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1.  Introduction

Generalised thermoelasticity theories have been developed with the objective of 
removing the paradox of an infinite speed of thermal signals inherent in the con-
ventional coupled dynamical theory of thermoelasticity in which parabolic-type 
heat conduction equation is considered, contradict physical facts. During the 
last three decades, the generalised theories involving a finite speed of the heat 
transportation (hyperbolic heat transport equation) in elastic solids have been 
developed to remove this paradox. The first generalisation is proposed by Lord 
and Shulman (1967) which involves one thermal relaxation time parameter (sin-
gle-phase-lag model). The second generalisation of the coupled thermoelasticity 
theory is developed by Green and Lindsay (1972), which involves two thermal 
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relaxation times. Experimental studies indicate that the relaxation times can be 
of relevance in the cases involving a rapidly propagating crack tip, shock wave 
propagation, laser technique, etc. Because of the experimental evidence in support 
of finiteness of heat propagation speed, the generalised thermoelasticity theories 
are considered to be more realistic than the conventional theory in dealing with 
practical problems involving very large heat fluxes at short intervals like those 
occurring in laser units and energy channels. The third generalisation is known 
as low-temperature thermoelasticity introduced by Hetnarski and Ignaczak (1994) 
called H-I theory. Most engineering materials such as metals possess a relatively 
high rate of thermal damping and thus are not suitable for use in experiments 
concerning second sound propagation. But, given the state of recent advances 
in material science, it may be possible in the foreseeable future to identify (or 
even manufacture for laboratory purposes) an idealised material for the pur-
pose of studying the propagation of thermal waves at a finite speed. The fourth 
generalisation is concerned with the thermoelasticity without energy dissipation 
(TEWOED) and thermoelasticity with energy dissipation (TEWED) introduced 
by Green and Naghdi (1991, 1992, 1993) and provides sufficient basic modifica-
tions in the constitutive equations that permit treatment of a much wider class 
of heat flow problems, labelled as types I, II, III. The nature of these three types 
of constitutive equations is such that when the respective theories are linearised, 
type-I is the same as the classical heat equation (based on Fourier’s law) whereas 
the linearised versions of type-II and type-III theories permit the propagation 
of thermal waves at a finite speed. The entropy flux vector in type II and III (i.e. 
TEWOED and TEWED) models are determined in terms of the potential that 
also determines stresses. When Fourier conductivity is dominant, the temperature 
equation reduces to classical Fourier law of heat conduction and when the effect 
of conductivity is negligible the equation has undamped thermal wave solutions 
without energy dissipation. Applying the above theories of generalised thermo-
elasticity, several problems have been solved by Bagri and Eslami (2004, 2007a, 
2007b), Kar and Kanoria (2007), Roy Choudhuri and Dutta (2005), Ghosh and 
Kanoria (2008, 2009) etc. The fifth generalisation of the thermoelasticity the-
ory is known as the dual-phase-lag thermoelasticity developed by Tzou (1995) 
and Chandrasekharaiah (1998). Tzou considered micro-structural effects in the 
delayed response in time in the macroscopic formulation by taking into account 
that increase in the lattice temperature is delayed due to photon–electron interac-
tions on the macroscopic level. Tzou (1995) introduced two-phase-lag to both the 
heat flux vector and the temperature gradient. According to this model, classical 
Fourier’s law q = −K∇T has been replaced by q (P, t + �q) = −K∇T(P, t + �T),  
where the temperature gradient ∇Tat a point P of the material at time t + τT 
corresponds to the heat flux vector q at the same point in time t + τq. Here K is 
the thermal conductivity of the material. The delay time �T is interpreted as that 
caused by the micro-structural interactions and is called the phase lag of the 
temperature gradient. The other delay time τq is interpreted as the relaxation time 
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due to fast-transient effects of thermal inertia. Recently, Roy Choudhuri (2007) 
introduced the three-phase-lag (3PHL) thermoelasticity which is able to contain 
all the previous theories at the same time. In this case Fourier’s law q = −K∇T 
has been replaced by q(P, t+�q) = − [K∇T(P,t + �T) + K∗∇�(P, t+�

�
)], where 

∇𝜈 (𝜈̇ = T) is the thermal displacement gradient and K* is the additional mate-
rial constant and τν is the phase lag for the thermal displacement gradient. The 
purpose of the work of Roy Choudhuri (2007) was to establish a mathematical 
model that includes three-phase lags in the heat flux vector, the temperature gra-
dient and in the thermal displacement gradient. For this model, we can consider 
several kinds of Taylor approximations to recover the previously cited theories. 
In particular, the models of Green and Naghdi are recovered. This theory seems 
an extension of the one proposed by Tzou (1995). Quintanilla and Racke (2008) 
studied the stability of solutions for the 3PHL heat conduction. Kar and Kanoria 
(2009), Abbas (2014), and Kumar and Kumar (2015) have solved different prob-
lems applying the 3PHL model.

There are materials which have natural anisotropy such as zinc, magnesium, 
sapphire, wood, some rocks and crystals, and also there are artificially manu-
factured materials such as fibre-reinforced composite materials, which exhibit 
anisotropic character. The advantage of composite materials over the traditional 
materials lies on their valuable strength, elastic and other properties as Lekhnitskii 
(1980). A reinforced material may be regarded to some order of an approxima-
tion, as homogeneous and anisotropic elastic medium having a certain kind of 
an elastic symmetry depending on the symmetry of reinforcement. Some glass 
fibre-reinforced plastics may be regarded as transversely isotropic. The problems of 
solid mechanics should not be restricted to the isotropic medium only. Increasing 
use of anisotropic media demands that the study of elastic problems should be 
extended to anisotropic medium also. Fibre-reinforced composites are widely used 
in engineering structures, due to their superiority over the structural materials in 
applications requiring high strength and stiffness in lightweight components. A 
continuum model is used to explain the mechanical properties of such materials. 
A reinforced concrete member should be designed for all conditions of stresses 
that may occur and in accordance with the principles of mechanics. The charac-
teristic property of a reinforced concrete member is that its components, namely 
concrete and steel, act together as a single unit as long as they remain in the elastic 
condition, i.e. the two components are bound together so that there can be no 
relative displacement between them. In the case of an elastic solid reinforced by 
a series of parallel fibres, it is usual to assume transverse isotropy. In the linear 
case, the associated constitutive relations, relating infinitesimal stress and strain 
components have five material constants. In the last three decades, the analysis 
of the stress and deformation of fibre-reinforced composite materials has been 
an important research area of solid mechanics. Belfield, Rogers, and Spencer 
(1983) have introduced the idea of continuous self-reinforcement at every point 
of an elastic solid. One can find some studies on transversely isotropic elasticity 
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in the literature (Abd-Alla, Abo-Dahab, & Bayones, 2015; Othman & Atwa, 2014; 
Othman, Elmaklizi, & Said, 2013; Othman, Lotfy, Said, & Osman, 2012; Sengupta 
& Nath, 2001; Singh, 2006).

The effect of mechanical and thermal disturbances on an elastic body is stud-
ied by the theory of thermoelasticity. This theory has two defects. This theory 
is studied by Biot (1956). He deals with a defect of the uncoupled theory that 
mechanical causes have no effect on temperature. The thermal stress in a material 
with the temperature-dependent properties is studied extensively by Noda (1986). 
Material properties such as the modulus of the elasticity and thermal conductivity 
vary with the temperature. When the temperature variation from the initial is not 
varying high, the properties of materials are constants. In the refractory indus-
tries, the structural components are exposed to high temperature change. In this 
case, neglecting the temperature dependence material properties will be due to 
errors as Jin and Batra (1998). Ezzat et al. (2004) studied the dependence of the 
modulus of elasticity on reference temperature in generalised thermoelasticity 
with thermal relaxation. Othman (2000) and Othman et al. (2013) studied the 
two-dimensional problem of the generalised thermoelasticity with the temper-
ature-dependent elastic moduli for the different theories. Non-linear transient 
thermal stress analysis of temperature-dependent hollow cylinders using a finite 
element model are discussed by Zenkour and Abbas (2014). Fractional order the-
ory of thermoelasticity for elastic medium with temperature-dependent properties 
are discussed by Wang et al. (2015).

The present paper is concerned with the investigations related to the effect of a 
mechanical force and a magnetic field for the 3PHL model and TEWOED (G-N 
II) theory on the plane waves in a fibre-reinforced thermoelastic isotropic medium 
with temperature-dependent properties. Normal mode analysis is used to obtain 
the exact expressions for the considered variables. A comparison is carried out 
between the considered variables in the absence and presence of a magnetic field 
as well as temperature-dependent properties. A comparison is also made between 
the results of the two theories for different values of a mechanical force.

2.  The governing equations and formulation of the problem

We consider the problem of a thermoelastic half-space (x ≥ 0). A magnetic field 
with a constant intensity H = (0, 0, H0) is acting parallel to the boundary plane 
(taken as the direction of the z-axis). The surface of a half-space is subjected to a 
thermal shock which is a function of y and t. We are interested in a plane strain 
in the xy-plane with displacement vector u will have the components:
 

We begin our consideration with linearised electromagnetism equations as in 
Othman and Said (2013),

(1)u = u(x, y, t), v = v(x, y, t), w = 0.
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where μ0 is the magnetic permeability, ε0 is the electric permeability, J is the current 
density vector, u̇ is the particle velocity of the medium and the small effect of the 
temperature gradient on J is also ignored.

The constitutive relations and field equations for a fibre-reinforced linearly 
thermoelastic isotropic medium with respect to the reinforcement direction a with 
a hydrostatic initial stress under the influence of the magnetic field and without 
body forces and heat sources are given by (Belfield et al. 1983; Montanaro, 1999):

(1) � The stress–strain relation

 

We assume that as in Othman et al. (2013):

 

where �1, �1,�1,�L1, �T1, �1, �1 are the constants of the material and α* is the 
linear temperature coefficient.

Introducing Equation (5) in Equation (3), we get
 

 

 

(2)J = ∇ ∧ h − 𝜀0

𝜕E

𝜕 t
, ∇ ∧ E = −𝜇0

𝜕 h

𝜕 t
, E = −𝜇0 (u̇ xH ), ∇ ⋅ h = 0.

(3)
𝜎ij = &𝜆ekk𝛿ij + 2𝜇Teij + 𝛼(akamekm𝛿ij + aiajekk) + 2(𝜇L − 𝜇T)(aiakekj + ajakeki)

+ 𝛽 akamekmaiaj − 𝛾 T̂ 𝛿ij − P(𝜔ij + 𝛿ij ),

(4)�ij =
1

2
(uj, i − ui, j), eij =

1

2
(ui, j + uj, i), ekk =

�u

�x
+

�v

�y
, i ⋅ j = x, y.

� = �1(1 − �∗T0), � = �1(1 − �∗T0), � = �1(1 − �∗T0), �L = �L1(1 − �∗T0),

(5)�T = �T1(1 − �∗T0), � = �1(1 − �∗T0), � = �1(1 − �∗T0).

(6)𝜎xx =
1

𝛼0
[B11u,x + B12v,y − 𝛾1T̂] − P,

(7)𝜎yy =
1

𝛼0
[B12u,x + B22v,y − 𝛾1T̂] − P,

(8)�xy = S1 u,y + S2v,x , �yx = S2 u,y + S1v,x , �xz = �yz = 0.
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where, 
B11 = �1 + 2(�1 + �T1) + 4(�L1 − �T1) + �1, B12 = �1 + �1, B22 = �1 + 2�T1,

where �ij ’s are the components of stress, eij ’s are the components of strain, 
ekk is the dilatation, �, �T’s are the elastic constants, �, �, (�L − �T), � , are the 
reinforcement parameters, δij is the Kronecker delta, P is the initial pressure, 
T̂ = T − T0, where T is the temperature above the reference temperature T0, and 
a ≡ (a1, a2, a3), a

2
1 + a22 + a23 = 1. We choose the fibre direction as a ≡ (1, 0, 0).

(2) � The equation of motion, taking into consideration the Lorentz force, is 
given by

 

The dynamic displacement vector is actually measured from a steady-state 
deformed position and the deformation is assumed be small. Due to the application 
of the initial magnetic field H, there are an induced magnetic field h = (0, 0, h) and 
an induced electric field E, as well as the simplified equations of electrodynamics of 
a slowly moving medium for a homogeneous, thermal and electrically conducting, 
elastic solid. Expressing the components of the vector J = (J1 , J2, J3) in terms of 
displacement by eliminating the quantities h and E from Equation (2), thus yields

 

(3) � The generalised heat conduction equation in the 3PHL model is given 
by Roy Choudhuri (2007)

 

where K is the coefficient of thermal conductivity, K* is the additional material 
constant, � is the mass density, CE is the specific heat at constant strain, τT and τq are 
the phase-lag of temperature gradient and the phase-lag of heat flux, respectively. 
Also �∗

�
= K + �

�
K∗, where τν is the phase-lag of thermal displacement gradient. 

In the above equations, a dot denotes the partial derivative with respect to time, 
and a comma followed by a suffix denotes the partial derivative with respect to 
the corresponding coordinates.

By substituting from Equations (6)–(8) and (10) in Equation (9) and using the 
summation convection, we note that the third equation of motion in Equation (9) 
is identically satisfied and the first two equations become

S1 =
�L1

�0
+

P

2
, S2 =

�L1

�0
−

P

2
, �0 =

1

(1 − �∗T0)
.

(9)𝜌 üi = 𝜎ij, j + 𝜇0(J × H )i, i, j = 1, 2, 3.

(10)J1 = H0

(
−
𝜕e

𝜕y
+ 𝜇0 𝜀0 v̈

)
, J2 = H0

(
𝜕e

𝜕x
− 𝜇0 𝜀0 ü

)
, J3 = 0,

(11)K∗ ∇2T + 𝜏∗
𝜈
∇2Ṫ + K𝜏T ∇

2T̈ =

(
1 + 𝜏q

𝜕

𝜕t
+

1

2
𝜏2q

𝜕2

𝜕t2

)(
𝜌CET̈ + 𝛾 T0 ë

)
,
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where E1 = �0S1, E2 = �1 + �1 + �0S2.

Employing Equation (5) and using Equation (11), this yields
 

Equations (12)–(14) are the field equations of the generalised thermoelasticity 
elastic solid, applicable to the GN-II theory and 3PHL model as follows:

(1) � Equations of the 3PHL model when, K , 𝜏T , 𝜏q, 𝜏𝜈 > 0, and the solutions 
are always (exponentially) stable if 2K𝜏T

𝜏q
> 𝜏∗

𝜈
> K∗𝜏q as in Quintanilla 

and Racke (2008)
(2) � Equations of the GN-II theory when, K = �T = �q = �

�
= 0.

(3) � The corresponding equations for a fibre-reinforced linearly thermoe-
lastic isotropic medium with temperature dependence in the presence 
of a magnetic field for different values of a mechanical force by taking 
RP = 5, 25.

(4) � The corresponding equations for a fibre-reinforced linearly thermoelas-
tic isotropic medium with temperature dependent in the presence of 
a mechanical force and without a magnetic field from the above men-
tioned cases by taking RP = 5, H0 = 0.

(5) � The corresponding equations for a fibre-reinforced linearly thermo-
elastic isotropic medium in the presence of a mechanical force and a 
magnetic field and without temperature dependent from the above 
mentioned cases by taking α* = 0.

To transform the above equations in non-dimensional forms, we will use the 
following non-dimensional variables:

 

(12)

𝜌
𝜕2u

𝜕t2
=

1

𝛼0

(
B11

𝜕2u

𝜕x2
+ E2

𝜕2v

𝜕x𝜕y
+ E1

𝜕2u

𝜕y2
− 𝛾1

𝜕T̂

𝜕x

)
− 𝜇0H0

𝜕h

𝜕x
− 𝜀0𝜇

2
0H

2
0

𝜕2u

𝜕t2
,

(13)

𝜌
𝜕2v

𝜕t2
=

1

𝛼0

(
B22

𝜕2v

𝜕y2
+ E2

𝜕2u

𝜕x 𝜕y
+ E1

𝜕2v

𝜕x2
− 𝛾1

𝜕T̂

𝜕y

)
− 𝜇0H0

𝜕h

𝜕y
− 𝜀0𝜇

2
0H

2
0

𝜕2v

𝜕t2
.

(14)K∗ ∇2T + 𝜏∗
𝜈
∇2Ṫ + K𝜏T ∇

2T̈ =

(
1 + 𝜏q

𝜕

𝜕t
+

1

2
𝜏2q

𝜕2

𝜕t2

)(
𝜌CET̈ +

𝛾1

𝛼0
T0 ë

)
,

(x�, y�, u�
, v�) = c

1
𝜂 (x, y, u, v), (t�, 𝜏 �q, 𝜏

�
𝜈
, 𝜏 �T) = c2

1
𝜂 (t, 𝜏q, 𝜏𝜈 , 𝜏T),

h� =
h

H
0

, 𝜃 =
𝛾
1
T̂

(𝜆
1
+ 2𝜇T1)

,

(15)P� =
P

�T1

, ��
ij =

�ij

�T1

, i, j = 1, 2.
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where � =
�CE

K∗
, c21 =

(�1+2�T1)

�
.

Using the above non-dimensional variables, then employing h′ = − H0e, Equations 
(12)–(14) take the following form (dropping the primes for convenience):

 

 

 

w h e r e 
(h1, h2, h11, h22, h0) =

(E1,E2,B11,B22,�0 H
2
0 )

� c21
, L11 = h11 + �0H0, L22 = h22 + �0H0,

3.  Normal mode analysis

The solution of the considered physical variable can be decomposed in terms of 
normal modes in the following form:
 

where, ω is a complex constant, i =
√
−1, m is the wave number in the y-direction 

and u∗(x), v∗(x), �∗(x), and �∗
ij(x)are the amplitudes of the field quantities.

Introducing Equation (19) in Equations (16)–(18), we get
 

 

(16)�2
�2u

�t2
= L11

�2u

�x2
+ L2

�2v

�x�y
+ h1

�2u

�y2
−

��

�x
,

(17)�2
�2v

�t2
= L22

�2v

�y2
+ L2

�2u

�x�y
+ h1

�2v

�x2
−

��

�y
,

(18)CK𝜃,ii +C𝜈
𝜃̇,ii +CT 𝜃̈,ii =

(
1 + 𝜏q

𝜕

𝜕t
+

1

2
𝜏2q

𝜕2

𝜕t2

)(
𝜃̈ + 𝜀 ë

)
.

L
2
= h

2
+ �

0
h
0
H

0
, C

K
=

K
∗

�C
E
c
2

1

, C
�
=

� K

�C
E

+ C
K
�
�
,

C
T
=

� K�
T

�C
E

, � =
�2
1
T
0

�C
E
�
0
(�

1
+ 2�

T1
)
, �

2
= �

0

(
1 +

�
0
�2

0

H
2

0

�

)
.

(19)[ u, v, �, �ij ](x, y, t) = [u∗, v∗, �∗, �∗
ij](x) exp(� t + imy).

(20)[L11D
2 − A1]u

∗ + imL2D v∗ = D�∗,

(21)imL2Du
∗ + [h1D

2 − A2]v
∗ = im�∗,
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where, 
A1 = �2�

2 + h1m
2, A2 = �2�

2 + L22m
2, A3 = ��2

(
1 + �q� +

1

2
�2q�

2
)
,

Eliminating v∗(x) and θ*(x) between Equations (20)–(22), we obtain the sixth-or-
der ordinary differential equation satisfied with u∗(x), 

where,

Equation (23) can be factored as
 

where k2n(n = 1, 2, 3) are the roots of the characteristic Equation of (23).
The solution of Equation (23), which is bound as x → ∞, is given by
 

Similarly,
 

 

(22)A3D u∗ + imA3v
∗ = [A4D

2 − A5]�
∗,

A4 = CK + C
�
� + CT�

2, A5 = A4m
2 + A3∕�, D =

d

dx
.

(23)[D6 − AD4 + B D2 − C] u∗(x) = 0,

A =
1

h1L11A4

{ h1A3 −m2L2
2A4 + h1L11A5 + L11A2A4 + h1A1A4},

B =
1

h1L11A4

{ A3A2 + h1A1A5 + A1A2A4 + L11m
2A3 + L11A2A5 − 2m2L2A3 −m2L2

2A5},

C =
1

h1L11A4

{m2A1A3 + A1A2A5}.

(24)
(
D2 − k21

) (
D2 − k22

) (
D2 − k23

)
u∗(x) = 0,

(25)u∗(x) =

3∑
n=1

Gn exp(−knx).

(26)v∗(x) =

3∑
n=1

H1nGn exp(−knx),

(27)�∗(x) =

3∑
n=1

H2nGn exp(−knx).
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where H1n =
im[A1+(L2 −L11)k

2
n]

h1k
3
n−(A2−m

2L2)kn
, H2n =

−L11k
2
n+A1+imL2 knH1n

kn
.

Using Equations (15) and (19) in Equations (6)–(8), we obtain
 

 

 

Introducing Equations (25)–(27) in Equations (28)–(30), this yields
 

 

 

where, 

P∗ = P exp[−(� t + imy)], H3n =
1

�0�T1

[−B11kn + imB12H1n − (�1 + 2�T1)H2n],

4.  Application

In this section we determine the parameters Gn(n = 1, 2, 3). In the physical prob-
lem, we should suppress the positive exponentials that are unbounded at infinity. 
The constants G1, G2, G3 have to be chosen such that the boundary conditions on 
the surface at x = 0 take the form,

(28)�∗
xx =

1

�0�T1

[B11 D u∗ + imB12v
∗ − (�1 + 2�T1) �

∗] − P∗,

(29)�∗
yy =

1

�0�T1

[B12 D u∗ + imB22v
∗ − (�1 + 2�T1) �

∗] − P∗,

(30)�∗
xy =

1

�T1

[imS1 u
∗ + DS2v

∗],

(31)�∗
xx =

3∑
n=1

H3nGn exp(−knx) − P∗,

(32)�∗
yy =

3∑
n=1

H4nGn exp(−knx) − P∗,

(33)�∗
xy =

3∑
n=1

H5nGn exp(−knx),

H4n =
1

�0�T1

[−B12kn + imB22H1n − (�1 + 2�T1)H2n], H5n =
1

�T1

[ imS1 − S2knH1n].
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(1) � A thermal boundary condition that the surface of the half-space is sub-
jected to a thermal insulated boundary,

 

(2) � Mechanical boundary condition that the surface of the half-space is sub-
jected to a mechanical force,

 

(3) � Mechanical boundary condition that the surface of the half-space is sub-
jected to traction free,

 

where f (y, t) is an arbitrary function, f ∗ is a constant and RP is the magnitude of 
mechanical force. Substituting the expressions of the variables considered into 
the above boundary conditions Equations (34)–(36), we can obtain the following 
equations satisfied by the parameters:
 

By solving the above system of Equation (37), we obtain a system of three equa-
tions. After applying the inverse of matrix method, we have the values of the three 
constants Gn(n = 1, 2, 3). Hence, we obtain the expressions of displacements, 
temperature distribution, and the stress components.

 

5.  Numerical results and discussion

With a view to illustrating the analytical procedure presented earlier, we now con-
sider a numerical example for which computational results are given, to compare 
these in the context of the 3PHL model and the GN-II theory, and to study the 
effect of a magnetic field and a mechanical force on the wave propagation in a 
conducting fibre-reinforcement, we now present some numerical results for the 
physical constants as the follows:

(34)
��

�x
= 0.

(35)�xx = f (0, y, t) = −RPf
∗e�t+imy − P.

(36)�xy(0, y, t) = 0.

(37)−

3∑
n=1

knH2nGn = 0,

3∑
n=1

H3nGn = −RP f
∗,

3∑
n=1

H5nGn = 0.

(38)

⎡⎢⎢⎢⎣

G1

G2

G3

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

k1H21 k2H22 k3H23

H31 H32 H33

H51 H52 H53

⎤
⎥⎥⎥⎦

−1⎡
⎢⎢⎢⎣

0

−RPf
∗

0

⎤⎥⎥⎥⎦
.

�1 = 7.59 × 109 N .m−2, �
T1 = 1.89 × 1010 Nm−2,

�
L1 = 2.45 × 1010 Nm−2, � = 7800 kg .m−3,
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The computations were carried out for a value of time t = .2. The variations of 
the thermal temperature θ,   the displacement components u, v, and the stress 
components �xx , �yy , �xy with distancexin the plane y = .5 for the problem under 
consideration based on the 3PHL model and the G-N II theory. The results are 
shown in Figures 1–18. The graphs show four curves predicted by two different 
theories of thermoelasticity. In these figures, the solid lines represent the solution 
in the 3PHL model and the dashed lines represent the solution derived using the 
G-N II theory. Here, all the variables are taken in non-dimensional forms and 
we consider five cases.

Figures 1–6 show comparisons between the displacement components u, v, the 
temperature �, and the stress components �xx , �yy , �xy with temperature-depend-
ent properties in the presence of a magnetic field for different values of mechanical 
force (RP = 5, 25).

P = 1N .K.m
−2
, �

1
= −1.28 × 10

10
N .m

−2
, �

1
= .32 × 10

10
N .m

−2
,

T
0
= 300K, �∗ = .008K

−1
,

CE = 383.1 J .kg−1K−1, �q = .009 s, �
�
= .006 s,

�t = 8.78 × 10−5 K−1, K∗ = 386ws - 1m−1K−1,

�1 = 3.86 × 1010 kgm−1s−2, f ∗ = 1, K = 120wm−1 K−1,

� = �0 + i�, �0 = 1, � = .3,

m = .8, �0 = 1.9, �0 = .7, H0 = 80, �T = .007 s.
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Figure 1. Horizontal displacement distribution u for different values of a mechanical force.
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Figure 2. Vertical displacement distribution v for different values of a mechanical force.
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Figure 3. Temperature distribution θ for different values of a mechanical force.
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Figure 4. Distribution of stress component σxx for different values of a mechanical force.
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Figure 6. Distribution of stress component σyy for different values of a mechanical force.
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Figure 7. Horizontal displacement distribution u in the absence and presence of a magnetic field.
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Figure 5. Distribution of stress component σxy for different values of a mechanical force.
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Figure 8. Vertical displacement distribution v in the absence and presence of a magnetic field.

0 2 4 6 8 10
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x

θ

3PHL
G-N II

with magnetic field

without magnetic field

Figure 9. Temperature distribution θ in the absence and presence of a magnetic field.
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Figure 10. Distribution of stress component σxx in the absence and presence of a magnetic field.
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Figure 12. Distribution of stress component σyy in the absence and presence of a magnetic field.
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Figure 13. Horizontal displacement distribution u for dependent and independent temperature.
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Figure 11. Distribution of stress component σxy in the absence and presence of a magnetic field.
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Figure 14. Vertical displacement distribution v for dependent and independent temperature.
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Figure 15. Temperature distribution θ for dependent and independent temperature.
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Figure 16. Distribution of stress component σxx for dependent and independent temperature.
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Figure 1 depicts that the distribution of the horizontal displacement u begins 
from positive values. In the context of the two theories, u starts with increasing to 
a maximum value in the range 0 ≤ x ≤ 1, then decreases to a minimum value in 
the range 1 ≤ x ≤ 2.8, and also moves in a wave propagation for Rp = 25. However, 
in the context of the two theories, u starts with increasing to a maximum value in 
the range 0 ≤ x ≤ 1, then decreases to a minimum value in the range 1 ≤ x ≤ 3, 
and then becomes nearly constant for RP = 5. Figure 2 shows that the distribution 
of the vertical displacement v begins from positive values. In the context of the 
two theories, v starts with decreasing to a minimum value in the range 0 ≤ x ≤ .8, 
then increases to a maximum value, and also moves in a wave propagation for 
RP = 25, 5. Figure 3 exhibits that the distribution of the temperature θ, in the 
context of the two theories, starts with decreasing in the range 0 ≤ x ≤ 1.6, then 
increases, and in the last becomes nearly constant for RP = 5. However, in the 
context of the two theories, θ starts with decreasing to a minimum value, then 
increases, and also moves in a wave propagation for RP = 25. Figure 4 displays 
that the distribution of the stress component σxx begins from negative values 
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Figure 18. Distribution of stress component σyy for dependent and independent temperature.

0 2 4 6 8 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x

σ x
y

3PHL
G-N II

N T D

W T D

Figure 17. Distribution of stress component σxy for dependent and independent temperature.
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and satisfies the boundary condition at x = 0. In the context of the two theories, 
σxx starts with increasing to a maximum value in the range 0 ≤ x ≤ 1.8, then 
decreases, and also moves in a wave propagation for RP = 25. However, in the 
context of the two theories, σxx starts with increasing to a maximum value in 
the range 0 ≤ x ≤ 1.5, then decreases, and in the last becomes nearly constant 
for RP = 5. Figure 5 explains the distribution of the stress component σxy and 
demonstrates that it reaches a zero value and satisfies the boundary condition at 
x = 0. In the context of the two theories, σxy starts with decreasing to a minimum 
value in the range 0 ≤ x ≤ 1, then increases to a maximum value, and also moves 
in a wave propagation for RP = 5, 25. Figure 6 depicts that the distribution of the 
stress component σyy, in the context of the two theories, starts with decreasing 
to a minimum value in the range 0 ≤ x ≤ 1.8, then increases, and also moves in 
a wave propagation for RP = 25. However, in the context of the two theories, σyy 
starts with decreasing to a minimum value in the range 0 ≤ x ≤ 1.5, then increases, 
and in the last becomes nearly constant for RP = 5.

Figures 7–12 show comparisons between the displacement components u, v, 
the temperature �, and the stress components �xx , �yy , �xy, with temperature-de-
pendent properties in the absence (H0 = 0) and presence (H0 = 80) of a magnetic 
field with a mechanical force (RP = 5).

Figure 7 depicts that the distribution of the horizontal displacement u begins from 
positive values. In the context of the two theories, u starts with increasing to a maxi-
mum value in the range 0 ≤ x ≤ 1.8, then decreases to a minimum value, and again 
increases for H0 = 0. Figure 8 shows that the distribution of the vertical displacement v 
begins from positive values. In the context of the two theories, v starts with decreasing 
to a minimum value in the range 0 ≤ x ≤ 1.7, then increases, and again decreases for 
H0 = 0. Figure 9 exhibits that the distribution of the temperature θ, in the context of the 
two theories, θ starts with decreasing to a minimum value in the range 0 ≤ x ≤ 1.8, 
then increases, and again decreases for H0 = 0. Figure 10 explains that the distribution 
of the stress component σxx begins from a negative value and satisfies the boundary 
condition at x = 0. In the context of the two theories, σxx starts with increasing to a 
maximum value in the range 0 ≤ x ≤ 2.6, then decreases, and again increases for 
H0 = 0. Figure 11 displays the distribution of the stress component σxy and demon-
strates that it reaches a zero value and satisfies the boundary condition at x = 0. In the 
context of the two theories, σxy starts with decreasing to a minimum value in the range 
0 ≤ x ≤ 1, then increases to a maximum value, and also moves in a wave propagation 
for H0 = 0. Figure 12 depicts that the distribution of the stress component σyy begins 
from positive value. In the context of the two theories, σyy starts with decreasing to a 
minimum value in the range 0 ≤ x ≤ 3, then increases, and again decreases for H0 = 0.

Figures 13–18 show comparisons between the displacement components u,, 
v, the temperature �, and the stress components �xx , �yy , �xy, with (N T D) and 
without (W T D) temperature-dependent properties in the presence of a magnetic 
field for RP = 5.
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Figure 13 depicts that the distribution of the horizontal displacement u begins 
from positive values. In the context of the two theories, u decreases in the range 
0 ≤ x ≤ 10 for W T D. Figure 14 shows that the distribution of the vertical dis-
placement v begins from positive values. In the context of the two theories, v starts 
with increasing to a maximum value in the range 0 ≤ x ≤ .2, then decreases, and 
in the last becomes nearly constant for W T D. Figure 15 explains that the dis-
tribution of the temperature θ begins from positive values. In the context of the 
two theories, θ decreases in the range 0 ≤ x ≤ 10 for W T D. Figure 16 exhibits 
that the distribution of the stress component σxx begins from a negative value and 
satisfies the boundary condition at x = 0. In the context of the two theories, σxx 
starts with increasing in the range 0 ≤ x ≤ 3, and then becomes nearly constant 
for W T D. Figure 17 displays the distribution of the stress component σxy and 
demonstrates that it reaches a zero value and satisfies the boundary condition at 
x = 0. In the context of the two theories, σxy starts with decreasing to a minimum 
value in the range 0 ≤ x ≤ .3, then increases, and in the last becomes nearly con-
stant for W T D. Figure 18 depicts that the distribution of the stress component 
σyy, in the context of the two theories, starts with increasing, and then becomes 
nearly constant for W T D.

6.  Conclusion

In the present study, normal mode analysis is used to study the effect of a mechan-
ical force and a magnetic field on a fibre-reinforced thermoelastic medium based 
on the 3PHL model and GN-II theory. We obtain the following conclusions based 
on the above analysis:

(1) � The phase-lag of the temperature gradient, the phase-lag of the thermal 
displacement gradient and the phase-lag of heat flux have significant 
effects on all the field quantities.

(2) � The mechanical force RP, the magnetic field (H0) and the temperature 
(α*) have a significant effect on all the field quantities.

(3) � Deformation of a body depends on the nature of the applied force as well 
as the type of boundary conditions.

(4) � The method that was used in the present article is applicable to a wide 
range of problems in hydrodynamics and thermoelasticity.

(5) � Analytical solutions based upon normal mode analysis of the thermoe-
lastic problem in solids have been developed and utilised.

(6) � 3PHL model is the most adequate theory to describe the present 
problem.
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