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1.  Introduction

Composite materials are used in many fields such as aerospace, mechanical and 
automotive industries, thanks to their high specific stiffness and strength, corro-
sive resistance and low coefficients of thermal expansion. In particular, composite 
laminated structures have extensively been used and are among many important 
structural applications made of composite materials. The behaviour of composite 
laminates can be characterised by complex 3D stress states, evidencing high inter-
laminar stresses caused by out-of-plane loading, curved geometry and the inherent 
anisotropy of material properties (Han & Hoa, 1993; Ramtekkar, Desai, & Shah, 
2003). Among the different numerical techniques, the finite element method is 
an efficient technique and conventionally used to solve a wide range of practical 
problems involving laminated composite structures. Many composite multilay-
ered plate and shell finite elements have been proposed for efficient analysis of 
laminated composite structures; see, e.g. References (Ayad, Talbi, & Ghomari, 2009; 
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 Noor, Bert, & Burton, 1996; Noor, Burton, & Peters, 1991; Palazotto & Dennis, 
1992; Reddy, 1989; Sedira, Ayad, Sabhi, Hecini, & Sakami, 2012). Reviews of some 
composite plate and shell elements can be found in Zhang and Yang (2009) and 
Yang, Saigal, Masud, and Kapania (2000), respectively. However, these elements 
are insufficient to analyse thick structures, since the zero transverse normal stress 
condition must be imposed (Simo, Rifai, & Fox, 1990). Therefore, the use of 3D 
solid elements, and especially the multilayer ones, gains an increasing interest in 
numerical modelling of composite structures because they help to accurately study 
regions subjected to 3D stress states and accordingly safely design these structures.

The development of 3D finite elements for the analysis of laminated composite 
structures has recently received a lot of attention by researchers because shell 
theories, which are based on simplified assumptions across the thickness, come 
to their limits of validity. 3D partial-hybrid and mixed multilayer solid elements 
dealing with a detailed stress analysis of multilayer composites, and in particular 
interlaminar transverse stresses, were introduced in Han and Hoa (1993), Harrison 
and Johnson (1996), and Feng, Hoa, and Huang (1997). The book of Van Hoa and 
Feng (1998) offers comprehensive overviews of the hybrid finite elements for stress 
analysis of composites, where different types of such elements and their improve-
ments are given. Numerous modifications of the composite solid element approach 
can be seen in References Roy and Sihn (2001), Sihn and Roy (2001), Icardi and 
Atzori (2004), and Mijuca (2010). In Marimuthu, Sundaresan, and Rao (2001, 
2003), it is shown that the 3D layered brick element with mixed finite element 
formulation could constitute the best option for finding the interlaminar stresses 
and to study the deformation behaviour of multilayer structures. The authors have 
already shown that this element works well for predicting the interlaminar stresses 
and deformations for in-plane loading. In Reference Marimuthu et al. (2003), a 
mixed finite element formulation with a 20-node layered hexahedron element 
is employed to predict the displacements and interlaminar stresses in laminates 
subjected to transverse loading. Abdullah, Ferrero, Barrau, and Mouillet (2007) 
used a new solid hexahedron element to examine delamination in composite 
laminates. The eight-node solid is derived from a 20-node hexahedron element 
and has 3 translational and 3 rotational degrees of freedom (DOFs).

In view of these issues, various 3D finite element models have been proposed and 
used to study the stress singularity at the free-edge. For example, Icardi and Bertetto 
(1995) used a 20-node quadratic hexahedral element and a 15-node quadratic 
singular wedge element to analyse the stress singularity at the free-edge interface 
and at corners of laminated plates. Chen, Shah, and Chan (1996) and Lessard, 
Schmidt, and Shokrieh (1996) also used 20-node hexahedral isoparametric ele-
ment to, respectively, evaluate the interfacial stress distributions and analyse the 
free-edge effect in composite laminates. In a subsequent work, Hu, Soutis, and 
Edge (1997) studied the interlaminar stress distributions around a circular hole 
in symmetric composite laminates using 3D finite element analysis. On the other 
hand, a 18-node, 3D mixed finite element model based on the displacement theory 
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satisfying fundamental elasticity relations was presented in Ramtekkar, Desai, and 
Shah (2002), Ramtekkar et al. (2003), and Desai, Ramtekkar, and Shah (2003a, 
2003b). In particular, it was shown that this model is able to provide reliable pre-
dictions of laminated composites stresses and displacements. Moreover, a 27-node 
3D hexahedral hybrid-interface finite element model was developed by Bambole 
and Desai (2007) using the minimum potential energy principle to analyse thick 
laminated composite and sandwich plates. A 3D multilayer element based on hier-
archical shape functions was developed in Kuhlmann and Rolfes (2004), especially 
to analyse thick composite structures. In this model, the in-plane stresses are com-
puted from the displacement approximation and the out-of-plane stresses from 
the 3D equilibrium equations which require high-order interpolation functions.

The so-called space fibre rotation (SFR) concept was firstly introduced by Ayad 
(2002) to enhance the accuracy of first-order finite elements. It is based on the 3D 
virtual rotations of a nodal fibre that enriches the approximation of the displacement 
vector. This SFR concept was then adapted to 3D elastic structures in Meftah, Ayad, 
and Hecini (2013) by developing a 3D six-node wedge element, named SFR6, and in 
Ayad, Zouari, Meftah, Zineb, and Benjeddou (2013) by introducing two 3D eight-
node hexahedral elements named SFR8 and SFR8I. These SFR concept-based solid 
elements present three rotational and three translational DOFs per node. Some of 
the solid elements with rotational DOFs can be found in Yunus, Pawlak, and Cook 
(1991) and Sze and Ghali (1993). In particular, it was shown in Meftah (2013), 
Meftah et al. (2013), and Ayad et al. (2013) that these 3D solid elements results are 
significantly better than the classical first-order wedge and hexahedral elements and 
globally close to those of the classical quadratic ones in the elastic isotropic case.

In this work, we propose a multilayered extension of the eight-node hexahedral 
element SFR8 (Ayad et al., 2013) to study composite laminate structures. Hence, 
the element has six DOFs per node, i.e. three displacements and three rotational 
parameters. Several plies in each hexahedral element are directly considered in 
the formulation to construct the stiffness matrix of the multilayer hexahedral 
element named SFR8M. Accordingly, only one element could be used across the 
thickness to model multilayer structures which results in a significant reduction 
of the computing cost as well as an acceptable model size when compared with 
models using at least one element per layer. The in-plane stress quantities (σx, σy 
and σxy) are determined from the enhanced displacement fields using the consti-
tutive law, giving accurate predictions of these quantities.

This study is structured as follows. In Section 2, the formulation of the SFR 
concept-based eight-node hexahedral element SFR8 is reviewed and adapted to 
analyse laminated composite structures. Once the displacement vector approxima-
tion is defined and the stiffness matrix is obtained, in-plane stresses expressions are 
derived in Section 3. Finally, and before the concluding remarks, several numer-
ical examples are presented in Section 4 to assess the accuracy of the proposed 
multilayered element.
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2.  The SFR concept finite element approximation

In order to derive the stiffness matrix of the eight-node multilayer hexahedral 
element SFR8M, the SFR concept is briefly recalled.

2.1.  Kinematics of the SFR concept

The SFR concept, originally proposed by Ayad (2002), is based on the considera-
tion of a nodal fibre within the element that enhances the mechanical displacement 
vector approximation after a virtual 3D rotation. Figure 1(a) shows the geometry 
of the eight-node hexahedron in which a virtual fibre iq is introduced at the 
nodal level. The fibre rotation, represented by the rotation vector θi, generates 
an additional displacement vector that enriches the classical displacement field 
approximation, used to formulate the standard first-order solid elements. For the 
eight-node hexahedral element SFR8, the final SFR concept-based displacement 
field approximation takes then the following form (Ayad, 2002; Ayad et al., 2013):

where {Ui} = {Ui Vi Wi}
T is the nodal displacement vector, Ni are the classical tri-

linear Lagrange interpolation functions associated with the eight-node hexahedral 
element given by:

(1)U(�, �, � ) =
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Figure 1.  The SFR concept: (a) 3D rotation of the virtual fibre iq inducing an additional 
displacement, (b) the eight-node hexahedral element SFR8 and its nodal variables.
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and

X, Y and Z are the global coordinates of q given by the following approximations:

where Xi, Yi and Zi are the global coordinates of node i. By performing the vector 
product �

i
∧ iq, we obtain the following approximation of the displacement vector U :

The approximation (5) can be expressed in a matrix form:

where

and

is the nodal degree of freedom vector of SFR8 containing three translational and 
three rotational DOFs per node, see Figure 1(b).

2.2.  The elastic strain tensor

In the global coordinate system, the strain tensor of q is classically defined by:
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where

Using expressions (10) of the mechanical strains and the approximation (6) of 
the displacement vector, we obtain a matrix relationship between the stain vector 
{�} and the nodal degree of freedom vector {Un}:

where

and jlk are the inverse Jacobian matrix components (
[
j
]
= [J]−1) with

2.3.  The element stiffness matrix

For linear elastic problems, the stiffness matrix of SFR8 takes the following simple 
form (Ayad et al., 2013):

where [C] is the elasticity matrix relating the stress and strain vectors.
The evaluation of [Ke] is performed using the Gauss numerical integration 

technique. Typically, the elasticity matrix for a 3D multilayer structure is different 
from layer to layer, and thus it is not a continuous function of ζ. Therefore, the 
natural transverse coordinate of each layer ζk ∈ [−1, 1] is related to the third nat-
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ural coordinate of the multilayer element ζ ∈ [−1, 1] by the following relationship 
(Kuhlmann & Rolfes, 2004; Mindlin, 1951):

and

By substituting (15) into (14), we obtain the final element stiffness matrix of the 
multilayer element SFR8M:

where N represents the total number of layers and hk is the kth layer thickness, 
see Figure 2.
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Figure 2. Geometry of the eight-node hexahedron multilayer element.
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2.4.  Constitutive equations

For a typical lamina (k) with principal axes (1-2-3), the stress–strain relation is 
given by:

where {σ11 σ22 σ33 σ12 σ13 σ23}
T and {ε11 ε22 ε33 2ε12 2ε13 2ε23}

T are the stress and 
linear strain vectors referred to the lamina local coordinates system (1-2-3).

In terms of the engineering constants, C̄ij are given by the following expressions:

 

 

where

where Ei are Young’s moduli, υij are Poisson’s ratios and Gij are the shear moduli 
referred to the material coordinate system (1-2-3). For an arbitrary orientation of 
the layer, its local principal axes will not coincide with the global reference axes 
of the laminate; therefore, a rotational transformation should be performed. In a 
matrix form, this transformation is given by:
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where c = cos (�), s = sin (�) in which θ is the angle between the global x-axis 
and the local 1-axis of each lamina. Using this transformation, the stress–strain 
relations in the global (x-y-z) coordinate system can be written as:

where {σxx σyy σzz σxy σxz σyz}
T and {εxx εyy εzz 2εxy 2εxz 2εyz}

T are the stress and linear 
strain vectors with respect to the laminate axes (x-y-z).

2.5.  Numerical integration

In the definition of the displacement field vector in Equation (5), the approxi-
mation of the part corresponding to the virtual nodal rotations is quadratic in 
terms of ξ, η and ζ. Consequently, a 3 × 3 × 3 Gauss point’s scheme is necessary 
to exactly determine the stiffness matrix. In order to render the multilayer ele-
ment SFR8M computationally more effective, the reduced integration scheme 
with 2 × 2 × 2 Gauss points for each layer is adopted. Accordingly, the stiffness 
matrix coefficients are calculated as:

where �ki , �
k
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l  are the Gauss points coordinates of the kth layer and wi
1, w

m
2  

and wl
3 represent their corresponding Gaussian weights. Consequently, the total 
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3.  In-plane stresses

The stress vector of the kth is classically determined using the constitutive law 
and takes the following form:
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where (G) and (L) denote, respectively, the global and local variables. In contrast 
to the global variables, which are continuous across the thickness of the laminate 
and therefore at the layer interfaces, local ones are continuous only across the 
thickness of each layer but not at the layer interfaces (Kuhlmann & Rolfes, 2004).

The stress–strain relationship can then be expressed as:

and hence, the in-plane stresses are given by:

4.  Numerical results and discussion

The performances of the new multilayer solid element SFR8M for static analysis of 
laminated composite structures are demonstrated through four numerical exam-
ples. The accuracy of the present element as well as the in-plane stress predictions 
are studied and principally compared with 3D elasticity exact solutions and other 
advanced finite element models. The first two numerical examples focus on simply 
supported rectangular layered composite plates (Figure 3) under the sinusoi-
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On the other hand, the effect of mesh distortion on finite element accuracy is 
investigated in the third example by considering a cantilever beam meshed with 
six elements. In the fourth example, a single-layer hollow composite cylinder 
under internal pressure was employed to evaluate the performance of the proposed 
element in shell composite structures.

4.1.  A simply supported four-layered (0°/90°/90°/0°) square plate under 
sinusoidal transverse load

We consider in this first example a simply supported four-layered (0°/90°/90°/0°) 
laminate plate under sinusoidal load. The plate has the same lamination geometry 
and L = b = a. The material properties of this multilayer plate are

A mesh of 5 × 5 elements in the x-y plane and two elements along the thickness 
direction are used to model the multilayer plate. The dimensionless central trans-
verse deflection variation with respect to the plate slenderness ratio (S = L/h) is 
shown in Figure 4. A good agreement is found between the SFR8M result and 
the 3D elasticity solution reported in Pagano (1970) and the results obtained by 
Pandya and Kant (1988) by considering the higher order plate theory.

The variation of the dimensionless in-plane stress (𝜎̄x) with respect to the plate 
length-to-thickness ratio (S = L/h) is depicted in Figure 5 where a comparison 
between SFR8M, the 3D multilayer element proposed by Kuhlmann and Rolfes 
(2004) (with 5 × 5 × 2 mesh) and the 3D elasticity solution (Pagano, 1970) is 

E1 = 250 GPa; E2 = E3 = 10 GPa; �12 = �23 = �13 = .25

G12 = G13 = 5 GPa; G23 = 2 GPa

a

b

h

X

Y

Z

Figure 3. Simply supported rectangular laminated plate.
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Figure 4. Effect of the plate slenderness ratio on the dimensionless central deflection (w̄) of the 
simply supported (0°/90°/90°/0°) cross-ply square laminate under sinusoidal transverse load.
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Figure 5. Effect of the plate slenderness ratio (L/h) on the dimensionless in-plane stress (𝜎̄x) of 
the simply supported (0°/90°/90°/0°) cross-ply square laminate under sinusoidal transverse load.
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presented. Once again, we remark that the SFR8M in-plane stress (𝜎̄x) results are 
in excellent agreement with the 3D elasticity solutions.

The through-the-thickness variation of the dimensionless in-plane stress (𝜎̄x) 
is presented in Figure 6 for the aspect ratio S = L/h = 4. In this figure, the results 
obtained by SFR8M are compared with the 3D elasticity solution (Pagano, 1970), 
the higher order plate theory (Pandya & Kant, 1988), the 3D multilayer element 
proposed in Kuhlmann and Rolfes (2004) and the first-order shear deformation 
theory (FSDT) presented by Whitney and Pagano (1970). It should be noticed 
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Figure 6. The dimensionless in-plane stress (𝜎̄x) distribution across the thickness of the simply 
supported (0°/90°/90°/0°) cross-ply square laminate subjected to a sinusoidal transverse load 
(L/h = 4).

Table 1. Results of the dimensionless centroidal deflection and the in-plane stresses of a simply 
supported (0°/90°/90°/0°) cross-ply square laminate under sinusoidal transverse load (the quanti-
ty inside parentheses indicates the normalised displacement and in-plane stresses).

L/h Model (mesh) w̄(0) 𝜎̄xx(h/2) 𝜎̄yy(h/4) 𝜎̄xy(h/2)
10 3D elasticity .7370 .5590 .4010 .0275

HSDT .7147 (.969) .5456 (.981) .3888 (.969) .0268 (.974)
SFR8M (5 × 5 × 2) .7188 (.975) .5526 (.988) .3874 (.966) .0268 (.974)
SFR8M (8 × 8 × 2) .7254 (.984) .5567 (.995) .3988 (.994) .0272 (.989)

SFR8M (16 × 16 × 2) .7367 (.999) .5590 (1.000) .4009 (.999) .0274 (.996)
100 3D elasticity .4347 .5390 .2710 .0214

HSDT .4343 (.999) .5387 (.999) .2708 (.999) .0213 (.995)
SFR8M (5 × 5 × 2) .4290 (.986) .5324 (.987) .2660 (.981) .0211 (.985)
SFR8M (8 × 8 × 2) .4311 (.991) .5352 (.992) .2696 (.994) .0212 (.990)

SFR8M (16 × 16 × 2) .4344 (.999) .5389 (.999) .2708 (.999) .0214 (1.000)
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that the results provided by the FSDT are not in a good agreement with those of 
the 3D elasticity for moderately thick plates. As already explained in Kuhlmann 
and Rolfes (2004), the higher order plate theory does not predict accurately the 
stress value at the internal interface. The results obtained by SFR8M agree well 
with the 3D elasticity solution and are close to those of the 3D multilayer finite 
element developed in Kuhlmann and Rolfes (2004).

Table 1 summarises the results of the dimensionless central deflection and 
in-plane stresses for two slenderness ratios L/h = 10 and 100. In addition to the 
3D elasticity results, we show also those of the higher deformation plate theory 
developed in Reddy (1984). Specifically, results by the regular meshes 5 × 5 × 2, 
8 × 8 × 2 and 16 × 16 × 2 are presented to investigate the effect of mesh refinement. 
The convergence of normalised displacement and in-plane stresses is given in 
parentheses in Table 1. The SFR8M response is found to be close and converges 
to the 3D elasticity solution and remains stable when we increase the slenderness 
of the plate.

4.2.  A simply supported three-layered (0°/90°/0°) square plate under 
sinusoidal transverse load

The second example considers a three-layered (0°/90°/0°) simply supported 
square laminated plate under sinusoidal load: q̄

(
x, y

)
= q0 sin(𝜋x∕a) sin(𝜋y

/
b); 

q0 = 1MPa. A regular mesh constituted of 8 × 8 elements on the x-y plane and two 
across the thickness is used to model the multilayer plate. The material properties 
of this second plate are similar to those used in the first example. Figure 7 shows 
the distributions of the dimensionless central deflection through the laminate 
thickness, for the aspect ratios S = L/h = 2, 4, 10 and 100, predicted by SFR8M 
and compared with the 3D elasticity solution (Pagano, 1970). We remark that, 
except for the first slenderness ratio L/h = 2, the SFR8M responses agree very well 
with the 3D analytical solution. The through-the-thickness distributions of the 
dimensionless in-plane stresses 𝜎̄x and 𝜎̄xy for the slenderness ratio S = L/h = 4 are 
depicted in Figures 8 and 9, respectively. The SFR8M predictions agree globally 
well with the 3D elasticity solution. However, a remarkable difference is found at 
the 0°/90° interfaces for the 𝜎̄x distribution.

Typical convergence trend for simply supported cross-ply laminated (0°/90°/0°) 
square plate with slenderness ratio S = L/h = 4, 10 and 100 is presented in Table 
2. The numbers in parentheses of Table 2 show the convergence rate of normal-
ised displacement and in-plane stresses. We remark that SFR8M present good 
responses and converge quickly to the reference solution.

4.3.  The effect of mesh distortion

A cantilever beam subjected to unit in-plane and out-of-plane loads at the free end is 
examined in this section as shown in Figure 10. This example, studied by Bussamra, 
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Figure 7. The dimensionless transverse displacement w̄(0,0) distribution across the thickness of 
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Neto, and Raimundo (2012), is a famous benchmark for testing the sensitivity of 
finite elements to mesh distortion and it is considered here to verify the SFR8M 
formulation without layered configurations. As depicted in Figure 10, the cantilever 
beam is modelled with one six-elements regular mesh (mesh A) and two distorted 
meshes (meshes B and C). Two isotropic and orthotropic materials are used in this 
benchmark as in Bussamra et al. (2012) and their properties are given by:
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Figure 9. The dimensionless in-plane stress 𝜎̄xy distribution across the thickness for the simply 
supported (0°/90°/0°) cross-ply square laminate under sinusoidal transverse load (L/h = 4).

Table 2. Convergence results of the dimensionless vertical displacement and in-plane stresses of 
a simply supported (0°/90°/0°) cross-ply square laminate under sinusoidal transverse load (the 
quantity inside parentheses indicates the normalised displacement and in-plane stresses).

L/h Model (mesh) w̄(0) 𝜎̄xx(h/2) 𝜎̄yy(h/6) 𝜎̄xy(h/2)
4 3D elasticity 2.01 .755 .556 −.0511

SFR8M (2 × 2 × 2) 1.78 (.887) .672 (.891) .493 (.888) −.0454 (.890)
SFR8M (4 × 4 × 2) 1.89 (.941) .722 (.957) .531 (.956) −.0486 (.952)
SFR8M (8 × 8 × 2) 1.94 (.969) .785 (1.04) .554 (.998) −.0494 (.967)

SFR8M (16 × 16 × 2) 2.00 (.999) .770 (1.02) .555 (.999) −.0511 (1.000)
10 3D elasticity .753 .590 .285 −.0289

SFR8M (2 × 2 × 2) .664 (.883) .523 (.887) .253 (.888) −.0256 (.886)
SFR8M (4 × 4 × 2) .716 (.952) .566 (.960) .273 (.959) −.0276 (.956)
SFR8M (8 × 8 × 2) .731 (.971) .577 (.979) .279 (.981) −.0282 (.978)

SFR8M (16 × 16 × 2) .751 (.998) .588 (.998) .285 (1.000) −.0288 (.998)
100 3D elasticity .435 .539 .181 −.0213

SFR8M (2 × 2 × 2) .392 (.902) .485 (.901) .163 (.904) −.0194 (.911)
SFR8M (4 × 4 × 2) .417 (.960) .515 (.957) .173 (.958) −.0203 (.955)
SFR8M (8 × 8 × 2) .452 (1.04) .534 (.991) .179 (.992) −.0211 (.995)

SFR8M (16 × 16 × 2) .443 (1.02) .538 (.999) .181 (1.000) −.0213 (1.000)
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E = 107, ν = .3 the isotropic material
E1 = 4E2 = 5E3 = 107; G12 = G13 = 5G23 = 3.846 × 106

ν12 = ν13 = .3; ν23 = .05 the orthotropic material

Table 3 presents the normalised results of SFR8M element compared with those of 
two NASTRAN hexahedral elements reported in Bussamra et al. (2012): the lin-
ear hexahedral element HEXA8(SR) with selective reduction integration and the 
parabolic element HEXA16. Moreover, the present element is also compared, for 
isotropic material, to the hexahedral finite element HEX8X with rotational DOFs 
developed by Yunus et al. (1991) and standard isoparametric 20-node second-order 
hexahedral element HEX20 reported in Macneal and Harder (1985). The reference 
displacements of the cantilever beam free end, for both the isotropic and orthotropic 
materials, are .1081 and .4321, for the in-plane and out-of-plane loads, respectively 
(Bussamra et al., 2012). We depict in Figure 11 the convergence curves of the present 
element in terms of the total degree of freedom number. We remark that SFR8M 
presents good results and converges more quickly to the reference solution. For the 
distorted meshes, SFR8M is found to more accurate than HEXA8(SR) and presents 
approximately the same results as the parabolic element HEXA16.

6 elements SFR8M mesh

Figure 10. Cantilever beam for mesh distortion test.

Table 3. Normalised tip displacements for the cantilever beam.

Material Isotropic Orthotropic

Load In-plane Out-of-plane In-plane Out-of-plane

Mesh A B C A B C A B C A B C
HEXA8(SR) .981 .080 .069 .961 .055 .051 .992 .182 .138 .993 .069 .069
HEXA16 .975 .817 .898 .970 .820 .961 .996 .908 .968 .998 .930 .990
HEX20 .970 .967 .886 .961 .941 .920 – – – – – –
HEX8X .978 .624 .047 .973 .528 .030 – – – – – –
SFR8M .886 .845 .797 .895 .885 .869 .969 .907 .860 .972 .971 .956



124    K. MEFTAH ET AL.

4.4.  Orthotropic cylindrical shell

Figure 12 shows a one-layered cylindrical composite shell, fully clamped ends, under 
uniform internal pressure (P). The geometric and material properties of this struc-
ture are shown in Table 4. Thanks to the symmetry of the structure, only one-eighth 
of the cylindrical shell is modelled with regular meshes 8 × 8 × 1 (eight elements 
along the circumference and the length and one element across the thickness), 
16 × 16 × 2 and 32 × 32 × 2. The vertical deflection at the centre of the shell obtained 
by SFR8M and the exact solution obtained by the thin shell theory given in Kraus 
(1967) are summarised in Table 5. In addition to that we also show the results 
obtained by hybrid-mixed shell element MiSP4-Q4 with 10 × 5 mesh presented in 
Ayad (2002). The results reported in Table 5 show an acceptable agreement between 

Figure 11. Convergence of normalised tip displacements for the cantilever beam.
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Figure 12. A single-layer orthotropic cylindrical shell.
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the SFR8M response and the thin shell theory. Moreover, SFR8M presents approxi-
mately the same results as the MiSP4-Q4 element reported in Ayad (2002).

5.  Concluding remarks

A new multilayered solid element named SFR8M and based on the SFR con-
cept was developed for the analysis of laminated composites. The displacement 
approximation of the classical eight-node hexahedral finite element is enriched 
by additional terms related to the virtual 3D rotations of a nodal fibre within 
the element. To assess the accuracy of the proposed multilayered element, some 
benchmarks were considered and the obtained results were compared especially 
with 3D elasticity solutions. In particular, it was shown that transverse deflections 
and in-plane stresses predicted by SFR8M agree well with the reference solutions. 
As a future work, the SFR8M formulation should be extended to the determination 
of transverse stresses, which constitute the main cause of delamination.
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