratory measurements and measurements processing for analysing and solution of 
particular real-world mechanical problems (i.e. the explanation of many phenomena 
in connection with the winds and currents of the ocean ... etc).

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Agha, A., Gupta, S., & Joseph, T. (2015). Particle sliding on a turntable in the presence of 
friction. American Journal of Physics, 83, 126–132.

Arya, A. P. (1990). Introduction to classical mechanics (p. 73). Boston, MA: Allyn and Bacon.
Bard, Y. (1970). Comparison of gradient methods for the solution of nonlinear parameter 

estimation problems. SIAM Journal on Numerical Analysis, 7, 157–186.
Björck, A. (1996). Numerical methods for least squares problems. Philadelphia, PA: SIAM.
Bligh, P. H., Ferebee, I. C., & Hughes, J. (1982). Experimental physics with a rotating table. 

Physics Education, 17, 89–94.
Boyd, J. N., & Raychowdhury, P. N. (1981). Coriolis acceleration without vectors. American 

Journal of Physics, 49, 498–499.
Costa, L. F. O., & Natário, J. (2015). Inertial forces in general relativity. Journal of Physics: 

Conference Series, 600, 012053. IOP Publishing. doi:http://dx.doi.org/10.1088/1742-6596/ 
600/1/012053

Gavin, H. (2011). The Levenberg-Marquardt method for non-linear least squares curve-fitting 
problems (pp. 1–15). Department of Civil and Environmental Engineering, Duke University, 
Durham, NC, USA.

Gratton, S., Lawless, A. S., & Nichols, N. K. (2007). Approximate Gauss–Newton methods for 
nonlinear least squares problems. SIAM Journal on Optimization, 18, 106–132.

Haddout, S., Maslouhi, A., & Igouzal, M. (2015). Predicting of salt water intrusion in the 
Sebou river estuary (Morocco). Journal of Applied Water Engineering and Research, 1–11.

Haddout, S., Rhazi, M., & EL kenikssi, M. (2014). Study of the inertia forces conception and 
realization a device experimental pedagogical. International Journal of Innovation and 
Applied Studies, 8, 673–684.

Häußler, W. M. (1983). A local convergence analysis for the Gauss-Newton and Levenberg-
Morrison-Marquardt Algorithms. Computing, 31, 231–244.

Kim., J, Kido., H, Rangel., R. H., & Madou., M. J. (2008). Passive flow switching valves on a 
centrifugal microfluidic platform. Sensors and Actuators B: Chemical, 128, 613–621.

http://dx.doi.org/10.1088/1742-6596/600/1/012053
http://dx.doi.org/10.1088/1742-6596/600/1/012053


EuROpEAN JOuRNAL Of COMpuTATIONAL MECHANICS  317

Kirkpatrick, L., & Francis, G. (2009). Physics: A conceptual world view (7th ed.). Pacific Grove, 
CA: Cengage LearningThomson Brooks/Cole. p. 653.

Lourakis, M. I. (2005). A brief description of the Levenberg-Marquardt algorithm implemented 
by levmar. Heraklion, Crete, Greece: Foundation of Research and Technology.

Madsen, K., Nielsen, N. B., & Tingleff, O. (2004). Methods for non-linear least squares problems 
(Technical Report). Lyngby: Informatics and Mathematical Modeling, Technical University 
of Denmark.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. 
Journal of the Society for Industrial & Applied Mathematics, 11, 431–441.

McIntyre, D. H. (2000). Using great circles to understand motion on a rotating sphere. American 
Journal of Physics, 68, 1097–1105.

Persson, A. (2000a). Back to basics: Coriolis: Part 1 - What is the Coriolis force? Weather, 55, 
165–170.

Persson, A. (2000b). Back to basics: Coriolis: Part 3 - The Coriolis force on the physical earth. 
Weather, 55, 234–239.

Persson, A. (2000c). Back to basics: Coriolis: Part 2 - The Coriolis force according to Coriolis. 
Weather,, 55, 182–188.

Ranganathan, A. (2004). The Levenberg-Marquardt algorithm. Tutoral on LM Algorithm, 1–5.
Schwartz, R. (2008). Biological modeling and simulation: A survey of practical models, algorithms, 

and numerical methods. Cambridge, MA and London, England: MIT Press.
Simuunek, J., & Hopmans, J. W. (2000). Parameter optimization and non-linear fitting. In J. H. 

Dane & G. C. Topp (Eds.), Methods of Soil Analysis, Part 1, Physical Methods (pp. 139–157), 
Chapter 1.7, (3rd ed.), Madison, WI: SSSA.

Taylor, K. (1974). Weight and centrifugal force. Physics Education, 9, 357–360.
Transtrum, M. K., & Sethna, J. P. (2012). Improvements to the Levenberg-Marquardt algorithm 

for nonlinear least-squares minimization. arXiv preprint arXiv:1201.5885. Cornell 
University, USA.

Wagner, A., Altherr, S., Eckert, B., & Jodl, H. J. (2006). Multimedia in physics education:A 
video for the quantitative analysis of the centrifugal force and the Coriolis force. European 
Journal of Physics, 27, 27–30. doi:http://dx.doi.org/10.1088/0143-0807/27/5/L01

Wang, S., Cai, G., Zhu, Z., Huang, W., & Zhang, X. (2015). Transient signal analysis based on 
Levenberg–Marquardt method for fault feature extraction of rotating machines. Mechanical 
Systems and Signal Processing, 54–55, 16–40.

Wang, F., Mi, Z., Su, S., & Zhao, H. (2012). Short-term solar irradiance forecasting model based 
on artificial neural network using statistical feature parameters. Energies, 5, 1355–1370.

Yeh, W. W.-G. (1986). Review of parameter identification procedures in groundwater hydrology: 
The inverse problem. Water Resources Research, 22, 95–108.

http://dx.doi.org/10.1088/0143-0807/27/5/L01


318  S. HAddOuT ANd M. RHAzI

Appendix A. Experimental device (rotating frame used in this study)
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