
A Finite Element Model for Investigating
the Thermo-Electro-Mechanical Response

of Inhomogeneously Deforming
Dielectric Elastomer Actuators

Atul Kumar Sharma1,∗, Aman Khurana2

and Manish M. Joglekar2

1Department of Mechanical Engineering, Indian Institute of Technology Jodhpur,
Jodhpur 342037, India
2Department of Mechanical and Industrial Engineering, Indian Institute of
Technology Roorkee, Roorkee 247667, India
E-mail: atulksharma@iitj.ac.in
∗Corresponding Author

Received 12 July 2021; Accepted 04 November 2021;
Publication 26 November 2021

Abstract

Among the available soft active materials, Dielectric elastomers (DEs) pos-
sess the capability of achieving the large actuation strain under the application
of high electric field. The material behavior of such elastomers is affected
significantly by the change in temperature. This paper reports a 3-D finite
element framework based on the coupled nonlinear theory of thermo-electro-
elasticity for investigating the thermal effects on the electromechanical
performance of inhomogeneously deforming dielectric elastomer actuators
(DEAs). The material behavior of the actuator is modeled using the neo-
Hookean model of hyperelasticity with temperature dependent shear mod-
ulus. An in-house computational code is developed to implement the coupled
finite element framework. Firstly, the accuracy of the developed FE code
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is verified by simulating the temperature effects on the actuation response
and pull-in instability of the benchmark homogeneously deforming planar
DE actuator. Further, the influence of temperature on the electromechani-
cal responses of complex bi-layered bending actuator and buckling pump
actuator involving inhomogeneous deformation is investigated. The numer-
ical framework and the associated inferences can find their potential use in
addressing the effect of temperature in the design of electro-active polymer
based actuators.

Keywords: Dielectric elastomers, nonlinear thermo-electro-hyperelasticity,
finite element method, finite deformation, inhomogeneous deformation,
buckling pump actuator.

1 Introduction

Dielectric elastomers a unique group of electroactive-polymers (EAPs)
exhibit an exceptional property of undergoing large elastic deformations in
response to electric stimulation. Because of their large actuation strain, high
energy density, high coupling efficiency, etc., DEs have become one of the
most potentially used materials in recent years [1]. Due to these unique
characteristics, the DEs are effectively used in energy harvesting devices,
peristaltic pumps, soft grippers, artificial muscles, adjustable noise reduction
system in aeroplanes, actuators, adaptable valves in car engines, minimum
energy structures, among the others [2–6].

Three types of polymers are used prevalently in EAPs/DE applications;
they are acrylics, polyurethanes, and silicones. While the silicone-based
EAPs show less temperature sensitivity [7, 8]; in contrast, the acrylic-based
EAPs are highly temperature sensitive [9–12]. There are several application
examples, such as the DE-based soft robot deployed in the sea environ-
ment [6], adjustable noise reduction system in aeroplanes [3], and adaptable
valves in car engines [4] wherein the DE actuators are subjected to a large
variation in operating temperatures. In view of this, it is imperative to incor-
porate and analyse the effect of temperature in the analysis of DE actuators
for facilitating an efficient design.

In the recent past, many researchers have reported the lumped parameter
models pertaining to DEAs considering the temperature effects [11–15]. In
context to lumped parameter modeling of DEs, Sheng et al. [14] presented
a parametric study for exploring the influence of deformation-dependent
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permittivity and temperature on the electromechanical instability of DEs in
the quasi-static mode of operation. Liu et al. [15] presented a constitutive
model of the thermodynamic system based on the adiabatic process to study
the thermo-electromechanical stability of DEs. Chen et al. [11] presented
an analytical model for analyzing the temperature effects on the actuation
behavior and modes of failure of a dissipative dielectric elastomer actuator.
Further, Sheng et al. [16] investigated the thermal effects on the nonlinear
dynamic behavior of viscoelastic DEAs by implementing a temperature
dependent dielectric constant model. Vertechy et al. [17] presented an exper-
imentally corroborated coupled thermo-electro-elastic continuum model for
analyzing homogeneously deforming isotropic modified-entropic hyperelas-
tic elastomers subjected to combined thermo-electro-mechanical loading.
Kleo et al. [12] presented the theoretical and experimental investigations to
determine the electromechanical breakdown strength and behavior of DEs by
considering the effect of temperature and strain-stiffening. In almost all of the
aforementioned models, the researchers have their attention centered on sim-
ple unconstrained configurations of DEAs (i.e., planar actuators) deforming
homogeneously. However, in actual practice, DE based actuators (i.e., Bend-
ing actuators, buckling pump actuators, and many others) undergo inhomo-
geneous deformations and for investigating their thermo-electro-mechanical
behavior an appropriate numerical framework is needed.

To this end, in this paper, a finite element-based numerical framework
is reported for investigating the thermal effects on the electromechanical
performance of inhomogeneously deforming dielectric elastomers. The util-
ity of the developed finite element model is demonstrated by assessing the
effect of temperature on the pull-in instability phenomena of homogeneously
deforming DEAs, and further used to study a few case studies of practi-
cal importance, such as bi-layered bending and buckling pump actuators
involving inhomogeneous deformations.

The remainder of the paper is organized as follows. Section 2 sum-
marizes the governing equations pertaining to the finite strain nonlinear
thermo-electro-mechanical deformation of dielectric elastomers following
the general theory of nonlinear thermo-electro-elasticity [18]. The finite
element model for the coupled thermo-electro-elastic problem is presented
in Section 3. In Section 4, we consider three problems to demonstrate the
capability of the finite element model in capturing the nonlinear thermo-
electro-mechanical response of DEs. Concluding remarks are provided in
Section 5.
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2 Overview of the Nonlinear Thermo-Electro-Mechanics

Consider a continuum dielectric body B0 in the reference configuration at
time t = 0, with boundary ∂B0 and a material point having position vector
XJ as shown in Figure 1. At time t > 0, due to thermo-electro-mechanical
loading, material point XJ moves to a point xi(XJ , t) in the current con-
figuration of the body Bt with boundary ∂Bt. The absolute temperature of
the material point XJ at time t = 0 and t > 0 are denoted by θ0 and
θ(XJ , t), respectively. The electric potential corresponding to the material
point XJ is denoted by φ(XJ , t). We define the deformation gradient as
FiJ(XJ , t) = ∂xi(XJ , t)/∂XJ with Jacobian J = det(F ) > 0, and the
electric field asEJ = −∂φ(XJ , t)/∂XJ in the reference state with Faraday’s
law of electrostatics (∂EJ/∂XK)òIJK = 0. The right Cauchy-Green strain
tensor is defined as CIJ = FKIFKJ . Let, Bθ represents the intermediate
state of the dielectric body and its associated boundary is represented by
∂Bθ. Following [19, 20], to take into account thermal effects, we introduce
the multiplicative decomposition of the total deformation gradient into two
parts as

FiJ = FEM
ik F θkJ , (1)

where, FEM
ik and F θkJ denotes the electro-mechanical and thermal compo-

nents of the deformation gradient, respectively. We consider the thermal
part of the deformation gradient as pure volumetric contribution F θkJ =

Jθ
1/3
δkJ , with determinant Jθ = exp(3α(θ − θ0)) [21]. Here, α is the

Figure 1 An arbitrary continuum dielectric body in the (a) reference configuration, (b)
intermediate configuration, and (c) deformed configuration.
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coefficient of thermal expansion. By utilizing the aforementioned relations
and Equation (1), electro-mechanical components of deformation gradient
(FEM

ik ), Cauchy-Green strain tensor (CEM
IJ ), and Jacobian (JEM ) are written

in terms of Jθ as

FEM
ik = Jθ

−1/3
Fik; CEM

IJ = Jθ
−2/3

CIJ ; JEM = J/Jθ. (2)

Neglecting inertial effects and electrodynamic effects, the balance of
linear momentum of dielectric body and Gauss’s law in the reference
configuration are expressed as

∂PiJ
∂XJ

+ b̄i = 0;
∂DJ

∂XJ
= q̄; in B0 (3)

respectively, where PiJ = FiISIJ is the first Piola-Kirchhoff stress tensor
(PK-1), SIJ is the second Piola-Kirchhoff stress tensor (PK-2), DJ is the
electric displacement vector, q̄ and b̄i are the free charge density and an
external body force density vector in the reference configuration, respectively.
The Neumann boundary conditions for PiJ and DJ , and Dirichlet boundary
conditions for displacement ui and electric potential φ are defined as

t̄i = PiJNJ on ∂Bt0; ω̄ = −DJNJ on ∂Bω0 ;

ui = ūi on ∂Bu0 ; φ = φ̄ on ∂Bφ0 ; (4)

where t̄i and ω̄ are the prescribed traction vector and surface charge density
on the Neumann parts ∂Bt0 and ∂Bω0 of the boundary ∂B0, respectively, NJ

represents an outward unit normal on the Neumann surface, ūi and φ̄ are the
prescribed displacement vector and electric potential on the Dirichlet parts

∂Bu0 and ∂Bφ0 of the boundary ∂B0. The thermal field equation obtained from
the first law of thermodynamics and corresponding boundary conditions can
be expressed as

θη̇ = −∂QJ
∂XJ

+R in B0,

Q̄ = QJNJ on ∂BQθ ; θ = θ̄ on ∂Bθθ , (5)

where, η represents the entropy, QJ is the heat flux vector, and R represents
a volumetrically distributed heat source in the material configuration, Q̄

represents the prescribed heat flux on the Neumann part ∂BQθ associated
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with the boundary ∂Bθ and θ̄ shows prescribed absolute temperature on the
Dirichlet part ∂Bθθ associated with the boundary ∂Bθ.

We consider non-dissipative, ideal dielectric material model neglecting
the effect of time dependent viscoelasticity for which PK-2 stress SIJ ,
electric displacement DJ , and entropy η are obtained constitutively through
an augmented energy density function ψ(C,E, θ) as [12, 17]

SIJ = 2
∂ψ

∂CIJ
; DJ = − ∂ψ

∂EJ
; η = −∂ψ

∂θ
. (6)

We specify the following form of the thermo-electromechanically cou-
pled augmented free energy density function to characterize the constitutive
behaviour of the dielectric elastomers [13, 22]:

ψ(C,E, θ) =
θ

θ0

[
µ(θ)

2
{CEM

PP − 3− 2 ln(JEM )}+
K

2
ln2(JEM )

]
− ε

2
JC−1PQEPEQ − c

[
θ − θ0 − θ ln

(
θ

θ0

)]
− 3αK(θ − θ0)

ln(Jθ)

Jθ
, (7)

where, µ and K are the shear and bulk modulus, respectively, ε is the dielec-
tric permittivity, and c is the specific heat capacity. Substituting Equation (7)
into Equation (6), we obtain the following constitutive relations

DJ = εJC−1JQEQ, (8)

PiJ =
θ

θ0

[
µ(θ){(Jθ)−2/3δIJ − C−1IJ }

+K ln(JEM )C−1IJ

]
FiI

+ εJEPEQ

(
C−1PIC

−1
JQ −

1

2
C−1IJ C

−1
PQ

)
FiI , (9)

η = − 1

θ0

[
µ(θ)

2
{CEM

PP − 3− 2 ln(JEM )}+
K

2
ln2(JEM )

]
− θ

θ0

[
µ(θ)

2
{6α− 2αCEM

PP } − 3αK ln(JEM )

]
− c ln

(
θ

θ0

)
− 3αK

ln(Jθ)

Jθ
− 3α2K(θ − θ0)

(
1− ln(Jθ)

Jθ

)
. (10)
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The expression for the heat flux vector QJ which satisfies the inequality
of heat conduction via isotropic Fourier model of heat conduction takes the
following form [23]

QJ = −kJC−1JP θ
′
p, (11)

where, k denotes the isotropic thermal conductivity and θ′p = ∂θ/∂XP

represents the temperature gradient. Moreover, by utilizing the free energy
function ψ, its total time derivative and constitutive equations, we express the
rate of entropy as

η̇ = c
θ̇

θ
− ∂PiJ

∂θ
ḞiJ −

∂DJ

∂θ
ĖJ . (12)

On substitution of the expression of the rate of entropy from Equation (12)
into Equation (5), governing thermal field equation can be formulated as the
equation of heat conduction as

cθ̇ = −∂QI
∂XI

+R+H = 0, (13)

where,

H = θ
∂PiJ
∂θ

ḞiJ − θ
∂DJ

∂θ
ĖJ .

3 Finite Element Framework

The solution of the governing partial differential Equations (3) and (13) using
the finite element method requires their weak forms. At time tn, the weak
forms of the governing differential equations obtained by contracting the
equation of momentum balance equation with virtual displacement vector
δui, the Gauss law equation by the virtual electric potential δφ, and heat
equation with virtual temperature δθ and integrating over the entire volume
in the reference state, are expressed as

ru =

∫
B0
PiJ

∂δui
∂XJ

dV︸ ︷︷ ︸
ruint

−
∫
∂B0

t̄iδuidA−
∫
∂B0

b̄iδuidV︸ ︷︷ ︸
ruext

= 0, (14a)

rφ =

∫
B0
DJ

∂Na

∂XJ
dV︸ ︷︷ ︸

rφint

+

∫
∂B0

ω̄NadA+

∫
B0
q̄NadV︸ ︷︷ ︸

rφext

= 0, (14b)
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rθ =

∫
B0
cθ̇δθdV −

∫
B0
QJ

∂δθ

∂XJ
dV︸ ︷︷ ︸

rθint

−
∫
∂B0

(H +R)δθdA−
∫
B0
Q̄δθdV︸ ︷︷ ︸

rθext

= 0, (14c)

where (•)int, and (•)ext represent the internal and external force vectors,
respectively. We use an implicit backward-Euler scheme for approximating
the time derivative of temperature present in Equation 14(c) as θ̇ = (θn −
θn−1)/∆t, where θn and θn−1 are the temperature fields at time tn and
tn−1, and ∆t is the time increment. Next, by considering the finite element
approximations for the virtual displacement δui = Naδuai, electric potential
δφ = Naδφa, virtual temperature δθ = Naδθa, with Na representing shape
function associated with node a, δuai, δθa, and δφa denoting the nodal virtual
displacement vector, virtual temperature and virtual electric potential values,
respectively. We obtain the following elemental level equations pertaining to
mechanical, electrical, and thermal equilibrium at time tn,

ru =

∫
B0
PiJ

∂Na

∂XJ
dV −

∫
∂B0

t̄iNadA−
∫
B0
b̄iNadV = 0, (15)

rφ =

∫
B0
DJ

∂Na

∂XJ
dV +

∫
∂B0

ω̄NadA+

∫
B0
q̄NadV = 0, (16)

rθ =

∫
B0
cθ̇NadV −

∫
B0
QJ

∂Na

∂XJ
dV

−
∫
∂B0

(H +R)NadA−
∫
B0
Q̄NadA = 0. (17)

We solve these coupled nonlinear Equations (15)–(17), using an
incremental-iterative strategy based on Newton–Raphson approach and
resulting incremental equations at time tn and mth Newton iteration are
written as

Kuu|m ∆ubk +Kuφ|m ∆φb +Kuθ|m ∆θb = −ru|m, (18a)

Kφu|m ∆ubk +Kφφ|m ∆φb = −rφ|m, (18b)

Kθu|m ∆ubk +Kθθ|m ∆θb = −rθ|m, (18c)



A Finite Element Model for Investigating 395

where, the stiffness matrices are expressed as

Kuu =

∫
B0

∂Na

∂XJ

∂PiJ
∂FkL

∂Nb

∂XL
dV ; Kuφ = −

∫
B0

∂Na

∂XJ

∂PiJ
∂EL

∂Nb

∂XL
dV ;

Kuθ =

∫
B0

∂Na

∂XJ

∂PiJ
∂θ

NbdV ; Kθu = −
∫
B0

∂Na

∂XJ

∂QJ
∂FkL

∂Nb

∂XL
dV ;

Kφφ = −
∫
B0

∂Na

∂XJ

∂DJ

∂EL

∂Nb

∂XL
dV ; Kφu =

∫
B0

∂Na

∂XJ

∂DJ

∂FkL

∂Nb

∂XL
dV ;

Kθθ =

∫
B0

c

∆t
NaNbdV −

∫
B0

∂Na

∂XJ

∂QJ
∂θL

∂Nb

∂XL
dV. (19)

The analytical expressions for different thermo-electro hyperelastic tan-
gent moduli using Equations (8)–(9) and Equation (11) are written as

∂PiJ
∂FkL

=
θ

θ0
[µ{(Jθ)−2/3δJLδiK − C−1JL δiK}

+K ln(JEM )C−1JL δiK ]

+ εJEPEQδiK

(
C−1PJC

−1
LQ −

1

2
C−1JLC

−1
PQ

)

+
θ

θ0

µ(C−1IKC
−1
JL + C−1IL C

−1
JK )FiIFkK + KC−1IJ C

−1
KLFiIFkK

−K ln JEM (C−1IKC
−1
JL + C−1IL C

−1
JK )FiIFkK



+ εJEPEQFiIFkK


C−1KL

(
C−1PI C

−1
JQ −

1

2
C−1IJ C

−1
PQ

)
+C−1IJ C

−1
PKC

−1
QL

+
1

2
C−1PQ(C−1IKC

−1
JL + C−1IL C

−1
JK )



− εJEPEQFiIFkK

C−1PI (C−1JKC
−1
QL + C−1JLC

−1
QK )

−C−1JQ(C−1PKC
−1
IL + C−1PLC

−1
IK )

, (20)

∂PiJ
∂EL

= εJEQ[C−1LI C
−1
QJ + C−1QIC

−1
LJ − C

−1
LQC

−1
IJ ]FiI , (21)
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∂PiJ
∂θ

=
1

θ0
[µ{(Jθ)−2/3δIJ − C−1IJ }+K ln(JEM )C−1IJ ]FiI

− θ

θ0
[2µα(Jθ)

−2/3δIJ + 3αKC−1IJ ]FiI , (22)

∂DJ

∂FkL
= εJEQ[C−1JQC

−1
KL − C

−1
JKC

−1
QL − C

−1
JLC

−1
QK ]FkK , (23)

∂DJ

∂EL
= εJC−1JL ;

∂QJ
∂θ′L

= −kJC−1JL , (24)

∂QJ
∂FkL

= kJθ′P [C−1JKC
−1
PL + C−1JLC

−1
PK − C

−1
JPC

−1
KL]FkK . (25)

4 Numerical Results

To demonstrate the capability of the aforementioned finite element frame-
work, we consider three different problems pertaining to the thermo-
electromechanical behavior of soft DE actuators. The specific problems
are thermal effects on the pull-in instability of a planar actuator and the
electromechanical responses of inhomogeneously deforming bending and
buckling pump actuators. We use a standard 8-noded linear hexahedral solid
element with a selective reduced integration scheme [24–26]. This choice,
together with a high value of bulk modulus (103 times the shear modulus)
ensures adequate handling of material incompressibility in the analysis.
The temperature dependent shear moduli of the DE actuator is defined as
µ(θ) = 1

3 [A(1000θ )2 + B(1000θ ) + C] with A = 0.2001, B = −1.078 and
C = 1.5180, for five different feasible temperature θ = 273, 293, 313, 333
and 353K [27] is incorporated to vary the shear modulus of the actuator as
depicted in Figure 2. The material parameters used in all problems are listed
in Table 1 [13, 18, 25].

4.1 Validation of the Finite Element Model: Homogeneously
Deforming Planar Dielectric Elastomer Actuator

For the verification of the finite element framework, we simulate the temper-
ature effects on the well-known pull-in instability of a planar DE actuator.
In this configuration, an unconstrained DE film is sandwiched between two
compliant electrodes on both sides. When driven by the potential difference
between the two electrodes, the DE film is compressed in the thickness
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Figure 2 Variation of shear moduli of the dielectric elastomer with temperature.

Figure 3 A schematic of a homogeneously deforming planar dielectric elastomer actuator
in the (a) reference state at temperature θ0, and in the (b) current state at temperature θ and
subjected to potential difference φ.

direction and expands laterally. A positive feedback between the thickness
reduction and the concomitant increment of the electric field results in
an operational instability referred to as the pull-in instability [15, 28–31].
Figure 3 depicts the schematic of a planar dielectric elastomer in the reference
state (reference temperature θ0) and in the current state, when subjected to
electric potential difference φ in the x3-direction and the temperature is raised
to θ. The stretch ratio of the actuator in the ith principal direction is defined as
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Figure 4 Comparison of the numerical values of principal thickness stretch (λ3) versus
dimensionless electric field, (e) at five different temperatures: θ = 273, 293, 313, 333 and
353 K with the previously reported analytical solution [13].

λi = li/Li, where li and Li denote the ith principal dimension of the actuator
in the current and reference states, respectively. In numerical simulations,
the geometry of the actuator (having dimensions: L1 = L2 = 5 mm,
L3 = 1 mm) is discretized using 8 hexahedral elements. We impose the
following symmetric displacement boundary conditions: the nodes at the
surfaces x1 = 0, x2 = 0, and x3 = 0 are restricted to move along the
x1, x2 and x3 directions, respectively. We monotonically increase the electric
potential difference φ between the surfaces x3 = 0 and x3 = L3 until the
pull-in instability takes place. We specify the following constant temperature
boundary conditions: (1) θ = θ0 at the surfaces x3 = 0 and x3 = L3, for
time t = 0, (2) θ = θ̄ at the surfaces x3 = 0 and x3 = L3, for time t > 0.
The reference temperature θ0 is taken to 293 K (room temperature) [27].

Figure 4 shows the comparison of the numerically simulated thickness

stretch λ3 Vs the non-dimensional electric field e = φ
L3

√
ε
µ response of the

actuator with the analytical model reported by Sheng et al. [13] for obtaining
the electromechanical instability (EMI) state. Figure 4 shows an excellent
match between the analytical predictions and those obtained numerically,
thus ascertaining the accuracy and capability of the presented FE framework
of predicting the thermal effects on the electromechanical behavior of DEs. It
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Figure 5 Deformed and undeformed configurations of the planar actuator, (a) with a dis-
placement plot along the thickness (u3) in mm, and (b) in x2 − x3 plane showing the electric
potential distribution plot φ in kV, of dielectric elastomer at 18.2 kV and temperature 353 K.

should however be noted that the pull-in parameters (critical field and stretch)
would depend strongly upon the choice of the material and the boundary
conditions. From Figure 4, it is observed that as the temperature increases, the
dimensionless electric-field (e) at the onset of pull-in instability [Marked by
X symbol] also increases. This figure also shows that the level of deformation
at the instability point is independent of level of temperature. Figures 5(a)
and 5(b) depict the undeformed and deformed configurations of the dielectric
block at θ = 353 K, φ = 18.2 kV, with the plots of displacement in the
thickness directions and electric potential distributions, respectively.

4.2 Bi-layered Bending Actuator

Our second problem comprises the temperature effect on the electromechan-
ical behavior of a bi-layered bending actuator consisting of two perfectly
bonded active and passive layers as shown in Figure 6(a). The geometrical
parameters of the actuator are selected as length (L) = 20 mm, width
(W ) = 4 mm and thickness (H) = 1 mm. The actuator is discretized
with 20, 8, and 4 hexahedral elements along the length, width, and thickness,
respectively (see Figure 6(b)).

The boundary conditions are specified as: all nodes corresponding to the
surface a′b′d′c′ (x3 = 0) are restricted along the x3 direction, the surfaces
a′c′ca (x2 = 0) and b′d′db (x2 = W ) cannot move in the x2 direction, and the
nodes at the intersection of surfaces x1 = H and x3 = 0 are confined along
the x1 direction. The electrical boundary conditions are specified by setting
φ = 0 on the surface x1 = H and monotonically increasing voltage φ on the
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Figure 6 (a) A schematic of a Bi-layered bending actuator, and (b) finite element mesh.

Figure 7 Numerically simulated normalized tip deflection Vs dimensionless electric field
curves for five different temperatures: θ = 273, 293, 313, 333 and 353 K.

surface x1 = 0 until the actuator undergoes almost 360 deg. angle bend. We
impose the following temperature boundary conditions on the surfaces a′b′ba
(x1 = 0) and c′d′dc (x1 = 2H): (1) θ = θ0 for time t = 0, and (2) θ = θ̄ for
time t > 0.

Figure 7 shows the normalized tip deflection of the actuator with respect

to the dimensionless electric field e = 2φ
H

√
ε
µ for five different levels of the

temperature θ = 273, 293, 313, 333, and 353 K. From this figure, we notice
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Figure 8 Deformed configurations of a bi-layered bending actuator with a color plot of the
deflection (u1) in mm at different values of applied dimensionless electric field e (a) 0.5, (b)
0.75, and (c) 0.87, and temperature θ = 353 K.

that the level of deformation (u1/L) of the bending actuator increases with a
decrease in the temperature, for any value of the applied electric field. Fig-
ures 8(a–c) demonstrate the deformed configurations of the bending actuator
(at 353 K temperature field) along with displacement contour plots for the
applied dimensionless electric field equal to 0.5, 0.75, and 0.87, respectively.
From Figure 8(c), we observe complete (almost 360 deg.) bending of the
actuator, when applied dimensionless electric field is equal to 0.87.

4.3 Buckling Pump Actuator

Our final problem considers the temperature effects on the DEs based
peristaltic buckling pump involving inhomogeneous deformation while trans-
ferring fluids [2, 25, 32]. Figure 9, shows the schematic of a DE based
buckling pump actuator consisting of two unbonded layers of DE fixed at the
ends. In the numerical simulation, the dimensions of both the layers are same
with length (L) = 20 mm, width (W ) = 4 mm, and thickness (H) = 1 mm.
Each layer of the pump is modeled with 4, 8, and 20 hexahedron elements
along the x1, x2, and x3 directions, respectively. The boundary conditions are
specified as: The nodes corresponding to the surfaces a′b′d′c′ (x3 = 0) and
abdc (x3 = L) are restricted along all the three directions, the voltage is zero
on the interface between the upper and lower layers and we monotonically
increase voltage on the surfaces x1 = 0 and x1 = 2H until the pump
actuator buckles. The temperature of the surfaces a′b′ba (x1 = 0) and c′d′dc
(x1 = 2H) is defined as (1) θ = θ0 for time t = 0, and (2) θ = θ̄ for
time t > 0. Figure 10 depicts the normalized central deflection of the pump

actuator with respect to the dimensionless electric field e = φ
H

√
ε
µ for the
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Figure 9 A schematic of a buckling pump actuator.

Figure 10 Normalized central deflection Vs dimensionless electric field curves for buckling
pump actuator at five different temperatures: θ = 273, 293, 313, 333, and 353 K.

aforementioned levels of temperature. From this figure, we notice that the
level of central deformation (u1/L) of the pump actuator decreases with an
increase in the temperature irrespective of the applied electric field. From
Figure 10, it is also evident that the dimensionless electric field required
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Figure 11 Deformed configurations of a bi-layered buckling pump actuator with a color plot
of the deflection (u1) in mm at different values of applied dimensionless electric field e (a)
0.0, (b) 0.35, (c) 0.6 (d) 0.75, and temperature θ = 353 K.

to trigger the buckling instability increases with an increase in the actuator
temperature. Figures 11(a–d) demonstrate the deformed configurations along
with displacement contour plots of the buckling pump actuator at the temper-
ature of 353 K, corresponding to the values i.e., 0.0, 0.35, 0.6, and 0.75 of
the applied dimensionless electric field. From Figure 11(d), we observe the
maximum buckling or deflection of around 5 mm magnitude, when applied
electric field is equal to 0.75.

Physically, the increase in temperature increases the number of the
microstates, consisting of the elastomer, thereby enhances the entropy and
the thermodynamic system approaches the more stabilized equilibrium state.
Thus, diminution in the level of deformation of the bending and buckling
pump actuators with temperature enhancement is observed.

5 Conclusion

In conclusion, we presented a finite element model for investigating the
nonlinear thermo-electromechanical behavior of dielectric elastomer actu-
ators undergoing inhomogeneous deformation during their operation. The
accuracy of the developed finite element code was demonstrated by com-
paring the numerical results with the corresponding analytical solutions
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for the well-known pull-in instability of a planar actuator. We investigated
the temperature effects on the electro-mechanical actuation response of the
bi-layered bending actuator and buckling pump actuator involving inhomo-
geneous deformation. The numerical results demonstrated an increment in the
instability electric field with the temperature rise. The level of deformation of
the bi-layered bending actuator and buckling pump actuator for any given
level of the applied electric field is found to be decreasing with an increase
in the temperature. Future developments may focus on incorporating the
viscoelasticity material model in the present finite element framework for
assessing the viscoelastic effects on the thermo-electro-mechanical response
of inhomogeneously deforming dielectric elastomers. The present work also
needs further experimental corroboration.
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