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1.  Introduction
A proper account of friction and interlocking is frequently mandatory in the  
analysis of the mechanical response of quasi-brittle interfaces subjected to mixed-
mode loading in presence of roughness of detached surfaces with a small-scale 
irregular geometry. Typical examples in which it is necessary to account for 
the presence of a small-scale irregular surface in the near-tip contact zone are 
mixed-mode decohesion of rock joint surfaces (Lee, Park, Cho, & You,  2001) and 
masonry-mortar joints (Rafsanjani, Loureno, & Peixinho,  2014). In particular, 

ABSTRACT
A three-dimensional (3D) two-scale Cohesive Zone Model 
(CZM), which is based on a multiplane approach and couples 
damage with friction and interlocking, is presented for 
analysing crack propagation in quasi-brittle materials along 
structural interfaces where formation of cracks is expected. 
The main idea of the 3D multiplane formulation herein 
exploited is to describe the asperities of the interface in the 
form of periodic patterns of inclined planes, denominated 
Representative Interface Elements (RIE). The interaction 
within each plane of the RIE is governed by the interface 
formulation proposed by Alfano and Sacco in earlier work. 
After reporting details of the formulation and of its algorithmic 
implementation, the sensitivity of the macroscopic 
mechanical response to the specific selection of the RIE is 
analysed and reported with a general numerical assessment 
of the 3D interface mechanical response to monotonic and 
cyclic loading histories. A fundamental issue addressed in 
this paper is the identification of optimal RIE patterns with a 
minimum number of planes capable of providing isotropic in-
plane behaviour in response to confined slip tests.

© 2015 Taylor & Francis

KEYWORDS
three-dimensional cohesive-
zone model; interlocking; 
mixed-mode fracture; 
damage-friction coupling

ARTICLE HISTORY
Received 1 April 2015 
Accepted 17 September 
2015

CONTACT  R. Serpieri   rserpier@unisannio.it 



European Journal of Computational Mechanics    145

the occurrence of cracks with pronounced rough profiles across mortar joints, 
departing from the straight brick-mortar interfaces, is experimentally shown in 
Fouchal, Lebon, and Titeux (2009). The importance of accounting for nonplanar 
detached interfaces has been recognised also in the delamination of fiber-rein-
forced polymer laminates (Sørensen and Jacobsen, 2009).

The mathematical position of problems of thin adhesive layers characterised by 
roughness (modelled in the form of adhesive boundaries having highly oscillating 
properties), is addressed by Licht and Michaille (1997) and by Licht, Michaille, 
and Pagano (2007) in the framework of  Γ-convergence, and with a specific focus 
on hyperelastic materials having nonconvex energy density.

Retaining a more specific engineering perspective and a focus on inelasticity, 
modelling of the above-mentioned decohesion phenomena can be approached by 
employing suitable thermodynamic potentials (Del Piero & Raous,  2010; Raous, 
Cangémi, & Cocu,  1999) or, alternatively, employing homogenisation procedures 
(Luciano & Sacco,  1997) combined with damage mechanics (Mauge & Kachanov, 
1994), as shown, by particular, in Fouchal, Lebon, Raffa, and Vairo (2014) by 
performing a sensitivity analysis of the interface stiffness to an internal variable 
describing waviness of the rough cracked interface.

Within this last family of approaches for the mechanical modelling of adhe-
sive interfaces, Cohesive Zone Models (CZMs) (Mi, Crisfield, Davies, & Hellweg,  
1998) are a widely employed technique for analysing crack propagation in struc-
tural interfaces within quasi-brittle materials along interfaces where formation 
and propagation of cracks are expected. Several interface models accounting for 
damage-friction coupling have been proposed in the literature, see, e.g. Del Piero 
and Raous (2010) and references therein. Some of them are based on nonassoci-
ative softening plasticity, such as the multidissipative interface model proposed 
by Cocchetti, Maier, and Shen (2001) and the contributions given by Bolzon and 
Cocchetti (2003) and by Červenka, Kishen, and Saouma (1998) in the field of 
concrete dams analysis, and by Giambanco, Rizzo, and Spallino (2001). A cohesive 
approach with separate values of the energy dissipation in mode I and mode II 
combined with a contact algorithm has been also recently investigated by Snozzi 
and Molinari (2013).

In Serpieri and Alfano (2011), a two-dimensional CZM, based on a simplified 
multiplane micromechanical formulation, has been recently proposed for coupling 
damage and friction in quasi brittle interfaces with irregular geometry at the small 
scale. The main idea of the multiplane formulation exploited in this reference is 
to describe the asperities of the interface in the form of a periodic arrangement of 
distinct inclined planes, denominated Representative Interface Element (RIE). The 
interaction within each of these surfaces is governed by the interface assumptions 
proposed by Alfano and Sacco (2006): 1) each infinitesimal area of microsurface is 
assumed to be decomposed into an undamaged and a fully damaged part; 2) the 
evolution of damage is assumed to depend on the elastic energy in the undam-
aged part; 3) it is assumed that friction occurs only on the damaged part and is 
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governed by a Coulomb law. Restraints to the model parameters stemming from 
thermodynamical consistency considerations have been derived and discussed 
by Serpieri, Sacco, and Alfano (2015).

This deterministic RIE approach suitably applies to surfaces with artificially 
constructed periodic roughness patterns such as deformed bars for reinforced 
concrete with regular rib patterns (Serpieri, Varricchio, Sacco, & Alfano, 2014). For 
natural rock joints, while a proper description of the asperity distribution demands 
a statistical treatment (Barton & Choubey, 1977; Brown and Scholz, 1985), a RIE 
deterministic description of asperities can be retained (Lee et al., 2001) with the 
main advantage of keeping the number of employed history variables limited.

Furthermore, in Serpieri, Sacco et al. (2015) it was shown that this approach 
allows developing a CZM where a unique value of purely ‘rupture’ energy is 
defined, which is the same in both opening and sliding modes. The reason is that 
the increase in total (measured) fracture energy normally found with increasing 
mode II/mode I ratio is retrieved because the total fracture energy in the model 
is the sum of the rupture energy and the energy dissipated by friction. The case of 
pure mode II also clearly indicates that not only friction but also the geometry of 
the fracture-surface asperities play an essential role in this modelling approach. 
Since the formulation by Serpieri, Sacco et al. (2015) allows decomposing the 
total dissipation into the different contributions given by rupture, friction and 
fracture asperities, it ultimately leads to a model which has a very sound physical 
foundation. As a result, its input parameters have a very clear mechanical meaning 
and, in the authors’ opinion, are also easier to characterise through procedures 
that can be implemented in robust industrial standards.

The successful validation of the 2D model in Serpieri, Sacco et al. (2015) against 
experimental results reported for mixed-mode testing of a double cantilever beam 
in Sørensen and Jacobsen (2009) suggests that the extension of the approach to a 
general 3D model can lead to a very effective computational tool for the virtual 
simulation of the 3D complex features of failure in laminated composites in the 
context of real industrial applications (see for example Allegri, Jones, Wisnom, & 
Hallett, 2011; Charalambous, Allegri, Lander, & Hallett, 2015).

Capturing the 3D aspects of fracture propagation can be very important also 
in the other areas of engineering which were mentioned above, see just as one 
example the failure of masonry panels involving the combination of in-plane and 
out-of-plane behaviour considered by Macorini and Izzuddin (2011).

On the other hand, in all problems addressed by Serpieri and Alfano (2011), 
Serpieri et al. (2014) axial-symmetry or plane-stress and plane-strain conditions 
are invoked so as to admit a 2D formulation, and consider, accordingly, 2D RIEs.

Few works to date address full three-dimensional (3D) cohesive interface  
models in presence of both friction and interlocking. Most of them (see e.g. Foulk, 
Allen, & Helms,  2000; Evangelista, Roesler, & Proença,  2013; Gasser & Holzapfel,  
2006; Cuvilliez, Feyel, Lorentz, & Michel-Ponnelle,  2012; Ruiz, Pandolfi, & Ortiz,  
2001; Radovitzky, Seagraves, Tupek, & Noels,  2011) are focused on the prediction 
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of crack growth in materials without a specific account of roughness. A nonlinear 
interface element based upon a co-rotational approach and specifically devised 
to address three-dimensional decohesion problems has been recently presented 
by Macorini and Izzuddin (2011) to treat geometric nonlinearities arising in the 
collapse of masonry panels. The effect of large deformations in a 3D cohesive 
zone element has been also investigated in Van den Bosch, Schreurs, and Geers 
(2008). In Ho, Joshi, and Tay (2012), a 3D cohesive model is used to simulate 
the delamination of silicon devices due to thermal-induced stresses. In all of the 
above-mentioned works, a simplified approach is used to describe the mechan-
ical behaviour of the interacting surfaces: friction and the effect of asperities are 
neglected, the simulations being limited to a pure mode-I fracture growth.

In the present contribution, an extension of the formulation proposed by 
Serpieri & Alfano (2011) to 3D problems is illustrated whereby the RIE is rep-
resented as a finite 3D pattern of inclined surfaces and the formulation allows 
defining relative displacements of the microsurfaces along three possible inde-
pendent directions.

The generalisation of the RIE approach to three-dimensional kinematics is 
not trivial. Since the number of equations to be solved and history parameters to 
be updated at each structural iteration in each integration point is an increasing 
function of the number of planes in the RIE, a minimum number of planes is 
desirable, and the specific selection of the RIE is the result of a trade-off between 
computational cost and the sought level of accuracy in the interface response 
required to retrieve a realistic structural behaviour.

Is some cases, frictional anisotropy is a mechanical feature which cannot be 
excluded, in particular for surfaces especially engineered to obtain an anisotropic 
corrugation (Konyukhov, Vielsack, & Schweizerhof,  2008) and can be also orig-
inated as the effect of microstructure evolution induced by the kinematics of 
sliding itself (Zmitrowicz,  2006). When these particular cases are excluded, for 
statistically homogeneous surfaces with randomly distributed asperities, such as 
those in ordinary concrete and masonry, statistical in-plane isotropy of fractured 
surfaces represents a customary property of the interface response. In this respect, 
a fundamental issue to be addressed is thus the identification of optimal RIE pat-
terns with a minimum number of planes, but capable of reproducing isotropic 
in-plane behaviour. In other words, the aim is to avoid spurious anisotropy effects 
possibly introduced by an excessive simplification with an insufficient number 
of inclined planes.

To address this issue, a sensitivity analysis has been also conducted and reported 
to illustrate the effects of the specific selection of the RIE geometry on the macro-
scopic mechanical response, in cases of monotonic and cyclic loading histories.

The paper is organised as follows: Section 2 describes the analytical formulation 
of the 3D multiplane model with coupled damage and friction while Section 3 
discusses its numerical implementation. Numerical simulations are reported in 
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Section 4 and, finally, a discussion of the results is reported together with some 
conclusive remarks.

2.  Formulation

2.1.  Geometry and multiplane coupling

The Representative Interface Element (RIE), an example of which is shown in 
Figure 1, is composed of a pattern of Np small-scale inclined planes. A global 
orthonormal reference frame is introduced with coordinates N, Tx, Ty and reference 
unit vectors �, �x and �y, with � being normal to the average interface plane and 
�x, �y being orthogonal and contained in such plane. Subscripts N, X and Y  are 
used to denote components of stresses and displacements relative to �, �x and �y.

Geometrical and mechanical quantities associated or contributed by the k-th 
microplane are denoted by a round bracketed superscript (.)(k). A local orthogonal 
reference frame is considered for each RIE-plane with coordinates n(k), h(k), t(k) 
whose respective unit vectors are oriented so that �(k) is normal to plane k, while the 
other two tangential axes, for all surfaces with nonzero inclination to the average 
surface, are defined as:

According to (1), �(k) axis is taken parallel to the average surface and �(k) is directed 
along the line of maximum inclination over the average surface. In the trivial 
case of a plane k oriented as the average surface (i.e. �= �(k)) local axes are taken 
coincident with global ones, i.e. �(k)=�x and �(k)=�y.

Figure 1 shows an example of a RIE with five microplanes, with global and 
local reference frames.

The following kinematic and constitutive assumptions considered in Serpieri, 
Sacco et al. (2015) are here extended to the 3D case: 1) the RIE undergoes (locally) 
a rigid relative translation between the bottom and top surfaces, so that the relative 
displacement of each k-th microplane, �(k), coincides with the relative displacement � 

(1)�(k) =
� × �(k)

‖� × �(k)‖ �(k) = �(k) × �(k)

Figure 1. Example of RIE composed of 5 microplanes.



European Journal of Computational Mechanics    149

of the whole surface; 2) the overall Helmoltz free energy density (per unit projected 
area onto the average plane), �, is contributed by planes as a linear combination 
of their respective energy densities � (k) in which the participation factor of the k
-th plane is denoted by the symbol � (k):

By differentiating (2)
2
 with respect to the relative displacement, it is inferred that 

the global interface traction � and the local interface traction �(k) contributed by 
the k-th microplane are related by an analogous linear combination with the same 
participation coefficients � (k), viz.

The next subsections detail the damage evolution law, the elastic response and 
the frictional response of the single inclined planes, which are described relative 
to the local microplane reference frames. The relevant local coordinates on plane 
k of � and �(k) are denoted by the sets of three symbols s(k)n , s(k)t , s(k)

h
 and �(k)

n
,� (k)t ,� (k)

h
, 

respectively. Symbol �(k) is used to denote the tangential component of the stress 
contributed by plane k, i.e. �(k) = �(k) − �(k)

n
�(k)

2.2.  Single plane model

The constitutive law of the k-th microplane, relating the stress �(k) to the displace-
ment �(k), is nonlinear and depends on the history of the past displacements.

The response of a given inclined plane (k) is such that, in absence of damage 
evolution and friction, the stress-relative displacement law is linear. Following 
Alfano and Sacco (2006), the surface of each microplane is decomposed into an 
undamaged part and a damaged part which contribute to the stress �(k) according 
to the following additive law

where �(k)

d
, �(k)

u  are the stresses contributed by the damaged and undamaged parts, 
respectively. The damage variable �(k) is the ratio of the area of the damaged surface 
of plane k to the overall area of microplane k, with 0 ≤ �(k) ≤ 1 being �(k) = 0 and 
�(k) = 1  associated with the undamaged and a fully damaged interface, respec-
tively. The components of �(k)

d
 and �(k)

u  in the local microplane reference are denoted 
by �(k)

dn
,� (k)
dt

,� (k)
dh

 for �(k)

d
 and �(k)

un
,� (k)ut ,� (k)

uh
 for �(k)

u . The tangential components of �(k)

d
 and 

�(k)
u  are the vectors �(k)

d
= �

(k)

dt
�(k) + �

(k)

dh
�(k) and �(k)u = �

(k)
ut �

(k) + �
(k)

uh
�(k).

(2)� = �(k) � =

Np∑
k=1

� (k)� (k)

(3)� =

Np∑
k=1

� (k)�(k)

(4)�(k) = (1 − �(k))�(k)
u

+ �(k)�
(k)

d
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2.2.1.  Damage evolution law
The damage evolution law employed for each plane is a direct extension of the 
formulation proposed by Alfano and Sacco (2006), with the additional restric-
tions to the interface material parameters implied by the hypotheses considered 
in Serpieri, Sacco et al. (2015) and on account of the thermodynamic consistency 
requirements derived in the same reference. In particular, in the 3D extension 
herein considered of the opening-sliding formulation of Alfano and Sacco no 
distinction is made between sliding modes in relation to the direction of propa-
gation of the crack front, so that global mode II and mode III, or a combination 
of the two, are all treated in the same way. Accordingly, the following material 
parameters are introduced:

• � s
01

, s
02

: normal and tangential displacements at the onset of the damage in 
modes I and II, respectively;

• � sf 1 and sf 2: normal and tangential displacements at the point of complete 
rupture of the interface in modes I and II;

• � Gc1
 and Gc2

: fracture energies (of the single plane) in modes I and II;
• � �

01
, �

02
: normal and tangential stresses of each individual inclined plane at 

the onset of the damage in modes I and II, respectively;
• � �, termed ductility, defined as 

The following damage displacement norm is introduced, which is a natural 
extension of the 2D norm presented in Alfano and Sacco (2006):

where angle brackets ⟨⋅⟩+ are used to denote the positive part, i.e. ⟨f ⟩+ =
�f �+f
2

.
With this definition of �, the damage evolution law of plane k is:

(5)� = 1 −
s
01

sf 1

(6)�(k) =

����⟨s(k)n ⟩2
+

s2
01

+
(s(k)t )2 + (s(k)

h
)2

s2
02

− 1

Figure 2. Mode I bilinear stress-displacement law of damage response.
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When friction is excluded, and in the case of constant mixed-mode ratio (including 
pure mode I or pure mode II), equations (4), (5), (6), (7) determine the response 
shown in Figure 2.

As shown by Serpieri, Sacco et al. (2015), requirements of thermodynamic con-
sistency and use of an associated complementary evolution law for damage intro-
duce the following restrictions to the allowable model parameters (see remark) 
for the single planes:

Remark 1  The equality in Equation (8) only regards the adhesion energies in 
opening and sliding mode on the single microplane. It has been shown, by com-
parison with experimental data, that the increase in total fracture energy, with 
increasing mode I/mode II ratio, is correctly captured by the model (Serpieri, 
Sacco et al.,  2015). Such increase is the result of the interplay between friction, 
adhesion energy and the geometry of the fracture surface at the microscale. On 
the other hand, we are neglecting other types of dissipation, for example due 
to plasticity, viscoplasticity or viscoelasticity. In most materials, the adhesion 
energy on the single microplane is not only the result of rupture of elastic bonds, 
but it may also include these other types of dissipation, which may depend on 
the mode mixity and justify G

c1
≠ G

c2
 also on the single microplane. In some 

cases, this difference may not be negligible but measuring it would be a challeng-
ing task. In any case, we believe that if this difference is to be accounted for, it 
would be more appropriate to do so by introducing additional internal variables 
and related dissipation mechanisms, see e.g. Musto and Alfano (2015) in the case 
of viscoelastic dissipation.� ◻

Furthermore, it was also shown in Serpieri, Sacco et al. (2015) that when an 
associated law for damage evolution is employed, in conjunction with an equiv-
alent displacement norm for damage, the following additional restrictions apply 
to the allowable model parameters:

Remark 2  Constraint (9) significantly reduces the number of independent 
material parameters of the model to be calibrated, which is an advantage for 
its practical use. On the other hand, the cost of this constraint in terms of pre-
dicting capability of the model is negligible. This is because, for most applica-
tions, the influence of a possible difference in the initial stiffness values and of 
the critical displacements (or equivalently the peak strengths) in different modes 
is negligible.

(7)�(k) = max
history

{
0,min

{
1,
1

�

(
�(k)

1 + �(k)

)}}

(8)Gc1
= Gc2

.

(9)s
01
= s

02
, sf 1 = sf 2.
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For problems in which it is important to consider different and independent values 
of the stiffness and strength in (local) opening and sliding modes on the single 
microplane, this hypothesis can be relaxed although the neat thermodynamic 
formulation presented in Serpieri, Sacco et al. (2015) would have to be modified.
� ◻

In the rest of the paper, different symbols are maintained for Gc1
 and Gc2

, s
01

 
and s

02
, sf 1 and sf 2, essentially to enhance the clarity of some formulas. It is worth 

noting, however, that in all numerical simulations, equal values are taken for 
material parameters, as dictated by (8) and (9), using the following symbols to 
denote the common values employed for the input material parameters:

2.2.2.  Elastic response
The stress contributed by the undamaged part of the microplane follows a linear 
law which for plane k reads:

where [�] = diag(Kn,Kt ,Kt), being Kn and Kt the normal and tangential stiffness.
Due to constraints (8), (9), a common value is given to Kn and Kt which can be 

directly related to the fracture energy by:

2.2.3.  Frictional response 
The contribution to the stress provided by the damaged part of the surface com-
bines a unilateral elastic law for the normal component:

with a tangential component that follows a nonassociative Coulomb frictional law 
with tangential sliding (Simo & Hughes,  2008). In particular, the law employed 
falls within the class of perfect plasticity models since there is no hardening. 
Accordingly, the displacement is decomposed into an elastic and an inelastic part:

where, as specified below, the inelastic part is entirely tangential, and the frictional 
stress is expressed as

(10)s
0
= s

01
= s

02
s
f
= s

f 1
= s

f 2
�
0
= �

01
= �

02
G

c
= G

c1
= G

c2

(11)�(k)
u = ��(k)

(12)Kn = Kt =
2Gc

(1 − �)s2f

(13)�
(k)

dn
= K

n
⟨s(k)

n
⟩
+

(14)s
(k)

d
= s

(k)

de
+ s

(k)

di

(15)�
(k)

d
= ��

(k)

de
= �

(
�
(k)

d
− �

(k)

di

)
.
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Altogether, Equations (13) and (15) can be written in the compact form:

where � is defined as the operator that in the local microplane reference frame 
is represented by the matrix diag((1 − u(sn))Kn0,Kt0,Kt0) and u(⋅) is the unit step 
function (or Heaviside function)

The evolution of the plastic variables �(k)
di

, is described in the framework of nonas-
sociated elastoplasticity (Alfano & Sacco,  2006; Simo & Hughes,  2008) by intro-
ducing the following functions: a yield (or threshold) function of Coloumb type:

a nonassociated plastic potential function, which determines sliding in the tan-
gential direction of microplane k.

Following a common choice in computational inelasticity (Simo & Hughes,  2008), 
the plastic flow rate equation is expressed with the aid of a nonnegative plastic 
multiplier �(k)

and by introducing Kuhn–Tucker conditions (Kuhn & Tucker,  1951) to address 
the irreversible nature of frictional sliding:

3.  Numerical integration 

Using a Newton-Raphson solution scheme, the time interval of the analysis 
is decomposed into a sequence of time increments. Let (⋅)� and (⋅)�+Δ� denote 
the values of the variable (⋅) at the beginning and at the end of timestep. At the 
generic timestep [� , � + Δ�] , the known variables are  �(k),�, �(k),�+Δ�, and the history 
variables s(k),�

dit
, s(k),�

dih
, �(k),�. The unknowns are the stress �(k),�+Δ� and the updated 

history variables s(k),�+Δ�
dit

, s(k),�+Δ�
dih

, �(k),�+Δ�.

(16)�
(k)

d
= �

(
�
(k)

d
− �

(k)

di

)

(17)u(t) =

{
1 t > 0

0 t ≤ 0

(18)�(�(k)) = �⟨�(k)

dn
⟩
−
+

�
(�

(k)

dt
)2 + (�

(k)

dh
)2 = �⟨�(k)

dn
⟩
−
+ ∥ �

(k)

d
∥,

(19)g(�(k)

d
) =

√
(�

(k)

dt
)2 + (�

(k)

dh
)2 =∥ �

(k)

d
∥ .

(20)�̇
(k)

di
= 𝜆̇(k)

𝜕g

𝜕�
(k)

d

= 𝜆̇(k)

⎡⎢⎢⎢⎣

0
𝜕g

𝜕𝜏
(k)

dt
𝜕g

𝜕𝜏
(k)

dh

⎤⎥⎥⎥⎦
= 𝜆̇(k)

⎡⎢⎢⎢⎢⎢⎣

0

𝜏
(k)

dt√
(𝜏

(k)

dt
)2+(𝜏

(k)

dh
)2

𝜏
(k)

dt√
(𝜏

(k)

dt
)2+(𝜏

(k)

dh
)2

⎤⎥⎥⎥⎥⎥⎦

= 𝜆̇(k)

⎡⎢⎢⎢⎢⎣

0

𝜏
(k)

dt

‖� (k)

d
‖

𝜏
(k)

dh

‖� (k)

d
‖

⎤⎥⎥⎥⎥⎦

(21)𝜆̇(k) ≥ 0 𝜙(�
(k)

d
) ≤ 0 𝜆̇(k)𝜙(�

(k)

d
) = 0
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The computation of the stress and of the updated inelastic history variables 
is obtained by solving for each of the microplanes the discretised form of the 
equations introduced in Section 2 in the interval  [� , � + Δ�]. Following a consoli-
dated technique for perfect plasticity models (Simo & Hughes, 2008), the solution 
technique employed herein consists of an elastic predictor-inelastic correction 
algorithm, with a Backward Euler scheme of integration, linear interpolation over 
time and the inelastic correction implemented via a return mapping technique.

Discretisation of Equations (4), (6), (7), (16), (20) and (21) results in the fol-
lowing finite-step relations:

Updating of �(k) and �(k) is trivial since Equations (24) and (25) are explicit func-
tions of the updated displacements and uncoupled from the remaining equations 
of the system. In contrast, solution of Equations (23), (26), (29) and inequalities 
(27) and (28) is nontrivial and is achieved by an elastic prediction and inelastic 
correction scheme which is described in detail below. Upon evaluating �(k),�+Δ�

d
, 

as a final step, Equation (22) can be solved for the updated stress �(k),�+Δ�.
The elastic stress trial value with “frozen” inelastic displacement is computed 

first (elastic prediction):

together with the trial value of the yield function �
(
�de

(k),�+Δ�
)
.

If the trial value of the yield function is negative, then no evolution of inelastic 
variables takes place. Consequently, Δ�(k) = 0 and the updated state is the following:

(22)�(k),�+Δ� = (1 − �(k),�+Δ�)��(k),�+Δ� + �(k),�+Δ��
d

(k),�+Δ�

�
�
d

(k),�+Δ�
�
=
�
�(k),�+Δ�

���
�(k),�+Δ�

�
−
�
�
(k),�+Δ�

di

��

�(k),�+Δ� =

����⟨s(k),�+Δ�
n

⟩2
+

s
2

01

+
(s

(k),�+Δ�

t
)2 + (s

(k),�+Δ�

h
)2

s
2

02

− 1

�(k),�+Δ� = max

�
�(k),�

, min

�
1,
1

�
⋅

� (k),�+Δ�

1 + �(k),�+Δ�

��

s
di

(k),�+Δ� = s
di

(k),� + Δ�(k)

⎡⎢⎢⎢⎢⎣

0

�
(k),�+Δ�

dt

∥�
(k),�+Δ�

d
∥

�
(k),�+Δ�

dh

∥�
(k),�+Δ�

d
∥

⎤⎥⎥⎥⎥⎦
Δ�(k) ≥ 0

�⟨�(k),�+Δ�

dn
⟩
−
+ ∥ �

(k),�+Δ�

d
∥≤ 0

Δ�(k)(�⟨�(k),�+Δ�

dn
⟩
−
+ ∥ �

(k),�+Δ�

d
∥) = 0

(30)
[
�de

(k),�+Δ�
]
=
[
�(k),�+Δ�

]([
�(k),�+Δ�

]
−
[
�
(k),�

di

])

(23)

(24)

(25)

(26)

(27)

(29)

(28)
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Conversely, if �
(
�de

(k),�+Δ�
)
 is positive, it must be Δ𝜆(k) > 0, otherwise the con-

dition �(k),�+Δ�
di

= �
(k),�

di
 implied by Equation (26) would result in a positive yield 

function, in contrast with inequality (27). In this case, one infers from (29) that 
�(�

(k),�+Δ�

d
) = 0 and from (23) the following inelastic correction for the elastic 

stress is obtained:

The three scalar equations of (32), combined with the condition �(�(k),�+Δ�

d
) = 0 

form the following nonlinear system which is written again in the local frame of 
plane k:

where �
den

(k),�+Δ�, �det
(k),�+Δ�, �deh

(k),�+Δ� denote the components of �de
(k),�+Δ�.

The system above can be solved by deriving an equation in the only unknown 
Δ�(k). Accordingly, taking the norm of Equations (34) and (35), the following 
relation is inferred:

and using Equations (33) and (36) to replace ∥ �d
(k),�+Δ� ∥ with �

den

(k),�+Δ�, one 
finally obtains:

(31)

⎧⎪⎨⎪⎩

�
(k),�+Δ�

di
= �

(k),�

di�
�
d
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�
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�
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�
(
�
�(k),�+Δ�

�
−
�
�
(k),�+Δ�

di

�
)

�(k),�+Δ� = (1 − �(k),�+Δ�)��(k),�+Δ� + �(k),�+Δ��
d

(k),�+Δ�

(32)

�
�
d

(k),�+Δ�
�

=
�
�(k),�+Δ�

���
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�
−
�
�
(k),�+Δ�

di

��
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�
−
�
�
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di

��
−
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�
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�
de

(k),�+Δ�
�
− Δ�(k)

⎡⎢⎢⎢⎢⎣
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K
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∥
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det

(k),�+Δ� − Δ�(k)
K

t0

�
(k),�+Δ�

dt

∥ �
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∥ �de
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∥

(34)

(35)

(36)
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Consequently, the solution of the system of Equations (33), (34), (35) and (36) is:

Once Δ�(k) is determined, the updated state of the interface is completely known 
as the updated inelastic displacement �(k),�+Δ�

di
 can be computed from Equation 

(26) and  the updated stresses �
d

(k),�+Δ�, �(k),�+Δ� are given by Equations (22) and 
(23), respectively.

4.  Numerical examples

The algorithmic procedure of Section 3 was applied to integrate the CZM described 
in Section 2 and several numerical analyses were carried out. The present section 
reports the results of four sets of numerical examples. Section 4.1 illustrates the 
results of a first group of numerical analyses whose objective is to assess that the 
3D formulation presented in this paper reproduces the response obtained in the 
2D formulation proposed by Serpieri, Sacco et al. (2015), Serpieri and Alfano 
(2011). The examples in Section 4.2 illustrate the general behaviour exhibited by 
the present 3D formulation by reporting the results of simulations performed 
employing the five-plane RIE shown in Figure 1. Section 4.3 shows the results of 
simulations performed under zero normal stress, whose aim is to elucidate the 
energy behaviour of the model in relation to sliding direction, mode mixity and 

(38)Δ�(k) =
1

K
t0

(
��

(k),�+Δ�

den
+ ∥ �

(k),�+Δ�

de
∥
)

(39)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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+ ∥ �
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�
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= �

(k),�+Δ�
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�
(k),�+Δ�

dt
= −��
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�
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det

∥�
(k),�+Δ�

de
∥

�
(k),�+Δ�

dh
= −��
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�
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deh

∥�
(k),�+Δ�

de
∥

Figure 3. RIE made up of three microplanes employed in the simulations 4.1.
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Table 1. Normals to the RIE-planes employed in the simulations of Section 4.1

k = 1 k = 2 k = 3

n
(k)

N
1.0 cos �m cos �m

n
(k)

Tx
0.0 sin �m − sin �m

n
(k)

Ty
0.0 0.0 0.0

�
(k) 0.3333 0.3333 0.3333

Table 2. Material parameters employed in the simulations of Section 4.1. Note that G
c1
= G

c2
= G

c
 

and �
01
= �

02
= �

0
 as stated in Section 2.

�
0
 [MPa] G

c
 [KJ/m2] � [–] � [–]

3.0 0.3 0.9 0.5

Figure 4. (a) �
L
− s

L
 curves with �

m
= 0

◦ (perfectly flat RIE) for a monotonic slip history. This plot 
can be compared with Figure 3 in Serpieri and Alfano (2011); (b) �

L
− s

L
 curves with variable �

m
 for 

a monotonic load history. This plot can be compared with Figure 4 in Serpieri and Alfano (2011).

Figure 5. (a) tau-slip plots with �
m
= 35

◦ for a monotonic load history. This plot can be compared 
with Figure 5 in Serpieri and Alfano (2011); (b) tau-slip curves with �

m
= 30

◦ for a cyclic load 
history with slip sign reversal. This plot can be compared with Figure 13 in Serpieri and Alfano 
(2011).
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decohesion path. The last set of simulations, described in Section 4.4, consists of 
parametric analyses aimed at the optimal selection of a RIE pattern capable of 
providing an isotropic response in the average plane.

4.1.  Consistency between 2D and 3D responses

The three-dimensional pattern with plane symmetry and trapezoid section shown 
in Figure 3 was selected as RIE to run a first set of analyses of the tangential stress-
slip model response under constant confining stress and prescribed tangential slip. 
This RIE reproduces under three-dimensional kinematics the 2D pattern employed 
by Serpieri, Sacco et al. (2015) and Serpieri and Alfano (2011). Accordingly, it 
is composed of three microplanes with equal area fractions � (k) = 1∕3, whose 
normals are specified in Table 1, corresponding to one horizontal plane and two 
additional planes inclined by an angle ∓�m to the average plane. The interface is 
subjected to an applied constant normal stress �

N
 while sliding sL is enforced along 

the Ty axis with null relative displacement along the Tx direction.
The material parameters employed in the simulations of this section are those 

considered in Section 4.1 of the article by Serpieri and Alfano (2011) and are 
recalled in Table 2.

To assess the consistency of the 3D and 2D formulations, the interface response 
is investigated by reproducing the families of �L – sL plots (with �L being the global 
tangential tress in the Tx direction) considered in three numerical examples by 
Serpieri and Alfano (2011).

Specifically:
• � Figure 4(a) shows the family of �L − sL curves obtained under a monotonic 

slip history along Ty axis with �
N

 spanning the range [−20 MPa, 2 MPa] and 
�m = 0

◦ (perfectly flat RIE). This plot can be compared with Figure 3 of the 
article by Serpieri and Alfano (2011).

• � Figure 4(b) shows the family of �L – sL curves with �
N
= −10 MPa and �m 

spanning the interval [0◦, 45◦] and with a monotonic load history along Ty 
axis. This plot can be compared with Figure 4 of the article by Serpieri and 
Alfano (2011).

• � Figure 5(a) shows the family of �L − sL plots obtained by spanning �
N

 in the 
range [−2 MPa, 0 MPa] and with �m = 35

◦ and a monotonic load history 
along Ty axis. This plot can be compared with Figure 5 of the article by 
Serpieri and Alfano (2011).

• � Figure 5(b) contains the �L − sL plot for a fixed value of �
N
= −10 MPa and 

�m = 30
◦ obtained under a cyclic load history with slip sign reversal along 

Ty axis. This plot can be compared with Figure 13 of the article by Serpieri 
and Alfano (2011).

The results of these simulations match those of the 2D simulations reported 
by Serpieri and Alfano (2011), which confirms the consistent recovery from the 
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current 3D formulation of the 2D model proposed by Serpieri and Alfano (2011) 
and its correct implementation.
Remark 3  The initial part of the �

L
− s

L
 curves in the graph a is linear. In fact 

for small slips the interface is undamaged and the relationship between � and � is 
linear, see Equations (4) and (11) with �(k) = 0.
The final branches of the �

L
− s

L
 curves in the graph are linear and horizontal. 

These branches correspond to the interface being fully damaged, with �(k) = 1 
for every plane. In this condition, Equation (4) becomes �(k) = �

(k)

d
 and, since 

the interface considered is flat and the slip unidirectional and monotonic, the 
frictional law provides the only contribution to the tangential stress, equal to 
�
d
= −�

⟨
�
n

⟩
−
�̂ where �̂ is the slip direction, i.e. �̂ = (��∕�t)∕ ∥ ��∕�t ∥.

Table 3. RIE pattern (normals and area fractions) employed in the simulations of Section 4.2.

k = 1 k = 2 k = 3 k = 4 k = 5

n
(k)

N
1.0 cos �m cos �m cos �m cos �m

n
(k)

Tx
0.0 sin �m − sin �m 0.0 0.0

n
(k)

Ty
0.0 0.0 0.0 sin �m − sin �m

�
(k) 0.2 0.2 0.2 0.2 0.2

Figure 6. Plan view of the RIE used in the examples of Section 4.2 showing how �
L
 defines the 

direction of the impressed sliding.

Figure 7. �
L
 – s

L
 curves with �

m
= 30

◦, monotonic load history along (a) �
L
= 0

◦ and (b) �
L
= 45

◦.
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The central concave part of the �
t
− s

t
 curves in the graph 4 a, between the initial 

and final linear branches, is originated while microplanes are undergoing pro-
gressive damage.� ◻

Figure 8. Dilation-slip (s
n
 – s

L
) curves with �

m
= 30

◦, monotonic load history along (a) �
L
= 0

◦ and 
(b) �

L
= 45

◦.

Figure 9. �
L
 – s

L
 curves with �

m
= 30

◦, cyclic load history along (a) �
L
= 0

◦ and (b) �
L
= 45

◦.

Figure 10.  Comparison between the �
L
 – s

L
 curves obtained for �

L
= 0

◦ and �
L
= 45

◦. (a): 
monotonic load history; (b): cyclic loading history (�

m
= 30

◦).
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4.2.  3D-Pattern with five microplanes

To investigate the interface response determined by a fully three-dimensional 
RIE, a second set of simulations were performed using the RIE composed of five 
microplanes with equal area fraction, (� (k) = 0.2, k=1,...,5) and components of 
the normal vectors specified in Table 3. The schematic view of the RIE is the one 
shown in Figure 1. The pattern is composed of one plane oriented as the average 
plane and four additional planes inclined by an angle �m to the average orienta-
tion. The numeration of the planes is shown in Figure 1. The material parameters 
employed in the simulations are again those of Table 2.

The simulations were performed applying a constant confining normal stress 
�
n
 and a sliding �L along a prefixed constant direction in the Tx − Ty plane. Angle 

�L defines the direction of the impressed sliding with the Tx axis as depicted in 
Figure 6. Introducing the unit vector �L =

�L

‖�L‖
, the scalar and vector projection 

of the stress with �L are denoted by �L and �L, respectively.

Figure 11. �
L
 – s

L
 curves with �

N
= −5MPa, �

m
= 30

◦ and variable �
L
.

Figure 12. Polar plot of the total measured fracture energy versus �
L
 with �

N
= 0 and �

m
= 30

◦.
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Four types of analyses were carried with the RIE of Table 3. Specifically:

• � Figure 7 shows the family of �L – sL curves for �
N

 spanned in the inter-
val [−20 MPa, 2 MPa], with microplanes inclined by �m = 30

◦, a mono-
tonic load history along the directions �L = 0

◦ and �L = 45
◦, obtained with 

� = 0.99;
• � Figure 8 shows the corresponding dilatation curves;
• � Figure 9 shows the family of �L – sL curves for a fixed value of �

N
, a fixed 

inclination �m = 30
◦, � = 0.9, under a cyclic load history along the direc-

tions �L = 0
◦ and �L = 45

◦;
• � Figure 10(a) and (b) shows a superposition of the curves in Figures 7 and 9.
• � Figure 11 shows the family of �L – sL curves for a fixed value of �

N
= −5 MPa, 

for a fixed inclination �m = 30
◦ of the microplanes, with an impressed displace-

ment sL along angles �L spanned in the range [0◦, 90◦];
• � Figure 12 shows a polar graph of the total measured fracture energy versus 
�L, as derived by calculating the energy lost after a monotonic load history 
with increasing values of st and with �m = 30

◦ and �
N
= 0.

Figures 7 and 9 show that tau-slip curves depend on the direction of the dis-
placement, i.e. the interface behaviour is anisotropic. Figures 10(a) and 10(b) point 
out the different behaviour for �L = 0

◦ and �L = 45
◦ and show that the anisotropy 

is more pronounced when a confinement pressure is applied.
It can be noted that the dilatation curves reported in Figure 8 present an 

unbounded character, i.e. the model is infinitely dilatant and the geometry of 
asperities does not evolve along the loading path. This is not a real limit of the 
model, as the present study is framed in the infinitesimal displament context, 
so that the values of the slip and, as a consequence, the dilatation are implicitly 
limited to be small compared to the asperities height. Indeed, a two-dimensional 

Figure 13. (a) �
L
 – s

L
 curves with �

m
 spanned in [0◦, 45◦], monotonic load history along �

L
= 0

◦ 
and �

L
= 45

◦. The total measured fracture energy G
T
 is reported in the legend of (a). Plots in 

(b) are obtained considering the same numerical analyses of (a), setting instead zero friction  
(� = 0). Despite the curves being different in (b), the total measured fracture energy is the same 
for all curves.



European Journal of Computational Mechanics    163

multiplane model addressing a limited value for the dilatation has been proposed 
and assessed by numerical-experimental comparisons by Serpieri, Alfano et al. 
(2015).

4.3.  Response for zero normal stress 

In this subsection, the response obtained for �
N
= 0, is examined closer in relation 

to the anisotropy of the energy response with respect to the sliding direction in 
the tangential plane. This case corresponds to an ideal pure mode II test if the 
mode is defined in terms of the interface stress components.

Figure 13(a) shows the family of �L – sL curves for �m spanned in the interval 
[0◦, 45◦] with �N = 0 and a monotonic loading history along the directions �L = 0

◦ 
and �L = 45

◦.
Figure 13(b) shows the results of the same simulations of Figure 13(a) consid-

ering instead a frictionless behaviour (�=0) of the interface.
In both figures, the total fracture energy for each curve is reported in the 

relevant legends. This energy has been computed by numerically calculating the 
integral:

applying the Simpson trapezoid integration method with displacement intervals 
of 0.0025mm.
Remark 4  It was shown in Figure 9(a) that, for �

N
= 0, the tangential stress 

drops to zero when complete damage is reached. Instead, for �
N
< 0, friction 

would occur also after complete damage and frictional dissipation after complete 
damage would contribute to the total energy. Hence, the second limit of integra-
tion in Equation (40) could not be = ∞ and would strongly influence the results. 
This is why the condition �

N
= 0 is convenient to compare the model response 

for different �
L
.� ◻

The following considerations can be drawn on the anisotropy of the energy 
response in relation to the sliding direction.

The linear elastic part of the graph is independent of both the angle of the 
microplanes and of the direction of the impressed displacement. This property 
shows that elastic anisotropy of the interface, which is captured instead by other 
interface formulations (see e.g. Rizzoni, Dumont, Lebon, & Sacco,  2014), is not 
captured by the present model. This feature is the direct consequence of constraint 
(12).

In the inelastic part of the curves, a significant increment of the tangential stress 
can be observed as the inclination of the microplanes is increased. This increment 
depends on the direction of sliding and shows the anisotropy of the interface. This 

(40)G
T
= ∫

+∞

0

�
L
ds

L
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important effect is observed even when �
N
= 0 and has been previously reported 

(Serpieri, Sacco, and Alfano,  2015) (see Figure 4 therein). The multiplane model 
predicts an increase of the total measured energy under increasing mode II/mode 
I ratio. This effect emerges from the interplay between adhesion, friction and inter-
locking, and vanishes whenever there is zero adhesion (prefractured interface), 
zero friction or zero interlocking (perfectly planar interface).

It is important to remark that the work spent to physically break the molecular 
bonds of the interface, which corresponds to the rupture energy discussed in 
Remark 1,  is independent of the decohesion path and of the particular microplane 
arrangement employed. As a result, in Figure 13(b), where the effect of friction 
is excluded, despite the curves are different, the computed total fracture energy 
is independent of both the angle of the microplanes and of the direction of the 
impressed displacement. Conversely, the total measured fracture energy, which 
corresponds to the area under the tau-slip plots of Figure 13(a) obtained for �

N
= 0 

inclusive of the energy dissipated by friction, depends on both the decohesion 
path and angle of inclination of the microsurfaces (see related legends).

4.4.  Sensitivity of anisotropy to RIE selection

The simulations of this last group were performed to investigate the sensitivity of 
the anisotropic behaviour of the model to the specific selection of the geometry 

Figure 14. Schematic plan view of RP-3, RP-4, RP-6.

Table 4.  3D Surfaces used.

RT RP-3 RP-4 RP-6 RP-32
Np 3 4 5 7 33
Inclined microplanes 2 3 4 6 32
�
(k) (for k > 1) 0.33333 0.22222 0.16667 0.11111 0.02083

Rotation angle �[◦] 180 120 90 60 11.25

Table 5. Maximum and minumum total fracture energies and their ratio.

RT RP-3 RP-4 RP-6 RP-32
GT ,max

[kJ] 0.3475 0.3391 0.3338 0.3352 0.3332
GT ,min

[kJ] 0.2963 0.3241 0.3333 0.3312 0.3330
GT ,max

∕GT ,min 1.1727 1.0463 1.0014 1.0120 1.0006
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and the number of inclined planes for the RIE. The RIE geometries examined 
in this section consist of four truncated pyramid shaped RIEs whose base is a 
regular polygon, plus an additional trapezoidal pattern with 2D symmetry of the 
type shown in Figure 3. Table 4 summarises the properties of the RIE patterns 
used. Each RIE has been denoted with a codename that is shown on the top of 
the table, with the following criteria:

Figure 15.  (a),(b),(c): diagrams of �
L
 – s

L
 for a fixed value of �

N
= −5MPa, with �

m
= 30

◦ and 
monotonic load history along �

L
. (d),(e),(f ): polar graphs of the total measured fracture energy as 

a function of �
L
 with �

N
= 0 and �

m
= 30

◦ on the right.



166    M. Albarella et al.

• � RP-X (with X = 3, X = 4 or X = 6, X = 32) denotes a truncated pyramid 
shaped RIE whose base is a regular polygon with X sides, see Figure 14 and 
Figure 1;

• � RT is the RIE shown in Figure 3.

Area fractions � (k) are assigned with the following criterion: 1∕3 of the area to 
the horizontal microplane and 2∕3 are equally subdivided among the inclined 
microplanes. For RP-X patterns, the components of the normals to these surfaces 
are constructed as follows. The normal to the first inclined surface is set to

and the remaining normals are derived by rotating the first normal by the angle 
of rotation � = 2�∕(Np − 1) about the vertical axis (with unit vector[1 0 0]),  (see 
Table 4), employing the formula:

(41)n(1) =
[
cos �m − sin �m 0

]

(42)�(k) = �(k)�(1)

Figure 16.  (a),(b): diagrams of �
L
 – s

L
 for a fixed value of �

N
= −5MPa, with �

m
= 30

◦ and 
monotonic load history along �

L
. (c),(d): polar graph of the total measured fracture energy as a 

function of �
L
 with �

N
= 0 and �

m
= 30

◦.
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where

For each RIE the following plots are shown:
• � �L – sL for a fixed value of �

N
= −5 MPa, for a fixed inclination �m = 30

◦ of 
the microplanes and with a prescribed displacement along �L which spans 
the range [0◦, 90◦]. The relevant plots are reported in Figures 15(a)–(c) and 
16(a)–(c) on the left columns.

• � a polar graph of the total measured fracture energy as a function of �L with 
�
N
= 0 and �m = 30

◦, obtained by post-computing the work spent after a 
single-sided load history with growing values of st according to Equation (40) 
and using again the Simpson rule with 0.0025mm increments. The relevant 
plots are reported in Figures 15 and 16 on the right columns.

Additionally, Table 5 shows the maximum and the minimum energies in the 
polar graphs of Figures 15 and 16 and their ratio. The maximum and the minimum 
reported energies were computed by evaluating the energy along 64 equally spaced 
directions and taking the maximum and the minimum value. The most interesting 
result in terms of practical implementation of the proposed model is that for the 
very simple and highly anisotropic geometry RP-3 the maximum difference in 
energy is lower than 5%, and for the relatively simple geometry RP-4 the difference 
is less than 0.2%, that is negligible for the vast majority of applications.

The graphs on Figures 15 and 16 confirm that the tau-slip curve and the total 
measured fracture energy depend on the direction of the displacement. The graphs 
on the left show that the tau-slip curves for different slip directions are coincident 
for low relative displacements, and increasingly different when relative displace-
ments become higher. Since for low displacements the tau-slip curve is dominated 
by the linear behaviour of the undamaged interface and for high displacements 
by friction and damage (see remark 3), the anisotropic behaviour is mainly asso-
ciated with the nonlinear effects of damage and friction. The plots also show that 
by increasing the number of sides of the RIE, the tau-slip curves for different 
directions of the displacements tend to overlap, and the polar plot of the apparent 
fracture energy approaches a perfect circle. This trend is highlighted in Table 5, 
which shows that the maximum and minimum energy ratio approaches unity as 
the number of sides increases.

5.  Discussion and conclusions

In this paper, a 3D Cohesive zone model has been presented. The model has 
been developed as an extention of the 2D formulation presented by Serpieri and 

(43)�(k) =

⎡⎢⎢⎢⎣

1.0 0.0 0.0

0.0 cos((k − 1)� ) − sin((k − 1)� )

0.0 sin((k − 1)� ) cos((k − 1)� )

⎤⎥⎥⎥⎦
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Alfano (2011). A comparison with the 2D model has shown that the 3D model 
retrieves the 2D model behaviour, provided that a planar symmetric equivalent 
RIE is chosen. The behaviour of the model with a five microplanes RIE has been 
first investigated by comparing the behaviour of the interface when displacements 
along different direction are imposed. The relevant tau-slip plots have shown 
that the behaviour of the interface is anisotropic and that anisotropy is more 
pronounced when a confinement pressure is applied. A comparative study has 
been carried out using truncated pyramid RIEs with a regular polygon base to 
investigate the sensitivity of anisotropy to the choice of the RIE. This comparison 
has shown that, by employing more complex surfaces it is possible to approach an 
isotropic behaviour with the drawback of a higher computational cost. By increas-
ing the number of sides of the polygon from 3 to 32, the difference between the 
maximum and the minimum total measured fracture energy drops from 4.7% to 
0.6%, although the number of operations required grows more than eight times 
higher due to the higher number of microplanes (eight times) and due to the 
higher number of iterations required to attain convergence. On the other hand, 
if the RIE RP-3 is employed the maximum difference between maximum and 
minimum total fracture energy is less than 5%, which can be considered small 
for some applications. If RP-4 is employed, this difference is smaller than 0.2%,  
which is negligible for the vast majority of applications. Given the relatively small 
increase in computational cost between RP-3 and RP-4, the latter seems the opti-
mal trade-off between computational complexity and accuracy for most applica-
tions of the multiplane interface model.

A further interesting potential application of the present multiplane approach is 
the simulation of the behaviour of interfaces that physically exhibit a nonisotropic 
sliding behaviour, (Konyukhov et al.,  2008; Zmitrowicz,  2006) by employing RIE 
patterns that suitably reproduce asperities with anisotropic geometry.
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