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ABSTRACT
Over recent years there has been a growing demand for 
materials that possess a wide variation of constitutive 
properties, which may not naturally occur within 
homogeneous materials. The evolution of composite 
materials has led to the development of a relatively 
new class, commonly referred to as functionally graded 
materials, which consist of two or more materials (often 
metals and ceramics) with properties varying continuously 
with respect to spatial coordinates. In this paper, the 
dynamic response of a functionally graded (FG) beam 
is analysed using the wavelet finite element method 
(WFEM). The scaling functions of the Daubechies wavelet  
and B-spline wavelet on the interval (BSWI) families are 
employed as interpolating functions for the construction 
of the wavelet-based FG beam elements; based on Euler 
Bernoulli beam theory. The FG beam, comprising of steel and 
alumina, is assumed to vary continuously in the transverse  
and axial directions according to the power law. The free 
vibrations behaviour of a FG beam with different material 
distributions is compared with other approaches from 
published data to validate and assess the performance of  
this formulation. A FG beam resting on a viscoelastic 
foundation is analysed when subjected to a moving 
point load. The dynamic responses are evaluated using 
the Newmark time integration method. The effects of the 
material distribution, velocity of the moving load and 
damping of the system are discussed based on the numerical 
examples presented. The results indicate that WFEMs achieve 
higher levels of accuracy with fewer elements implemented, 
in comparison to the classical finite element method, in the 
analysis of the FG beam. Furthermore, the BSWI wavelet-
based approach performs better than the Daubechies-based 
WFEM.
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1.  Introduction

Research efforts and advancements in the fabrication and application of com-
posite materials in various engineering fields have recently intensified. This is of 
significance due to the growing need for materials that simultaneously possess 
a wide variation of material properties, which may not naturally occur within 
homogeneous materials. For instance in the aerospace and automotive industries, 
the need for light-weight materials that possess high strength to weight ratios 
and stiffness to weight ratios has led to the fabrication and application of some 
composite materials that combine two or more materials varying in properties. 
However, some composite materials are subject to high localised stress concen-
tration and discontinuous stress distribution in areas where there is an abrupt 
change in material properties. For example, laminate composites when subjected 
to extreme loading conditions may be susceptible to initiation and further prop-
agation of cracks resulting in delamination or failure of the composite material 
(Jha, Kant, & Singh, 2013). Further research has been carried out to mitigate some 
of these limitations leading to a relatively new class of composite materials known 
as functionally graded materials (FGM). FGMs were conceptualised in the mid-
1980s by a faction of material scientists in Japan (Koizumi, 1997) and consist of 
two or more materials (often metals and ceramics) with different properties that 
vary continuously in the desired spatial direction(s). The ceramic materials offer 
high stiffness, low density, good thermal resistance and corrosion resistance while 
the metals improve the strength and toughness of the FGM. The material compo-
sition and variation can be tailored to achieve the target properties for advanced 
materials. Furthermore, FGMs may be used as an adhesive between different 
materials of structures that may be simultaneously subjected to different loading 
environments. It is for these reasons that the popularity of FGMs is vastly grow-
ing for different engineering applications in the automotive, aerospace, nuclear, 
biomedical and electronic and defence industries just to name a few. Therefore, 
research has been undertaken in order to understand and predict their behaviour 
when subjected to various loading environments, such as mechanical, thermal, 
electrical or in some cases a combination of loading conditions.

Considerable advancements in research of functionally graded (FG) plates 
and shells have been carried out (Jha et al., 2013), although literature focused 
on the dynamic response of FG beams is still limited. Nonetheless, the need to 
analyse the behaviour of FG beams is rapidly growing for both practical and the-
oretical purposes. The thermoelastic behaviour of FG beams was investigated by 
Chakraborty, Gopalakrishnan and Reddy (2003), who implemented a new exact 
shear deformable FG beam finite element formulation based on the Timoshenko 
beam theory. Aydogdu and Taskin (2007) compared free vibration of short FG 
beams using the Euler-Bernoulli, parabolic shear deformation and exponential 
shear deformation beam theories. Kadoli, Akhtar and Ganesan (2008) applied the 
classical finite element method (FEM) to analyse the static deflection and stresses 
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of a transversely varying FG beam, based on higher order shear deformation the-
ory and power law of gradation. Pradhan and Chakraverty (2013) compared the 
natural frequencies of a Euler Bernoulli FG beam with a Timoshenko FG beam 
based on the Rayleigh-Ritz method. The classical FEM was also implemented 
by Alshorbagy, Eltaher and Mahmoud (2011) to analyse the free vibration of a 
Euler Bernoulli FG beam. Further research has been carried out to investigate the 
dynamic response of FG beams subjected to moving loads. Simsek and Kocaturk 
(2009) analysed the free vibration and dynamic response of a Euler-Bernoulli FG 
beam subjected to a concentrated moving harmonic load. Simsek (2010a) extended 
this research by investigating the dynamic response of the FG beam subjected to 
a moving mass based on classical, first-order shear deformation and third-order 
shear deformation beam theories. Simsek (2010b) also analysed the non-linear 
dynamic behaviour of a transversely varying Timoshenko FG beam subjected 
to a moving harmonic load. Khalili, Jafari and Eftekhari (2010) investigated the 
dynamic response of a simply supported FG beam subjected to a moving load 
by combining the Rayleigh-Ritz method and the differential quadrature method.

The need for more efficient, effective and accurate mathematical tools to ana-
lyse various engineering problems has resulted in the formulation of different 
analytical, semi-analytical and numerical approaches. In structural analysis, one 
such approach that has been recently developed is the wavelet-based finite element 
method. The method involves combining wavelet analysis with the classical FEM 
by utilising the wavelet and scaling functions as interpolating functions, thus pro-
viding an alternative to the conventional polynomial interpolation functions used 
in FEM. The method offers vast potential for the accurate and efficient analysis 
of complex structural problems through the implementation of multiresolution 
analysis (MRA) which allows for the alteration of the scale of a local wavelet finite 
element (WFE). This is advantageous since the accuracy of the solution, particu-
larly in areas with high gradients and singularities present, can be greatly improved 
locally. Furthermore, computational costs are reduced since fewer elements are 
required to achieve acceptable levels of accuracy due to rapid convergence of 
the method (Chen, He, Xiang, & Li, 2006; Xiang, Chen, He, & Dong, 2007). For 
these reasons, the approach has attracted the attention of researchers over the 
past decade to formulate and implement WFEM using different wavelet families 
and analyse various structural static and dynamic problems. Ko, Kurdila and 
Pilant (1995) developed the Daubechies wavelet-based FEM to solve a 1D and 2D, 
second-order Neumann problem. Zhou, Wang and Zheng (1998) implemented 
the wavelet Galerkin FEM to analyse the bending of plates and beams. Ma, Xue, 
Yang and He (2003) developed a wavelet-based beam finite element which was 
used to analyse static beam problems. Chen, Yang, Ma and He (2004) developed 
a two-dimensional Daubechies WFE which was implemented in the analysis of 
the bending of thin plates. Diaz, Martin and Vampa (2009) formulated a plate 
based on Mindlin-Reissner plate theory using the Daubechies wavelet family. 
Chen and Wu (1995) combined the conventional FEM with the accuracy of the 
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spline functions as shape functions for free vibration analysis of frame structures. 
Xiang, Chen, He and Dong (2007) constructed a range WFEs, which included 
the axial rod, beam (Timoshenko and Euler Bernoulli), plane bar, spatial bar and 
plane truss using the B-spline wavelet on bounded interval (BSWI). Yang et al. 
(2014) used the BSWI-based WFEM to analyse elastic wave propagation for a 
cracked arch based on Castigliano’s theorem and Paris equation. He and Ren 
(2012) developed a beam WFE based on the trigonometric wavelet for the static 
analysis of structural problems.

In this paper, the wavelet finite element method (WFEM) is implemented for 
the analysis of FG beams varying axially and transversely based on the power 
gradation law. To the best of the author’s knowledge, the Daubechies and the 
BSWI wavelet families are for the first time used to construct the FG beam WFEs 
based on Euler-Bernoulli beam theory and are compared with the classical FEM 
via numerical examples. In Section 2 of this paper, a brief introduction into gen-
eral wavelet theory and MRA is presented. The Daubechies wavelet and BSWI 
wavelet families are also discussed and the evaluation of the multiscale connection 
coefficients is highlighted. The construction of the FG wavelet-based beam ele-
ment is presented in Section 3 based on the power law. Numerical examples are 
presented in Section 4 to validate and compare the performance of the different 
approaches. Furthermore, a free vibration analysis of a simply supported beam is 
presented and the dynamic response of a FG beam subjected to a moving point 
load is highlighted. The effects of varying the material distribution, velocity of the 
moving load and damping of the system on the dynamic responses of the beam 
are discussed; followed by conclusions.

Figure 1. Illustration of multiresolution subspaces Vj and Wj.
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2.  Wavelet analysis and multiresolution

Wavelets are described as a class of basis functions that represent functions locally; 
both in space (frequency) and time. Furthermore, wavelets allow for analysis of 
functions or data to be carried out at different resolutions (scales) (Strang, 1989). 
The wavelet basis emanates from a set of wavelet coefficients associated at a par-
ticular location in time and exist in different multiresolution scales. In relation to 
data and frequency, the coefficients at coarse resolution scales are associated with 
low frequency features. As the resolution scales become finer, more information 
(detail) is added from the higher resolution coefficients. Therefore, the coefficients 
at very fine resolution scales are associated with high frequency details that are 
highly localised (Li & Chen, 2014).

Multiresolution is an advantageous property of wavelets and refers to the simul-
taneous appearance of multiple scales in function decompositions in the Hilbert 
space L2(ℝ) using a sequence of closed subspaces Vj; which satisfy the conditions 
(Ko et al., 1995):

 

 

 

 

The orthogonal complement subspace Wj of Vj contains the additional “detail” 
for subspace Vj+1:

 

and the space L2(ℝ) can be represented as a direct sum as illustrated in Figure 1:
 

(1)⋯V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ …

(2)
⋃
j∈ℤ

Vj = L2(ℝ)

(3)
⋂
j∈ℤ

Vj = {0}

(4)
f2(x) = f (2x)∀x

f ∈ Vj ↔ f2 ∈ Vj+1 j ∈ ℤ

(5)
fn(x) = f (x − n)

f ∈ V0 ↔ fn ∈ V0 n ∈ ℤ

(6)Vj+1 = V0 ⊕W0 ⊕W1 ⊕W2 ⋯⊕Wj

(7)Vj+1 = Vj ⊕Wj
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Let the scaling function of the MRA � ∈ L2(ℝ). Thus, the orthonormal basis of 
Vj is defined as:

 

Given that the above properties in Equations (1) and (7) are satisfied, there exists a 
wavelet function � ∈ L2(ℝ) to which the wavelet orthonormal basis for subspace 
Wj at scale j are defined as:

 

The scaling ϕ(x) and wavelet functions ψ(x) correspond to the subspaces Vj and 
Wj, respectively. The wavelet space Wj represents the difference between cur-
rent subspace Vj and subsequent subspace Vj+1. Consequently, each Wj becomes 
automatically orthogonal to all other Wj for k < j due to the inclusion in and 
orthogonality to Vj.

For the fundamental space V0, the scaling function �(x) and its translates 
�(x − k) produce an orthonormal basis for V0. The orthonormal basis for the 
next space V1 is the rescaled function 

√
2�(2x − k). Therefore, at scaling level j, 

Vj has the basis �jk(x) = {2
j∕2�

(
2jx − k

)
}, while the detail space Wj is formed 

by the dilation and translation of the wavelet function �jk(x) = {2
j∕2�

(
2jx − k

)
}

. The projections of a function f ∈ L2(ℝ) at scale j in the subspaces Vj and Wj 
defined as Pjf and Qjf, respectively, are expressed as:

 

 

where aj
k
 and bj

k
 are coefficients in the subspaces Vj and Wj, respectively.

2.1.  Daubechies wavelet

The Daubechies family of wavelets developed by Ingrid Daubechies (1988) have 
the properties of compact supported orthonormal wavelets. The Daubechies scal-
ing and wavelet functions for family of order L are described by the “two scale” 
relations:

 

 

(8)�
j

k
(x) = 2

j

2�(2jx − k) k ∈ ℤ

(9)�
j

k
(x) = 2

j

2�(2jx − k) k ∈ ℤ

(10)Pjf =
∑
k

a
j

k
�
j

k
(x)

(11)Qjf =
∑
k

b
j

k
�

j

k
(x)

(12)�L(x) =

L−1∑
k=0

pL(k)�L(2x − k)

(13)
�L(x) =

L−1∑
k=0

qL(k)�L(2x − k)
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The normalised wavelet function filter coefficients qL(k) and scaling function filter 
coefficients pL(k) have the relation qL(k) = (−1)kpL(1 − k).

The supports of the scaling and wavelet functions are[0, L − 1] and [1 − L

2
,
L

2
], 

respectively. An example of the Daubechies scaling and wavelet functions of order 
L = 12 are presented in Figures 2(a) and 2(b), respectively.

The Daubechies wavelets possess the following properties (Daubechies, 1988):
 

 

 

 

From the property given in Equation (17), the Daubechies wavelets have L
2
− 1 

vanishing moments and therefore, the scaling functions can represent any poly-
nomial of order equal to but not greater than L

2
− 1; so that for each m, there exists 

a set of constants cmk  with the property:
 

(14)

∞

∫
−∞

�L(x) dx = 1

(15)

∞

∫
−∞

�L(x − k)�L(x − l) dx = �k,l

(16)

∞

∫
−∞

�L(x)�L(x − k)dx = 0

(17)

∞

∫
−∞

xm�L(x)dx = 0 m = 0, 1,… ,
L

2
− 1

(18)
∑
k

cmk �L(x − k) = xm

(a) (b)

Figure 2. The Daubechies (a) scaling and (b) wavelet functions of order L = 12.
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2.2.  Connection coefficients

In the case of some wavelet families such as the Daubechies wavelet, the scaling 
and wavelet functions have no explicit expression. Furthermore, the derivatives of 
the scaling functions are highly oscillatory, particularly for the low order wavelet 
families and/or the high order derivatives. This implies that the integrals cannot 
be evaluated directly in closed form and require the computation of what is com-
monly referred to as connection coefficients (Latto, Resnikoff, & Tenenbaum, 
1991). Implementing the Daubechies wavelet family in the formulation of the 
wavelet-based finite element of the FG beam requires the evaluation of the two-
term connection coefficient defined as:

 

where a and b are the orders of the scaling function of the Daubechies wavelets 
at multiresolution j. The values d1 and d2 denote the order of the derivative of the 
scaling functions. [0,1](x) is the characteristic function:

 

and satisfies the “two-scale” relation
 

The formulation presented is a modified algorithm of that derived by Chen, He, 
Xiang and Li (2006). According to the two scale relation of the scaling function 
in Equation (12),

 

Furthermore, differentiating Equation m times,
 

Substituting Equation (23) into Equation (19) for derivatives of order d1 and d2, 
respectively.
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Let 2� = � thus Equation (24) can be expressed as:
 

Substituting Equation (21) into Equation (25) and
 

Following the expression of the connection coefficients as defined in Equations 
(19) and (26) can be expressed as:

 

where 2 − a ≤ k, r ≤ 2j − 1 and 2 − b ≤ l, s ≤ 2j − 1. Equation (27) can be 
expressed in matrix form as:

where a,bΓ
j is a vector of length 

((
a + 2j − 2

)(
b + 2j − 2

)
× 1

)
 contain-

ing the connection coefficients, while the square matrix 
[
a,bP

]
 contains 

the filter coefficients as expressed in Equation (27) with the dimensions ((
a + 2j − 2

)(
b + 2j − 2

)
×
(
a + 2j − 2

)(
b + 2j − 2

))
. It is necessary to employ 

the moment condition of the wavelet functions to formulate the normalising con-
ditions required to generate a sufficient number of inhomogeneous equations so as 
to uniquely determine the connection coefficients. These additional normalising 
equations are formulated from the fact the Daubechies scaling functions of order 
L can exactly represent any polynomial of order m with 0 ≤ m ≤ L

2
− 1.

 

where LM
j,m

k
 are the moments and are expressed as:
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2.3.  B-spline wavelets on the interval [0,1] (BSWI)

Given a knot vector tjmcomprising of a sequence of knots tj
i
 on [0,1], via joining 

the piecewise polynomials between the knots, one is able to construct B-splines 
at a scale j ∈ ℕ0 (Chui & Quak, 1992). Therefore, the basis functions in subspace 
Vj for B-splines of order m and scale j > 0, are expressed as (Chui & Quak, 1992):

 

with the knot sequence
 

[
t
j

k
, t

j

k+1
,… , t

j

k+m

]
t
, is the mth divided difference of the truncated power function 

(t − x)m−1
+  with respect to variable t. Therefore, the general B-splines in Equation 

(31) can be expressed as:
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j
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f
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+
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k

}2j+m−1

k=−m+1
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j

k
≤ t

j

k+1
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B
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j

k

t
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t
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t
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j
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j
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[
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j

k
, t

j
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]

Figure 3. The BSWI scaling function �3

3,k
(x).
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The B-spline basis of the knot sequence expressed in Equation (32) has m-tuple 
knots at 0 and 1 and simple knots inside the unit interval. Therefore, for the knot 
sequence on [0,1], tj

k
 is given as (Quak & Weyrich, 1994):

 

The corresponding B-wavelet is given as:
 

where Nm(x) denotes the cardinal spline of order m. In order to have one inner 
wavelet on the interval [0,1], the following condition must be met (Quak & 
Weyrich, 1994):

 

where j0 is the smallest multiresolution scale corresponding to order m that 
ensures there is at least one inner wavelet on the interval [0,1].

Thus, the scaling functions, �j

m,k
(x), and corresponding semi-orthogonal wave-

let functions, � j

m,k
(x) of BSWI of order m at scale j ≥ j0 are evaluated as follows:

 

 

Since BSWI scaling functions are expressed explicitly, the derivatives of the scaling 
functions can be obtained by directly differentiating Equation (38).

 

The scaling function and its translates of the BSWI of order 3 at multiresolution 
scale 3 are illustrated in Figure 3.
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3.  FGMs theory and formulations

3.1.  FGM material gradation

In this study, it is assumed that the constituent materials of the FG beam are a 
ceramic and a metal which varies continuously along (a) the thickness of the beam 
in the transverse direction and (b) axially along the length as illustrated in Figure 
4. The height of the beam is denoted by h, the length l and width b.

Figure 4. FG beam with (a) transverse gradation and (b) axial gradation.

(a) (b)

Figure 5. The effective (a) Young’s modulus and (b) mass density, through the thickness of a steel-
alumina FG beam for different power law exponents n.

(a) (b)

Figure 6.  The effective (a) Young’s modulus and (b) mass density, along the length of a steel-
alumina FG beam for different power law exponents n.
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The upper (a)/left hand (b) and lower (a)/right hand (b) surfaces are assumed 
to be ceramic and metal, respectively. The variation of the material distribution of 
the FG beam is described according to the power law introduced by Wakashima, 
Hirano, and Niino (1990).

In the case of transverse variation of the material properties P(y) of the FG 
beam, containing the two constituent materials, according to the power gradation 
law is expressed as (Wakashima et al., 1990):

 

where Pratio is the ratio of the upper and lower surface material properties Pu 
and Plo, respectively. The effective material properties P(y) for this study include 
the Young’s modulus E and density ρ. The non-negative power law index, which 
determines the material transverse variation, is denoted by n. The variation of the 
effective (a) Young’s modulus and (b) mass density of a steel-alumina FG beam 
through the thickness is illustrated in Figure 5.

Similarly, the effective material properties for the axially varying FG beam can 
be obtained from the expression:

 

(41)P
(
y
)
= Plo

([
Pratio − 1

](y
h
+

1

2

)n

+ 1
)

(42)P(x) = Pr
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Pratio − 1

](
1 −

x

l

)n

+ 1
)

Figure 7. Two-dimensional beam WFE layout.
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where Pratio is the ratio of the left end and right end surface material properties Pl 
and Pr respectively. Figure 6 illustrates the (a) effective Young’s modulus and (b) 
mass density of the axially varying steel-alumina FG beam.

3.2.  FGM beam wavelet-based finite element layout

The FG beam is formulated using the WFEM based on the Euler Bernoulli beam 
theory, with axial and bending deformation as well as loading effects taken into 
consideration. The layout selected for the WFE of length Le has the axial and 
transverse displacement degrees of freedom (DOFs) at each elemental node and 
the rotation DOFs only at the elemental end nodes as presented in Figure 7. Each 
WFE contains r number of elemental nodes, ns number of elemental segments and 
a total number of s DOFs. The axial and transverse displacements are approxi-
mated using the wavelet scaling functions. For a particular multiresolution scale j, 
the axial and transverse displacements at any point in natural coordinates � =

x−x1

Le

 
(0 ≤ ξ ≤ 1), are given as:
 

where z is the order of the wavelet scaling functions. aj
z−2,k

 and bj
z,k

 are coeffi-
cients corresponding to the element nodal axial and bending DOFs in wavelet 
space, respectively. In general, the order of the scaling function used to approxi-
mate the axial displacement will differ from the order approximating the bending 
DOFs. The selection of the orders of the scaling functions is dependent on the 
element layout selected in order to ensure that the defined DOFs are positioned at 
the correct elemental nodes. Therefore, the order of the scaling functions selected 
to approximate the axial displacement, if the scaling function order approximat-
ing the bending DOFs is z, must be z − 2. Furthermore, the multiresolution scale 
of the scaling functions is assumed to be of the same scale j. Let the vector 

{
ce
}

 
contain the coefficients corresponding to the DOFs within the wavelet-based 

finite element in wavelet space. Moreover, the vectors a
{
�

j

z−2
(�)

}
, t
{
�

j
z(�)

}
 

and t
{
�

�j
z (�)

}
 contain the scaling functions and the first derivative of the scaling 

functions approximating the axial deformation, transverse displacements and 
rotations at the positions corresponding to the related DOFs within the element. 
Thus, the displacements can be written as:
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j
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�
j
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j
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}
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where

 

In physical space, the DOFs are expressed as the vector 
{
he

}
:

 

Therefore, the relation between the physical space and wavelet space DOFs is 
formulated as:

 

The vector containing the coefficients corresponding to the DOFs in wavelet space 
can be expressed as:

 

where the wavelet transformation matrix 
[
Tw

]
 is the inverse of the matrix 

[
Rw

]
. 

The axial deformation, transverse displacement and the rotation DOFs at any ele-
mental node i can then be evaluated by substituting Equation (50) into Equations 
(44)–(46).
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3.3.  The FGM beam wavelet-based finite element formulation

The transverse v(x) and axial u(x) displacements at any point of the beam at time t 
based on Euler Bernoulli beam theory are expressed as (Şimşek & Kocatürk, 2009):

 

 

where x, y and t represent the axial direction, transverse direction and time; u0 
and v0 are the axial and transverse displacements on the mid-plane of the beam, 
respectively. This can be expressed in matrix form as:

 

The FGM beam is assumed to undergo small deformations, thus the normal strain 
in the x direction εxx can be expressed in terms of the displacement:

 

Since the beam is assumed to be fully elastic, the normal stress in the x direction 
σxx is given as:

 

The effective Young’s modulus E(·) is based on the power law of material gradation 
and one can determine the strain energy of the beam element, Ue as (Bathe, 1996):

 

Substituting Equations (57) and (58) into Equation (59):
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The kinetic energy of the wavelet-based FG beam element, Λe, is expressed as:
 

vel is the velocity distribution of the beam. The effective density ρ(·) of the FG 
beam element is obtained via the power law. The velocity components of the beam 
in axial and transverse directions can be expressed as:

 

and using the wavelet scaling functions from Equation (43):
 

 

The kinetic energy can now be stated as:
 

3.3.1.  Transverse material gradation
Given that the material distribution varies through the thickness of the FG beam, 
according to the power law the effective Young’s modulus E

(
y
)
and mass density 

�
(
y
)
 are given as:
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By substituting Equation (66) into Equation (60), the FG beam potential energy 
is evaluated as:

 

Let
 

 

 

where AEe, 
BEe and CEe denote the axial, axial-bending coupling and bending 

stiffness of the wavelet-based finite element, respectively. The wavelet space axial 
stiffness matrix A,1[kwe ] of the WFE is evaluated by substituting Equation (43) into 
Equation (68).

 

The axial-bending coupling stiffness matrices B,1[kwe ] and C,1[kwe ] in wavelet space 
are given as:
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The matrices in Equations (72)–(75) are transformed into the physical space via 
the transformation matrix 

[
Tw

]
. Thus, in physical space the stiffness matrices are 

evaluated as:
 

 

 

 

The FGM beam element stiffness matrix in physical space is obtained as:
 

Similarly, the kinetic energy of the FG beam as the material distribution varies 
through the thickness of the beam is evaluated when Equation (67) is substituted 
into Equation (65).

 

Let the inertial coefficients be denoted as:
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Substituting Equations (63) and (64) into (81), the mass matrix components in 
wavelet space are evaluated as follows:
 

 

 

 

 

The mass matrices in the physical space, after transformation via the wavelet 
transformation matrix 
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, can be written as:
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The total element mass matrix in physical space for the wavelet-based FGM beam 
is obtained as:

 

3.3.2.  Axial material gradation
In this case, the material distribution is assumed to vary along the length of the 
FG beam according to the power law and the effective Young’s modulus E(x)and 
mass density �(x) of the beam are given as:

 

 

By substituting Equation (96) into Equation (60), the FG beam potential energy 
is evaluated as:

 

However, given that the properties of the material are uniform through the cross 
section of the FG beam, then
 

where A is the cross-sectional area of the beam and I is the moment of inertia. 
Therefore, Equation (98) can be expressed as:

 

The wavelet space axial stiffness matrix A,2[kwe ] of the WFE is evaluated by substi-
tuting Equation (43) into Equation (100).
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The wavelet space bending stiffness matrix B,2[kwe ] is:
 

The stiffness matrices in physical space are obtained by applying the wavelet trans-
formation matrix 

[
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]
 to Equations (101) and (102) and are obtained as:

 

 

The axial varying FGM beam element stiffness matrix in physical space is obtained 
as:

 

The kinetic energy of the axially varying FG beam is evaluated when Equations 
(97) and (99) are substituted into Equation (65).

 

Thus, the component mass matrices in wavelet space are obtained as:
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The mass matrices in the physical space, after transformation via the wavelet 
transformation matrix 

[
Tw

]
, can be written as:

 

 

 

The total element mass matrix in physical space for the wavelet-based FG beam 
is obtained as:

 

4.  Wavelet-based moving load vector

Moving load problems are often characterised by the loading conditions varying 
in location and/or magnitude with respect to time. Taking into consideration a 
simply supported beam subjected to a moving load represented by the function 
q(x, t) = P�(x − x0) where P is the magnitude of the moving point load, δ(x) is 
the Dirac Delta function and x0 is the distance travelled by the moving load at 
time t from the left edge of the beam. In order to demonstrate the evaluation of 
the wavelet-based moving load vectors, consider a moving point load travelling 
across a wavelet finite beam element as illustrated in Figure 8.

Assuming the beam is modelled using one wavelet-based finite element, the 
moving load travelling at a constant speed of c m s−1 is expressed as (Fryba, 1999):
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Figure 8. Layout of a beam WFE subjected to a moving point load.
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where x0 = ct is the distance travelled by the load at time t. The position of the 
moving load in natural coordinates within the WFE at time t s is �0 =

x0

Le

. At a 
given time t, the moving load is at position ξ0 and the potential work of the load 
at that instant is therefore expressed as:

 

Therefore, the element load vector in wavelet space is obtained from Equation 
(115) as:

 

and subsequently in physical space
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Figure 9. Simply supported FG beam resting on a viscoelastic foundation subjected to a moving 
load point load.
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The vector 
{
f pe (t)

}
 contains the equivalent WFE nodal forces and moments vector 

of the moving load, acting on element e in physical space, corresponding to the 

Table 1.  The non-dimensional fundamental frequency of a simply supported FGM beam for 
varying composition distributions and Eratio.( �u

�
l

= 1,
l

h
= 20).

Eratio n = 0 n = .1 n = .2 n = 1 n = 2 n = 10 n = 104

.25 Ref. 2.2203 2.3739 2.4606 2.7035 2.8053 3.0084 –
FEM 2.2203 2.37469 2.46153 2.70437 2.80598 3.00855 3.13981
D120 2.2203 2.37459 2.46113 2.7039 2.80562 3.0085 3.1398

BSWI54 2.2203 2.37459 2.46113 2.7039 2.80562 3.0085 3.1398
.5 Ref. 2.6403 2.7104 2.7573 2.8944 2.9459 3.0562 –

FEM 2.6404 2.71075 2.75767 2.89474 2.94622 3.05632 3.13987
D120 2.6404 2.71073 2.75762 2.89459 2.94609 3.05629 3.13986

BSWI54 2.6404 2.71073 2.75762 2.89459 2.94609 3.05629 3.13986
1 Ref. 3.1399 3.1399 3.1399 3.1399 3.1399 3.1399 3.1399

FEM 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998
D120 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998

BSWI54 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998
2 Ref. 3.734 3.6775 3.6301 3.4421 3.3765 3.2725 –

FEM 3.73409 3.67727 3.62998 3.44245 3.3769 3.27269 3.14022
D120 3.73409 3.67726 3.62994 3.44226 3.37668 3.27262 3.14022

BSWI54 3.73409 3.67726 3.62994 3.44226 3.37668 3.27262 3.14022
4 Ref. 4.4406 4.337 4.2459 3.8234 3.6485 3.4543 –

FEM 4.44061 4.33664 4.24558 3.82455 3.65012 3.45511 3.14069
D120 4.4406 4.33661 4.2455 3.82389 3.64923 3.45473 3.14069

BSWI54 4.4406 4.33661 4.2455 3.82489 3.64923 3.45473 3.14069

Figure 10. 3D plot of the non-dimensional fundamental frequency variation with respect to Eratio 
and n for l/h = 20 using the BSWI54 WFEM.

Table 2. Material properties of FG beam constituent materials.

Properties Steel Alunima (Al2O3) Units
E 2.1 × 1011 3.9 × 1011 Pa
ρ 7.8 × 103 3.96 × 103 kg m−3
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transverse moving load position ξ0 at time t; as illustrated in Figure 8. Given that 
the location and/or magnitude of the load varies with time and assuming at a new 
time the moving load is still acting within the same WFE; the new load vector is 
obtained via the scaling functions in Equation (43) with respect to the new location 
of the moving load in natural coordinates i.e. the new value of position �0. The 
numerical values of the shape functions and consequently the load vector in wave-
let space will change according to this new external force location. Subsequently, 

Figure 11. The comparison of the non-dimensional frequencies using the different orders and 
scales of the DLj WFE for n = 5, and l/h = 100.

Figure 12. The comparison of the non-dimensional frequencies using the different orders and 
scales of the BSWImj WFE for n = 5, and l/h = 100.
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the load vector in physical space, corresponding to the new location with respect 
to time, is evaluated by implementing the wavelet transformation matrix to the 
new wavelet space load vector. The other WFEs within the system that have no 
action of an external load at a particular time t have zero entries within the load 
vectors. When the moving load is acting on a new WFE, the scaling functions 
corresponding to the WFE subjected to the moving load are used to obtain the 
load vector for that particular element. Hence, as the moving load travels from 
one WFE to the next, there is a shift in position of the equivalent WFE load vector 
with non-zero entries.

5.  Numerical examples

Several numerical results are presented in this section to validate and highlight 
some key features of the wavelet-based FG beam element approach for dynamic 
analysis of FG beams. An initial free vibration analysis is carried out and compared 
with results presented in (Şimşek & Kocatürk, 2009). Furthermore, the analysis 
of a FG beam resting on a viscoelastic foundation is presented to investigate the 
effect of the material distribution, the moving load velocity and damping on the 
dynamic response of the system. The Daubechies and BSWI WFEMs are compared 
with the classical FEM and in some cases previously published works.

5.1.  Free vibration analysis

Preliminary results in this section are obtained for the free vibration analysis of a 
simply supported FG beam. The FG beam of length l and uniform cross-sectional 
area A (width b = .4 m and height h = .9 m), has a Young’s modulus Eu, El and 
material density ρu, ρl at the upper and lower surfaces, respectively; as illustrated 
in Figure 9. In this analysis, the upper surface material is alumina of Young’s 
modulus Eu = 390 GPa and density ρu = 3960 kg m−3. The density ratio of the two 
surfaces is assumed to be equal to one i.e. �ratio =

�u

�l
= 1. Given that Eratio =

Eu

El

, 
the Young’s modulus of the lower surface is evaluated from the relation El =

Eu

Eratio

.
The effective material properties are evaluated for different material distribu-

tions from Equation (41) by altering the value of n. The free vibration analysis is 
carried out by solving the eigenvalue problem:

 

where the matrices [M] and [K ] are the mass and stiffness matrices of the system in 
physical space, respectively. They are computed by assembling the elemental stiff-
ness and mass matrices in Equations (80) and (95), respectively, and then applying 
the boundary conditions. The vector 

{
Ú
}

 represents modal displacements and 
ω is the corresponding natural frequencies of the system. The non-dimensional 
frequencies �i of the FG beam are evaluated from the relation:

(118)[[K ] − 𝜔2[M]]{Ú} = 0
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where ωi is the ith mode natural frequency of the beam in rad s−1.
The implementation of the wavelet-based FG beam element approach is vali-

dated by comparing the fundamental frequencies, for variations in material dis-
tribution and Eratio for beam slenderness ratio l∕h = 20, with results presented by 
Simsek and Kocaturk (indicated by “Ref.”) (Şimşek & Kocatürk, 2009) as shown 
in Table 1.

Two Daubechies WFEs for wavelet family order L = 12 and scale j = 0 (D120) 
are compared with the BSWI WFEM solution obtained using one WFE of wavelet 
family order m = 5 at scale j = 4 (BSWI54). The selection of the number of elements 
implemented, order and multiresolution scale of the wavelet-based elements, allow 
for a comparison of the results with a similar number of DOFs (37 and 38 DOFs, 
respectively) within the entire FG beam. Furthermore, the results are compared 
with the classical FEM solution, where 12 elements (39 DOFs) are implemented.

It is observed that the results obtained via both WFEM solutions are in excellent 
agreement with those presented by (Şimşek & Kocatürk, 2009) hence validating 
the use of the method in the free vibration analysis of FG beams. Furthermore, 
the results are relatively more accurate when compared with the FEM solution 
with fewer elements used to model the system.

Moreover, increasing the value of Eratio leads to an increase in the non- 
dimensional fundamental frequency for a particular material distribution. 
When Eratio < 1, it is observed that as n increases, the fundamental frequency also 
increases. This is because the lower surface material has a higher bending rigidity 
than the top alumina surface and increasing the value of n leads to an increase 
of the effective Young’s modulus and consequently bending stiffness of the FG 
beam. However, when Eratio > 1, increasing n results in a decrease of the non- 
dimensional fundamental frequency since El < Eu. For Eratio = 1, the FG beam is 
fully homogenous and the variation of the power law exponent n does not affect the 
material distribution. Thus, the non-dimensional fundamental frequency remains 
constant for all values of n. These observations are further made from the graphical 
representation of the results presented in Figure 10. Notably, for a large value of n, 
the effect of Eratio on the non-dimensional frequencies is not as significant as when 
n is small. Therefore, decreasing the value of n increases the effectiveness of Eratio 
on the non-dimensional frequencies. The higher non-dimensional frequencies 
follow the same trend and these highlighted observations are consistent with the 
findings presented in (Alshorbagy et al., 2011; Şimşek & Kocatürk, 2009).

In the second part of the free vibration analysis of a simply supported FG beam, 
the effects of altering the wavelet family order and/or multiresolution scale is 
investigated and the performance of the BSWI and Daubechies WFEM solutions 
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compared. A steel-alumina FG beam is analysed and the material properties of 
the constituent materials presented in Table 2.

In the analysis, the top surface is alumina and the bottom surface is steel. The 
beam is approximated to be a homogeneous steel beam when the power law expo-
nent n = 104 and is fully alumina when n = 0. The 2 element BSWI55 (137 DOFs) 
WFEM solution for the non-dimensional frequencies converge and are used as a 
reference for the comparison of the performance of the different solutions.

The Daubechies scaling functions have no closed form solution hence numerical 
errors arise when evaluating the connection coefficients, as described in Section 
2.2, which are used to formulate the elemental matrices. However, the accuracy 
of the results can be improved by increasing the order and/or multiresolution 

Figure 13. Variation of the maximum non-dimensional vertical displacement at the centre of a 
simply supported FG beam subjected to a moving load with respect to the load velocities for 
different n.

Table 3. The critical velocity and maximum normalised deflection at the centre of a transversely 
varying steel-alumina FG beam for different values of n.

Critical velocity c m s−1

Max
[

v

(
l

2
,t

)

v
0

]

n Ref. FEM D120 BSWI43 Ref. FEM D120 BSWI43

0 252 252 252 252 .9328 .9322 .9323 .9322
.1 – 235 235 235 – .9863 .9864 .9863
.2 222 222 222 222 1.0344 1.0340 1.0340 1.0340
.5 198 198 198 198 1.1444 1.1435 1.1437 1.1436
1 179 178 178 178 1.2503 1.2491 1.2495 1.2493
2 164 164 164 164 1.3376 1.3363 1.3368 1.3365
3 – 157 158 158 – 1.3747 1.3751 1.3748
5 – 151 151 152 – 1.4217 1.422 1.4218
7 – 148 148 148 – 1.4567 1.4570 1.4568

10 – 145 145 145 – 1.4974 1.4976 1.4974
104 132 132 132 132 – 1.7308 1.7309 1.7308
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Figure 14. The non-dimensional vertical displacement at the centre of a simply supported steel-
alumina FG beam for velocities (a) 50 m/s, (b) 132 m/s and (c) 250 m/s and different values of n.
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scale of the Daubechies and BSWI wavelet families as illustrated in Figures 11 
and 12, respectively. The plots demonstrate the convergence of the Daubechies 
and BSWI-based WFEM solutions for the non-dimensional frequencies when the 
order and/or the multiresolution scale are increased, particularly those associated 
with the higher modes of vibration.

5.2.  Simply supported FG beam subjected to moving point load

The effect of the variation of the material distribution and moving load velocity 
on the dynamic response of a simply supported steel-alumina FG beam as well 
as the performance of the WFEMs are investigated. The parameters and material 
properties of the constituent materials of the FG beam of length l = 20 m are 
similar to those highlighted in Section 5.1 above and is assumed to be undamped. 
The governing equation describing the linear dynamic behaviour of the system 
is given by (Bathe, 1996):

 

where 
{
Ü (t)

}
 and {U (t)} represent the system acceleration and displacement vec-

tors at time t. {F(t)} is the moving load vector when the moving load, of constant 
velocity c m s−1 and magnitude p = 1 × 105 N, has travelled a distance x0 = ct over 
time t across the FG beam. {F(t)} is obtained by assembling the elemental force 
vectors of the system as described in Section 4. The dynamic response of the sys-
tem is carried out via the Newmark time integration method with a time step of 
Δt = 1.0 × 10−5 s selected to ensure numerical stability and sufficient numerical 
accuracy of the dynamic response analysis. The deflection of the FG beam v(x, t), 
as the moving load travels across, is normalised as a non-dimensional parameter 
v(x, t)/v0:

 

where I is the moment of inertia of the cross-section of the beam. This is the static 
deflection at the centre of the simply supported fully steel beam when the static 
load P is acting at the mid-span. The dynamic response of the beam is carried 
out at the centre of the beam x = l2, which corresponds to the position at which 
the maximum deflection of the beam is expected to occur. The analysis is carried 
out using 2 BSWI43 (37 DOFs) and 2 D120 (37 DOFs) WFEs and the results are 
compared with the classical FEM solution with 12 elements (39 DOFs).

The variation of the maximum normalised deflection at mid-span of the beam 
with respect to the moving load velocity is presented in Figure 13 for different n. 
The plot is for the velocity range 0 < c ≤ 300 m s−1 at increments of 1 m s−1 and the 
results are obtained via the BSWI43 WFEM solution. The graphical results of the 
Daubechies D120 WFEM and classical FEM solutions are similar to these results.

(120)[M]{Ü (t)} + [K ]{U (t)} = {F(t)}

(121)v0 =
Pl3

48ElI
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In general, the maximum non-dimensional vertical displacement at the centre 
of the FG beam increases as the moving load velocity increase, for all the values of 
n. However, this maximum displacement reaches a peak value which corresponds 
to the critical velocity of the moving load. As the velocity of the moving point load 
further increases (supercritical velocity), the maximum deflection at the centre of 
the beam begins to decrease. Therefore, the vertical displacement at the centre of 
the beam is significantly influenced by moving load velocity which is consistent 
with the findings of (Şimşek & Kocatürk, 2009).

Figure 15. The vertical displacement at the centre of a simply supported steel beam on an elastic 
foundation (no damping) subjected to a moving point load travelling at 80 m/s.

Figure 16. The variation of the maximum non-dimensional vertical displacement at the centre of 
a FG beam on elastic foundation with respect to moving load velocities for different n.
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Figure 17. Vertical displacement at the centre of steel-alumina FG beam on viscoelastic foundation 
(5% damping) for moving load velocities (a) 80 m/s (b) 395.26 m/s and (c) 500 m/s for different 
values of n.
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Furthermore, the maximum normalised deflection of the FG beam also 
increases as n  →  ∞ (decrease in effective bending stiffness of the FG beam). 
Hence, the highest values of the maximum vertical displacement at the centre 

Figure 18. Vertical displacement at the centre of steel-alumina FG beam on viscoelastic foundation 
(100% damping) for moving load velocities (a) 80 m/s (b) 395.26 m/s and (c) 500 m/s for different 
values of n.

Figure 19. Vertical displacement at the centre of steel-alumina FG beam on viscoelastic foundation 
(100% damping) for moving load velocities (a) 80 m/s (b) 395.26 m/s and (c) 500 m/s for different 
values of n.
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of the beam occur when the beam is fully steel (n = 104). Therefore, the material 
distribution of the FG beam also significantly influences the dynamic response of 
the beam. Table 3 shows the critical velocities and corresponding non-dimensional 
maximum deflections at the centre of the FG beam for different values of n. The 
results presented are in relation to Figure 3. The solutions are obtained via the 
12 classical FEs, 2 D120 WFEs and 2 BSWI43 WFEs formulations. The results are 
compared with the values obtained in Simsek and Kocaturk (indicated by “Ref.”) 
(Şimşek & Kocatürk, 2009); the Daubechies and BSWI WFEM solutions are in 
very good agreement.

The non-dimensional deflection of the beam is also analysed for subcritical, 
critical and supercritical velocity profiles for the different values of n as illustrated 
in Figure 14. The velocities (a) 50 m s−1, (b) 132 m s−1 and (c) 250 m s−1 are selected 
to represent the respective velocity profiles. The results presented are obtained 
using 2 D120 WFE; the BSWI WFEM and classical FEM solutions are similar.

It is important to note that the velocity profiles are based on a fully steel beam 
subjected to the moving point load, which has a critical moving load velocity of 
132 m s−1. From Figure 14, it is observed that the effect of varying the material 
distribution on the dynamic response of the FG beam is significant for the dif-
ferent velocity profiles. However, this effect decreases as the higher moving load 
supercritical velocities increase.

5.3.  FG beam on viscoelastic foundation subjected to moving point load

The effects of the material distribution, moving load velocity and damping on 
the dynamic response of a simply supported steel-alumina FG beam resting on 
a viscoelastic foundation, as illustrated in Figure 9, are investigated in this sec-
tion. The FG beam of length l = 200 m, moment of inertia I = 3.055 × 10−5 m4, 
cross-sectional area A = 7.684 × 10−3 m2

, is subjected to a moving point load of 
magnitude p = 8.34 × 104 N travelling at c m s−1. The beam rests on a foundation 
of elastic stiffness kf = 3.416×106 N m−2.

The dynamic behaviour of the system in Figure 9 is described by the governing 
equation:

 

where M, C, Kb and Kf  are the system mass, damping, beam stiffness and founda-
tion stiffness matrices while Ü (t),U̇ (t) and U (t) represent the system acceleration, 
velocity and displacement vectors at time t. F(t) is the moving load vector. The 
foundation stiffness matrix in wavelet space is evaluated as:

 

(122)MÜ (t) + CU̇ (t) + (Kb + Kf )U (t) = F(t)
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The wavelet space foundation stiffness matrix is also transformed into physical 
space via the wavelet transformation matrix and is obtained as:

 

The viscous damping matrix of the foundation in wavelet space is expressed as:
 

and in physical space after transformation
 

where d = ζdcr is the viscous damping coefficient, with ζ and dcr denoting the damp-
ing ratio and critical damping, respectively, which is expressed as (Dimitrovová 
& Rodrigues, 2012):

 

The results obtained from 4 BSWI55 (271 DOFs) and 12 Daubechies D162 WFEs 
(375 DOFs) are compared with 130 classical finite elements (390 DOFs) solutions. 
The number of elements, order and multiresolution scales of the elements are 
attained when the dynamic response of a fully steel beam on a viscoelastic foun-
dation (5% damping) converge within 3% of the exact solution for all approaches 
(c = 80 ms−1) as illustrated in Figure 15.

It is observed that the BSWI WFEM solution is highly accurate with signifi-
cantly less number of elements used in comparison to both the Daubechies WFEM 
and classical FEM. This significantly reduces the computational costs with high 
levels of accuracy attained. The Daubechies WFEM does not perform with similar 
efficiency and accuracy as the BSWI WFEM due to the numerical errors that arise 
from evaluating the connection coefficients.

The maximum deflection at the centre of the beam as the moving load travels 
at c m s−1 is presented in Figure 17 for different material distributions (undamped 
system). The plot is obtained for the velocity range 0 < c ≤ 800 m s−1 at increments 
of 1 m s−1 using the BSWI55 WFEM solution. The Daubechies WFEM and classical 
FEM plots are similar and are therefore not presented. It is observed from Figure 
16 that varying the material distribution of the FG beam influences the dynamic 
response of the entire system for different moving load velocities. Furthermore, the 
moving load critical velocity value decreases as n → ∞. For instance, the moving 
load velocity when n = 0 is 648 m s−1 and when n = 104, the corresponding critical 
velocity is 395 m s−1.
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It is known from literature that the critical velocity of a finite beam resting 
on an elastic foundation can be evaluated from the expression (Dimitrovová & 
Rodrigues, 2012):

 

where jcr =
l

�

4

√
kf

EI
 is the critical mode of vibration corresponding to the lowest 

resonant velocity and is rounded off to the nearest integer and μ is the mass density. 
The critical velocity of the fully steel finite beam is obtained as 395.26 m s−1 via 
this formulation and this further validates the wavelet-based approach presented 
in this study.

Figures 17–19 illustrate the dynamic response at the centre of the steel-alu-
mina FG beam resting on a viscoelastic foundation (5, 100 and 200% damping, 
respectively) when subjected to a moving point load for the three velocity profiles 
(subcritical, critical and supercritical based on a fully steel beam). It is observed 
from Figure 17 that the effects of varying the material distribution from n = 104 
to n = 0 on the dynamic response at the centre of the FG beam are more signif-
icant when the moving load is travelling at a velocity approaching that of the 
critical velocity when the system is lightly damped. When the system is critically 
and supercritically damped (100 and 200% damping, respectively), the dynamic 
response significantly decreases, particularly for higher moving load velocities 
for all material distributions as observed in Figures 18 and 19. Furthermore, the 
introduction of damping in the system not only affects the dynamic response of 
the FG beam, but also influences the effect of varying n on the dynamic response. 
For instance, the percentage maximum deflection variation from a steel to alumina 
beam when subjected to a 500 m s−1 moving load is 21.45% when ζ = .05, 8.58% 
when ζ = 1 and 5.52% when ζ = 2. Therefore, increasing damping reduces the 
effect of varying the material distribution on the response of the FG beam on a 
viscoelastic foundation.

6.  Conclusions

The BSWI and Daubechies WFEMs are used to analyse the free vibration and 
dynamic response of a FG beam subjected to a moving point load and resting on 
a viscoelastic foundation. The scaling functions of the Daubechies wavelet and 
B-spline wavelet on the interval (BSWI) families are employed as interpolating 
functions for the construction of the wavelet-based FG beam elements based 
on Euler Bernoulli beam theory. The effect of the material distribution, moving 
load velocity and damping of the viscoelastic system on the dynamic response 
of a FG beam are investigated and discussed. Through numerical examples, it is 
illustrated that the WFEM solutions achieve high levels of accuracy with fewer 
elements implemented with respect to the classical FEM solutions in the analysis 
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of FG beams. This is desirable as the computational accuracy and efficiency is 
improved due to the multiresolution property of wavelets which enables accurate 
approximation of varying material distributions within FGMs and fast moving 
loads. Furthermore, the accuracy of the solutions can be further improved by 
locally increasing the order and/or multiresolution scale of the wavelet-based 
element. The WFEM offer vast potential to efficiently and accurately analyse more 
complicated systems.
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