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Abstract

Suspension systems in running vehicles keep the occupants comfortable
and isolated from road noise, disturbances, and vibrations and consequently
prevent the vehicle from damage and wearing. To attain comfortable and
vibration isolation conditions, both material flexibility and damping should
be considered in the considered suspension model. This paper presents an
incremental finite element model to study and analyze the dynamic behavior
of double wishbone suspension systems considering both material flexibility
and damping effects. The flexibility of the suspension links are modeled with
plane frame element based on Timoshenko beam hypothesis (TBH). On the
other hand, the flexibility of joints connecting the suspension links together
and with the vehicle chassis is modeled with the revolute joint element.
To incorporate the damping effect, viscoelastic, viscous and proportional
damping are considered. An incremental viscoelastic constitutive relations,
suitable for finite element implementation, are developed. The developed
finite element equations of motion are solved using the Newmark technique.
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The developed procedure is verified by comparing the obtained results with
that obtained by the developed analytical solution and an excellent agreement
is found. The applicability and effectiveness of the developed procedure are
demonstrated by conducting parametric studies to show the effects of the
road irregularities profiles, the vehicle speed, and the material damping on the
transverse deflection and the resultant stresses of suspension system. Results
obtained are supportive in the mechanical design, manufacturing processes
of such type of structural systems.

Keywords: Viscoelastic, incremental finite element, double wishbone sus-
pension, links flexibility, revolute joint, road irregularities, Timoshenko beam
hypothesis (TBH).

1 Introduction

Through the study and analysis of automotive engineering it is most important
to study how disturbances from the engine are led into the coupe. Also,
one of the most important interest to investigate how disturbances from the
roadway propagate through tire, and wheel suspension into the framing and
car body. These disturbances may cause undesired noise levels and vibrations,
Jonsson [1]. The main objectives of the vehicle suspension systems are listed
as follows: Carrying the vehicles and its weight. Maintaining the correct
alignment of the wheels. Controlling the travel direction of the vehicles.
Finally, minimizing the chock forces effect. Selection of a certain type of
suspension system in automotive industry depends on important criteria such
as costs, space requirements, kinematic properties, and compliance attributes
Rill [2].

Suspension system in its simplest form may be thought of as a set of
flexible links connected to each other and to the vehicle chassis through
ball joints to allow the wheel to move relative to the body in addition to
some elastic element to support loads while allowing that motion, Kamal
and Rahman [3]. One of the most important parts in the vehicle suspension
systems is the lower control arm which is called as A-type control arm by
which the wheel trace is controlled and the load exerting on the wheel by the
road is transmitted to other parts of the car, Zhao et al. [4]. In addition, the
lower control arm is considered as the most critically loaded member as
the load is transferred from the upper arm to the lower control arm causing
impact load due to the road irregularities (road bumps), Patil et al. [5]. To
avoid failure of the lower control arm, it is essential to focus on the stress
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analysis study of lower wishbone arm to improve and modify the existing
design, these stresses are caused by the dynamic forces which are caused by
the dynamic deflections, Dehkordi [6].

Due to the difficulties associated with the boundary conditions and geo-
metrical and/ or material nonlinearities, it is difficult to obtain an analytical
closed form solution for such type of problems, the Finite Element Method
(FEM) is one of the most effective numerical techniques which can give
better conception of the dynamical behavior of this kind of analysis for these
systems.

Many considerable research efforts have been dedicated to the design and
analysis of the suspension systems.

Based on interval analysis, the kinematic analysis of the mechanisms
involved in suspension of vehicles is performed using some exact com-
putational methods, Papegay et al. [7]. Based on gradient determination
using exact differentiation, a multi-objective dimensional synthesis technique
is used to present the kinematic analysis of double wishbone suspension
systems in vehicles, Sancibrian et al. [8]. Using Rodrigue’s parameters and
computation of Gröbner basis, the double wishbone and the MacPherson,
Reddy et al. [9] developed a complete spatial model for independent sus-
pension systems to investigate the kinematics analysis of these systems. The
variable-geometry suspension systems have been synthesized and analyzed
in nonlinear manner using the nonlinear polynomial Sum-of-Squares (SOS)
programming method Németh and Gáspár [10]. Using variable length arms in
an adaptive manner to improve the handling characteristics of a vehicle, cam-
ber and toe angles of a double wishbone suspension system are controlled,
Kavitha et al. [11]. Based on the point joint coordinate formulation, the
dynamic analysis of the double wishbone motor vehicle suspension system
is discussed, Attia [12]. Girder and Hos-sack suspension systems, which
have the common double wishbone design have been accommodated by
modifying the front end geometry based on an existing mathematical model
of high-fidelity motorcycle, Ramı́rez et al. [13].

Many research articles discussed the dynamic behavior of the critically
loaded suspension lower control arm. FEM-based suspension arm model and
the modal frequencies are established to determine the loads affecting an arm
operating in a complete geometric model of a car suspension, Burdzik, and
Łazarz [14]. Using the FEM, the fatigue life, von Misses stress, factor of
safety and stability of the suspension system are analyzed. Moreover, the
weight and size of the suspension system which affect the fuel economy can
be reduced, Ijagbemi et al. [15]. By incorporating the frame flexibility and
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the contacts of the wheel ground, suspension, unsprung mass, and compliance
parameters are incorporated to investigate the dynamic behavior using a linear
quarter car model, Kanchwala and Chatterjee [16].

To illustrate, the different performance of elastic and composite lower
control arms, a comparative study of composite lower wishbone arm and
steel lower wishbone arm is performed to investigate the stress-strain analysis
using the FEM, Ramesh et al. [17]. The upper control arm has been optimized
using Kriging model and the response surface model (RSM) in which the
design objective is the control arm weight and the constraint objective is
the maximum allowable von Mises stress, Song et al. [18]. Traditional static
load optimization techniques and multi-body dynamics are combined using
equivalent static load to perform the dynamic optimization of the lower
control arm, Zhao et al. [4]. The lower arm of the vehicle suspension system
was found to be the most important design variable to achieve noise reduction
using sensitivity analysis performed by the FEM determining sensitive design
factors, these factors are obtained also from the experimental vehicle tests
which compared with those obtained from a robust and efficient sequential
approximate optimization method, Kim et al. [19]. Baranowski et al. [20]
developed numerical and experimental models for investigating the dynamic
response of vehicle tyres under impulse loading conditions. Considering the
nonlinear suspension components behaviors, Sayyaadi and Shokouhi [21]
developed complete four axle rail vehicle model for investigating vehicle
dynamics.

Many research articles present the dynamic behavior of beams based
on Timoshenko theory, all Timoshenko beam forced and natural boundary
conditions are satisfied using the finite element model, Thomas and Abbas
[22]. Analytical expressions for the terms of the coupled bending-torsional
dynamic stiffness matrix are derived for a Timoshenko beam with a uniform
axial load in an exact sense, Williams [23]. The rail vertical vibration reac-
ceptances are calculated by developing a double Timoshenko beam model
using both continuously and discretely supported models, Thompson [24].
A cracked Timoshenko beam is presented using a new spectral finite element
for the modal and elastic wave propagation analysis, Krawczuk et al. [25].
The dynamic response of the Timoshenko cantilever beam is evaluated with
a homogeneous non-prismatic pulse loaded using the Lagrange-d’Alembert
principle, Navadeh et al. [26].

According to the best of authors’ knowledge, there is no attempts to
develop a finite element model capable of studying and analyzing the
dynamic behavior of vehicle suspension systems considering both joint and
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links flexibilities as well as the internal material damping effects. Thus,
the present article aims to fill this gap. Based on Timoshenko beam theory,
the plane frame element is adopted to model the flexibility of links while the
revolute joint element is used for joint flexibility. The internal viscoelastic as
well as the external viscous damping models are considered to investigate the
damped response. The developed numerical model is validated and checked
by comparing the obtained results with the developed analytical solution and
good agreement is obtained.

2 Damping Mechanisms

In spite of large amount of research articles that addressed damping mech-
anisms in solids and structures, understanding of damping mechanisms is
quite basic compared to the other aspects of modelling. This because, in
contrast to stiffness and inertia forces, the state variables relevant in deter-
mining the damping force are not generally clear, Inman [27]. The most
common damping mechanisms in solids and structures are the viscous and
the viscoelastic damping mechanisms. In viscously damped systems the
damping force is proportional to velocity. The proportionality constant is the
damping coefficient. Identifying the material viscous damping coefficient is a
major problem. One of the most common idealization to identify the viscous
damping coefficient is the Rayleigh or proportional damping model. In this
model the viscous damping coefficient is presented by a linear combination
of the mass and stiffness of the system, Nakamura [28].

[C] = α[M ] + β[K] (1a)

where [C], [M ], [K] are the damping, mass and stiffness matrices; respec-
tively. While α and β are the mass and stiffness matrices multipliers contes-
tants; respectively. These constants are obtained through modal analysis. The
damping ratio for the nth mode of such a system is, Cook [29], Chopra [30]:

ξn =
1

2

[
α

ωn
+ βωn

]
(1b)

Equation (1b) can be expressed for the two modes i and j as

{
ξi
ξj

}
=

1

2


1

ωi
ωi

1

ωj
ωj

{αβ
}

(1c)
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Assuming constant damping factor, ξ for two modes, i and j, the mass and
stiffness multipliers can be expressed as

α =
2ξωiωj
ωi + ωj

, β =
2ξ

ωi + ωj
(1d)

Thus proportional damping systems preserve the simplicity of the real
normal modes as in undamped systems.

Considering the viscoelastic damping mechanism, according to the
superposition principle, the linear viscoelastic constitutive relations can be
represented by the convolution integral, Lakes and Lakes [31], Shames [32]

σij(x, t) =

∫ t

−∞
Rijkl (t− s)

∂εkl(x, s)

∂s
ds

= Rijkl(0)εkl(x, t)

−
∫ t

0

dRijkl (t− s)
ds

εkl(x, s)ds (2)

where σij(x, t) and εkl(x, t) are stress and strain tensors; respectively,
Rijkl(t − s) is the relaxation modulus, and s is a time variable which
defines the time at which the excitation input is applied. The relaxation
modulus depends on the viscoelastic mechanical model used to simulate
the viscoelastic constitutive response. The viscoelastic behavior is charac-
terized by displacement creep under constant load and stress relaxation
under constant prescribed displacement. Modeling the viscoelastic consti-
tutive response using simple Kelvin Voigt or Maxwell mechanical models
leads to inaccurate investigation of the real viscoelastic material response.
The Maxwell model is good in predicting the stress relaxation response while
it can poorly predict the creep response. On the other hand, Kelvin-Voigt is
efficient in predicting the creep response while it is not effective for investi-
gating the stress relaxation response. To overcome the drawbacks associated
with the simple viscoelastic mechanical models, generalized viscoelastic
mechanical models are used. Theses generalized models are generally con-
structed by using chains of either Maxwell models in parallel combinations
or kelvin-Voigt elements in series combination. Throughout this study, the
generalized Wiechert model, shown in Figure 1 is used to simulate the
linear viscoelastic constitutive response, Abdelrahman and Mahmoud [33].
According to the generalized Wiechert model, the relaxation modulus can be
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Figure 1 Wiechert viscoelastic material model.

repressed by

Rijkl(t− s) = Eijkl∞ +
N∑
n=1

Ejjkln

(
1− e

−(t−s)
ρijkln

)
, ρnijkl =

ηjjkln
Ejjkln

(3)

where Eijkl∞ and Eijkln are the fully relaxed and transient modulus of
the viscoelastic material, ρn is the material relaxation time and N is the
number of Maxwell chains in the generalized Wiechert model. These con-
stants are determined experimentally through either creep or relaxation
tests.

3 Mathematical Formulation of Viscoelastically Damped
Suspension System

Consider the quarter car model with a planar double wishbone suspension
model as shown in Figure 2. According to the proposed planar suspen-
sion model, both lower and upper control arms are made of deformable
materials (flexible). Moreover, flexible bushings or revolute joints used to
connect these arms with vehicle chassis and wheel spindle are modeled
by spring elements. On the other hand, suspension strut is modeled by
a combination of translational spring and dashpot while tire is simulated
by translational spring. To investigate the material damping effect on the
dynamic behavior of the system, both viscous and viscoelastic damping mod-
els are considered for flexible suspension links, Bahrampour et al. [34]. The
tire motion over the road bump, y(t) provides a vertical input which excites the
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Figure 2 Quarter-car model of a double wishbone suspension.

body of the vehicle. Based on the displacement fit conditions and kinematic
relations of Timoshenko beam theory (TBT), Reddy [35, 36], Applying the
Hamilton’s principle, the dynamic equations of motion of viscoelastically
damped systems can be written as, Martin [37] and Hilton [38].∫ t2

t1

(δT − δU + δWd + δWE) dt = 0 (4)

where t1 and t2 are two arbitrary times, δU and δT are the variations of the
strain energy and kinetic energy, respectively which can be expressed as

δU =

∫ L

0

∫∫
A

(σxx(x, t)δεxx(x, t) + τxy(x, t)δγxy(x, t))dAdx,

δT = δ

(
1

2

∫ L

0

∫∫
A
ρ
(
U̇2
x + U̇2

y

)
dAdx

)
(5)

δWd and δWE are variations of the work done by damping and external
forces, respectively.

δWd = −
∫ L

0

∫∫
A

(
σvxx(x, t)δεxx(x, t) + τvxy(x, t)δγxy(x, t)

)
dAdx (6)

δWE =

∫ L

0
(f(x, t)δu(x, t) + q(x, t)δw(x, t) +M(x, t)δφ(x, t)) dx

(7)
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where, σxx(x, t), τxy(x, t) and σvxx(x, t), τvxy(x, t) are the elastic and viscous
components of normal and shear stress; respectively. Based on the hereditary
integral, Findley et al. [39], Vallala et al. [40], both elastic and viscous
components of normal and shear stress can be expressed according to the
Wiechert viscoelastic mechanical model as, Abdelrahman and Mahmoud [33]

σxx(x, t) = E(0) εxx(x, t) and

σvxx(x, t) =

N∑
n=1

∫ t

0

En
ρn

(
e
t−s
ρn

)
εxx(x, s)ds (8)

τxy(x, t) = G(0) γxy(x, t) and

τvxy(x, t) =
N∑
n=1

∫ t

0

Gn
ρn

(
e
t−s
ρn

)
γxy(x, s)ds (9)

Substituting from Equations (5–9) and evaluating the variations in
Equation (4), the dynamic equation of motion for viscoelastically damped
Timoshenko beams can be expressed as

E(0)A
∂2u(x, t)

∂x2
−A

N∑
n=1

(∫ t

0

En
ρn

(
e
t−s
ρn

) ∂2u(x, s)

∂x2
ds

)
+ f(x, t)

= ρA
∂2u(x, t)

∂t2
(10)

ρA
∂2w(x, t)

∂t2
− ksAG(0)

(
−∂φ(x, t)

∂x
+
∂2w(x, t)

∂x2

)

+ ksA

N∑
n=1

(∫ t

0

Gn
ρn

(
e
t−s
ρn

)(
−∂φ(x, s)

∂x
+
∂2w(x, s)

∂x2

)
ds

)
= q(x, t) (11)

ρI
∂2φ(x, t)

∂t2
− IE(0)

∂2φ(x, t)

∂x2

− ksAG(0)

(
−φ(x, t) +

∂w(x, t)

∂x

)



582 A. A. Abdelrahman et al.

+ I

N∑
n=1

(∫ t

0

En
ρn

(
e
t−s
ρn

) ∂2φ(x, s)

∂x2
ds

)

+ ksA

N∑
n=1

(∫ t

0

Gn
ρn

(
e
t−s
ρn

)(
−φ(x, s) +

∂w(x, s)

∂x

)
ds

)
= 0

(12)

4 Numerical Evaluation of the Viscoelastic Constitutive
Equations

To develop a computational finite element model capable of investigating
the dynamic response of viscoelastically damped suspension system, the
hereditary integral should be expressed in an incremental recursive form
suitable for the finite element implementation, Yi and Hilton [41]. According
to Wiechert viscoelastic model, the normal and shear stress components for
linear isotropic materials can be expressed as

σx(x, t) = E(0)εx(x, t)

−
N∑
n=1

∫ t

0

En
ρn

(
e
t−s
ρn

)
εx(x, s)ds (13)

τxy(x, t) = G(0)γxy(x, t)

−
N∑
n=1

∫ t

0

Gn
ρn

(
e
t−s
ρn

)
γxy(x, s)ds (14)

Equations (13, 14) can be written as

σx(x, t) = E(0)εx(x, t)−
N∑
n=1

(
En
ρn

∫ ∆t

0
εx(x, t− s)(e

−s
ρn )ds

+
En
ρn

∫ t

∆t
εx(x, t− s)(e

−s
ρn )ds

)

= E(0)εx(x, t)−
N∑
n=1

I1n(x, t) (15)
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τxy(x, t) = G(0)γxy(x, t)−
N∑
n=1

(
Gn
ρn

∫ ∆t

0
γxy(x, t− s)(e

−s
ρn )ds

+
Gn
ρn

∫ t

∆t
γxy(x, t− s)(e

−s
ρn )ds

)

= G(0)γxy(x, t)−
N∑
n=1

I2n(x, t) (16)

Applying the trapezoidal rule, Equations (15, 16) can be numerically eval-
uated and the viscoelastic constitutive relations an incrementally expressed
as

σx(x, t) = σcx(x, t) + σhx(x, t) and τxy(x, t) = τ cxy(x, t) + τhxy(x, t)

(17)

where σcx(x, t) and τ cxy(x, t) are the normal and shear stress components at
the current time instant, t which can be expressed as

σcx(x, t) =

(
E∞ +

n∑
n=1

En

[ ρn
∆t

(
1− e

−∆t
ρn

)])
εx(x, t) = Eveε(x, t)

(18)

τ cxy(x, t) =

(
G∞ +

n∑
n=1

Gn

[ ρn
∆t

(
1− e

−∆t
ρn

)])
κsγxy(x, t)

= κsGve γ(x, t) (19)

while σhx(x, t) and τhxy(x, t) are the normal and shear stress history compo-
nents which can be expressed as

σhx(x, t) =
N∑
n=1

En

(
−e

−∆t
ρn +

ρn
∆t

(1− e
−∆t
ρn )εx(x, t−∆t)

+ e
−∆t
ρn hσn(x, t−∆t)

)
(20)

τhxy(x, t) =
N∑
n=1

κsGn

(
−e

−∆t
ρn +

ρn
∆t

(1− e
−∆t
ρn )γxy(x, t−∆t)

+ e
−∆t
ρn hτn(x, t−∆t)

)
(21)
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with hnσ(x, t) and hnτ (x, t) are given by

hnσ(x, t) = En

εx(x, t)
[
1 +

ρn
∆t

(
1− e

−∆t
ρn

)]
+εx (x, t−∆t)

[
−e

−∆t
ρn +

ρn
∆t

(
1− e

−∆t
ρn

)]


+ e
−∆t
ρn hσn (x, t−∆t) (22)

hnτ (x, t) = κsGn

γxy(x, t)
[
1 +

ρn
∆t

(
1− e

−∆t
ρn

)]
+γxy (x, t−∆t)

[
−e

−∆t
ρn +

ρn
∆t

(
1− e

−∆t
ρn

)]


+ e
−∆t
ρn hτn (x, t−∆t) (23)

More details for the numerical evaluation of the convolution integrals in
the viscoelastic constitutive form is presented in Appendix A.

5 Finite Element Model

To derive the incremental finite element equations of motion, the double
wishbone suspension links are divided into finite elements. Both two nodded
and three nodded isoparametric Timoshenko beam elements are considered,
Capsoni et al. [42]. On the other hand, the revolute joint element developed in
ANSYS Kohnke [43] is adopted to model the joint flexibility of the suspen-
sion system. Based on TBT, the dynamic finite element equations of motion
is established by applying the virtual work principle, taking into account
d’Alembert’s principle and considering viscoelastic damping forces as∫

v
δεTxσxdv +

∫
v
δγTxzτxzdv

= −
∫
v
ρδUT Üdv +

∫ L

0

[
δuT0 Px + δwTPz + δφTm

]
dx (24)

where Px, Pz , and m refer to the distributed normal, shear and bending
moment while ρ is the mass density. Equation (24) can be rewritten as∫ L

0

∫
A

[
δεTxσx + δγTxzτxz

]
dAdx
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= −
∫ L

0

∫
A
ρδUT ÜdAdx

+

∫ L

0

[
δuT0 Px + δwTPz + δφTm

]
dx (25)

The displacement, strain displacement relation and the constitutive rela-
tions for linear viscoelastic materials can be expressed in matrix form as,
Oñate [44]

ue = [N1 N1 N1 N2 N2 N2 N3 N3 N3] [ui wi φi uj wj φj uk wk φk]
T

= N eqe (26a) εx
κx
γxy

 =

(
∂ζ

∂x

)

×



∂N1

∂ζ
0 0

∂N2

∂ζ
0 0

∂N3

∂ζ
0 0

0
∂N1

∂ζ
0 0

∂N2

∂ζ
0 0

∂N3

∂ζ
0

0
∂N1

∂ζ
N1 0

∂N2

∂ζ
N2 0

∂N3

∂ζ
N3


× [qe] = Beqe (26b)

N1 =
ζ(ζ − 1)

2
, N2 = (1− ζ2), N3 =

ζ(ζ + 1)

2
(26c)

where εx, κx, γxy are the normal strain, the curvature and the shear strain
components; respectively, Ne is the element shape function matrix and Be is
the strain displacement relation matrix for the three noded Timoshenko beam
(TB) element, shown in Figure 3.

σ = σc + σh ≡ Evε+ σh (27a)

 

 
 

 

Figure 3 Three noded isoparametric TB element.
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with

Ev =

(
E∞ +

n∑
n=1

En

[ ρn
∆t

(
1− e

−∆t
ρn

)])

×


A 0 0

0 I 0

0 0
ksA

2 (1 + v)

,

ε =


∂u

∂x

κ

γ

 (27b)

where A, ks, ν and I are the beam element cross sectional area, the TB
shear correction factor, Poisson’s ratio, and the beam second moment of
area; respectively. Substituting Equations (26), (27) into Equation (25), the
dynamic finite element equation of motion for viscoelastic system can be
written in global coordinates as

RTMe
l Rq̈ + RT Ke

l Rq = RT (F e
ext − F e

ve) (28)

By the same way, the dynamic finite element equation of motion for
viscously damped TBT can be written in global coordinates as

RTMe
l Rq̈ + RT Ce

l Rq̇ + RT Ke
l Rq = RTF e

ext (29)

where Me
l ,K

e
l , C

e
l ,R and F e

ve are the element mass, stiffness, and viscous
damping, transformation matrices and the force vector due to viscoelastic
material history; respectively.

Ke
l =

∫ 1

−1
BTEvB |J| dξ, F e

ve =

∫
v
BTσhdv,

Ce
l =

∫ 1

−1
CvN

TN |J| dξ and Me
l =

∫ 1

−1
ρNTN |J| dξ (30)
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Considering the revolute joint element, COMBIN7 as expressed in
ANSYS, the dynamic equation of motion can be expressed in matrix form as

M

2
0 0 0 0 0

0
M

2
0 0 0 0

0 0
I

2
0 0 0

0 0 0
M

2
0 0

0 0 0 0
M

2
0

0 0 0 0 0
I

2



{q̈e}

+



0 0 0 0 0 0

0 0 0 0 0 0

0 0 cv 0 0 −cv
0 0 0 0 0 0

0 0 0 0 0 0

0 0 −cv 0 0 cv


{q̇e}

+



kx 0 0 −kx 0 0

0 ky 0 0 −ky 0

0 0 kt 0 0 −kt
−kx 0 0 kx 0 0

0 −ky 0 0 ky 0

0 0 −kt 0 0 kt


{qe} (31)

where kx and ky are dependent on the geometry and material characteristics
of the revolute joint while kt is dependent on the generated frictional torque
during the relative motion between the two mating surfaces. While cv is the
viscous damping coefficient of the revolute joint which depends on the type
and the extent of the contact area between the two mating surfaces in the
joint. Finally, m and I are the total mass and mass moment of inertia of the
revolute joint; respectively.
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6 Validation of the Developed Model

Within this section the capability of the developed model to analyze the
dynamic behavior of elastic and/or viscoelastic structures under different
excitation patterns is verified. Consider a simply supported beam under
uniformly distributed load with intensity of q0, as shown in Figure 4. To
check the validity of the developed model for joint flexibility, both hinged and
roller supports can be represented by flexible translational springs, as shown
in Figure 4(b). Froio and Rizzi [45] and Da Costa Azevêdo [46]. Higher
values of these spring stiffness leads to fully rigid support consequently the
same response should be detected for both rigid and flexible supports with
higher stiffness values. Moreover, both EBBT and TBT are considered during
the verification procedure. The parameters used for numerical analysis are
listed as follows: The load intensity q0 = 100 N/m. The beam has a length of
L = 4 m, width b = 0.2 m, and height, h = 0.4 m. The modulus of elasticity
of elastic material, mass density, shear correction factor, and Poisson’s ratio
are taken to be E = 9.8 × 107 Pa, ρ = 500 kg/m3, ks = 5/6, and v = 0.3,
respectively. The viscoelastic material parameters for a single repeated model
are, the fully relaxed modulus, E8 = 1.96 × 107 Pa, the transient modulus
E1 = 7.84 × 107 Pa, and the material relaxation time ρv = 2.24 s while
the instantaneous creep compliance D0 = 1.2041× 10−8 Pa−1, the transient
creep complianceD1 = 4.0816×10−8 Pa−1, and the viscoelastic retardation
time τ = 11.2 s. Beams are discretized into beam elements. The elastody-
namic and viscoelastodynamic transient responses are detected by applying
the Newmark’s numerical integration technique.

The analytical quasi-static viscoelastic solution based on the elastic vis-
coelastic correspondence principle can be expressed for both TBT and EBBT
as, Vallala et al. [40]

Wmax =


(

5qL4

384I
+

5qL (1 + v)

8κsA

)
D (t) TBT

5qL4

384I
D (t) EBBT

(32)

L

0q

(a)
L

0q

yK

xK

yK

(b)

Figure 4 Geometry of the simply-supported and elastically supported beams.
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where D(t) is the viscoelastic creep compliance function which can be
defined as

D(t) = D0 +

N∑
n=1

Dn

(
1− exp

(
−t
τn

))
(33)

with D0 is the equivalent elastic compliance of the viscoelastic material and
Dn is the transient component of the viscoelastic material. On the other hand,
the semi analytical elastodynamic solution for both TBT and EBBT can be
written as, Abdelrahman et al. [47]

Wn(x, t) =
n∑
j=1

βjsin

(
jπx

L

)
(1− cos(αjt)) (34)

where

βj =


(

2q
jπ

)
(
jπ
l

)4
EI

 (1− cos(jπ)) and

αj =




(
jπ
l

)4
(EI)

ρA

[
1 +

(
EI
ksGA

)(
jπ
l

)2
]


1/2

(TBT )


(
jπ
l

)4
(EI)[

ρA+ ρI
(
jπ
l

)2
]


1/2

(EBBT )

(35)

Moreover the semi analytical viscoelastodynamic deflection can be
obtained using the mixed Galerkin’s Laplace techniques for EBBT as,
Abdelrahman et al. [47]; Martin [37]

Wn(x, t) =
n∑
j=1

√
2

L
sin

(
jπx

L

)
Tj(t) (36)

where

Tj(t) = c1j + c2jexp(−0.0893t)
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+ c3jexp(−0.1786t)

{
cos(ωjt)−

0.1786

ωj
sin(ωjt)

}
+
c4j

ωj
exp(−0.1786t)sin(ωjt) (37)

where

ωj =

√
994.3845× (j)4 − (0.1786)2, c1j =

Pj × 0.44643

88.798533× (j)4 ,

Pj =
2.2508

j
[(−1)j+1 + 1] (38)

c2j =
Pj × 0.35713

0.002136− 88.78433× (j)4 , c3j = −(c1j + c2j),

c4j = −{0.44643× c1j + 0.35713× c2j + 0.0893× c3j} (39)

The maximum transverse deflection is investigated for both numerical
and analytical analyses over a time interval [0, 40] s for both EBBT and TBT.
The dependency of the transverse deflection on time for both viscoelastic
and elastic materials behavior for quasistatic and dynamic analyses for both
simply supported rigid support (S-S) and restrained supported beam with
large values of the spring stiffness (flex. support) are illustrated in Figure 5.
It is noticed that an excellent agreement is obtained between both numerical
and analytical solutions. Moreover, at very high values of the support spring

Dynamic, EL, FE, (S-S).
Dynamic, EL, Analy, (S-S).
Dynamic, EL, FE (Flex. joints).
Quasi-static, VE, FE, (S-S).

Quasi-static, VE, Analy, (S-S).
Dynamic, VE, FE, (S-S).
Dynamic, VE, Analy, (S-S).
Dynamic, VE, FE (Flex.joints).

M
ax

.tr
an

sv
er

se
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ef
le

ct
io

n 
(m

)

EBBT TBT

Figure 5 Variation of the maximum deflection with time for different materials behavior for
both EBBT and TBT.
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stiffness, both S-S rigid support and flexible support analyses result in the
same response for both elastic and viscoelastic behavior.

7 Computational Results

The applicability of the developed model to study and analyze the dynamic
behavior of the double wishbone suspension system under trapezoidal road
bump profile and at different values of travelling velocity is demonstrated
in this section. Moreover, to study the material damping effect on the
transient response, both undamped, proportional, and viscoelastic damped
responses are investigated. The maximum transverse deflection and the
resultant stresses at the critically loaded point on the lower control arm
of the double wishbone suspension system are investigated. Exploiting the
symmetry of the vehicle, only a quarter car model is simulated. The wheel
center is subjected to the different excitations based on the road bump profile.
The comprehensive quarter car model incorporating double wishbone linkage
shown in Figure 2. is presented for the discussion including the tire and
strut as flexible translational springs while the chassis and the tire axle
are considered rigid compared to the lower and upper control arms. The
model geometrical parameters and material characteristics used to obtain the
computational results are summarized in Table 1.

The road disturbance as the system excitation results in vertical vibrations
in the whole system. Trapezoidal road disturbance profile is considered to
investigate the effect of road irregularity (bump) profile on the dynamic
response of the suspension systems. Variation of the trapezoidal road bump
profile with time at different vehicle velocities is illustrated in Figure 6,
Hassaan [46].

7.1 Effect of Vehicle Velocity on the Transient Response
of the Lower Control Arm

The vehicle velocity during passing over the road bump greatly affects the
transient response of the vehicle suspension system. The transient response
of the lower control arm is investigated for the different vehicle velocities;
10, 15, 25, 35, and 45 km/hr for different material behaviors. Variations of
the maximum normalized transverse deflection (W/L) at the critically loaded
point on the lower control arm with the normalized time (T/τ), (τ = ρv)
at different travelling velocities for elastic, proportional viscously damped
and viscoelastic damped behaviors are depicted in Figure 7. It is noticed
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Table 1 The physical properties of the suspension elastic model
Parameter Value
E (GPa), (Elastic suspension links) 210

E∞ (GPa), (VE suspension links) 42

E1 (GPa), (VE suspension links) 168

ρv (s), Relaxation time (VE suspension links) 1.0

E (GPa), (chassis and tire axle) 1050

ρ, kg/m3, (chassis and suspension links) 7830

Ks (N/mm), (Strut stiffness) 340

Ktire (N/mm), (Tire stiffness) 235

Kx (N/mm), (flex. Joint) 17.544× 107

Ky (N/mm), (flex. Joint) 17.544× 107

Kt (N/mm), (flex. Joint) 19.737× 104

A m2 6× 10−4

L (Lower and upper arm length) 0.4 m

I m4 12× 10−8

Cv (N.s/m) 4× 104

ξ(−) 75× 10−4

 
Figure 6 Variation of road profile with time at different vehicle velocities.
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Elastic Viscous VE

Figure 7 Variation of the maximum transverse deflection with time for different material
behaviors at different vehicle velocities.

that, the time needed to reach the peak value of the transient response and
to drop to the minimum amplitude greatly affected by the vehicle velocity.
It is also noticed that for the maximum transverse deflection, although the
peak amplitude of vibration is detected at the maximum value of the vehicle
velocity (v = 45 km/hr) the smallest amplitude is obtained at a vehicle
velocity of 25 km/kr. Thus the smallest vibration amplitude is not obtained at
the smallest value of the vehicle velocity. On contrary to the transient elastic
response which proceeds with a constant amplitude for all vehicle velocities,
the transient proportional viscously damped response is decaying rapidly due
to the constant damping ratio while the viscoelastic transient response is
continuously decaying gradually with time due to the algorithmic viscoelastic
damping. The decaying rate and consequently the time required to reach the
steady state oscillations for the viscoelastic transient response depends on the
viscoelastic relaxation time.

The dependency of the maximum normalized normal force (N/EA) on
the normalized time (T/τ) for different material behaviors is illustrated in
Figure 8. It is noticed that, as detected for the maximum normalized trans-
verse deflection, the preferable transient response for trapezoidal road bump
profile is detected at vehicle velocity of 25 km/hr. It is noticed that, higher
and constant steady state oscillation amplitude is detected for the transient
elastic response compared with both proportional viscously damped and
viscoelastically damped response. Also, the proportional viscously damped
response needs short time interval to decay to smaller oscillation amplitude
due to the constant damping ratio. On the other hand, depending on the
viscoelastic relaxation time, long time interval is needed for the viscoelastic
transient response to reach the corresponding smaller oscillation amplitude.

The maximum normalized shear force, (V/EA) versus the normalized
time (T/τ) for elastic, proportional viscously damped, and viscoelastically
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Figure 8 Variation of the maximum normal force with time for different material behaviors
at different vehicle velocities.
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Figure 9 Variation of the maximum shear force with time for different material behaviors at
different vehicle velocities.
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Figure 10 Variation of the maximum bending moment with time for different material
behaviors at different vehicle velocities.

damped responses is depicted in Figure 9. It is noticed that, smaller values
of the instantaneous and steady state oscillation amplitudes of the maximum
normalized shear force are detected compared with the obtained maximum
normal force for all material behaviors. It is also noticed that preferable
response is detected at vehicle velocity of 25 km/hr.

Variation of the maximum normalized bending moment with the nor-
malized time for different material responses is depicted in Figure 10. It is
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noticed that, due to material damping, both proportional viscously and vis-
coelastically damped response possesses stress relaxation leading to decayed
oscillation amplitudes compared with the corresponding transient elastic
response. The decaying rate depends on the both the viscous damping ratio
and the viscoelastic material relaxation time.

7.2 Effect of the Viscoelastic Relaxation Time on the Transient
Response of the Lower Control Arm

The relaxation time of the viscoelastic control arm greatly affects the decay-
ing rate of the transient response of the double wishbone suspension system.
The transient response of the lower control arm is investigated for different
values of the relaxation time (ρv); 0.25 ρv, 0.5 ρv, ρv, 1.5 ρv, and 2 ρv. The
dependency of the maximum normalized transverse deflection, the normal
force, the shear force, and the bending moment on the normalized time at
the critically loaded point of the viscoelastic lower control arm at different
values of the relaxation time is illustrated in Figures 11 and 12, respectively.
It is noticeable that the same instantaneous response is detected for all values
of the relaxation time. On the other hand the decaying rate of the transient
response oscillation amplitudes are increased with decreasing the viscoelastic
relaxation time and consequently, the time required to reach the steady state
amplitude is decreased with decreasing the relaxation time.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T / τ

-0.003

0.000

0.003
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0.009
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0.015
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0.25 ρv
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 / 

E
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Figure 11 Variation of the maximum transverse deflection and the maximum normal force
for different values of the relaxation time.
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Figure 12 Variation of the shear force and the maximum bending moment at for different
values of the relaxation time.

8 Conclusion

An incremental finite element model capable of investigating the dynamic
behavior of double wishbone vehicle suspension system is proposed
considering both links and joints flexibilities as well as the internal vis-
coelastic material damping effects. Besides the internal viscoelastic damping
proportional damping mechanisms is considered to show the effect of differ-
ent damping techniques on the dynamic behavior of the double wishbone
suspension systems. The TBT is adopted to model the control arm flexi-
bility. On the other hand, the revolute joint element developed in ANSYS
is adopted to model the flexibility of bushings. An incremental viscoelastic
constitutive relation suitable for finite element procedure is developed. The
proposed procedure is verified by comparing the obtained results with the
available analytical forms and an excellent agreement is detected. Parametric
studies are conducted to study the effects of the travelling velocity and the
viscoelastic relaxation time on the transient response of the suspension lower
control arm. The obtained results shows that

1. The vehicle travelling velocity over the road bump affects both the
instantaneous and the steady state response of the suspension system.
Smaller oscillation amplitude of the transient response does not corre-
spond to the smallest vehicle travelling velocity over the road bump. The
most preferable travelling velocity over the road bump depends on the
bump profile and the material characteristics.

2. The transient elastic response possesses higher values of the steady state
amplitudes compared with the corresponding proportional viscously and
viscoelastically damped responses due to the absence of damping.
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3. The proportional viscously damped response exhibits rapidly decaying
oscillation amplitudes for both the transverse deflection and the resultant
stress due to the constant damping factor which is determined based
on the real normal modal analysis of undamped system. Unfortunately,
most real physical structures possess complex modes instead of real
normal modes. Thus proportional viscous damping model does not
simulate the actual behavior of the real physical materials.

4. Depending on the viscoelastic relaxation time, the viscoelastically
damped response produces slowly decaying oscillation amplitude com-
pared with the proportional viscously damping mechanism. Thus longer
time interval is needed to reach a steady state oscillation amplitudes.

5. The viscoelastic relaxation time has a great effect on the transient
response of the vehicle suspension lower control arm. Increasing the
viscoelastic relaxation time results in decreasing the value of the steady
state amplitude and the time required to reach it.

6. The viscoelastic damping model is more suitable for modelling the
damping mechanism in solids and structures. This is because, all the
viscoelastic material damping parameters are determined experimen-
tally through either creep or relaxation tests not on modal analysis bases.
Thus simulating the actual behavior of real life solids and structures.

Appendix A

A Numerical Approximation for the Convolution Integral

N∑
n=1

I1n(x, t) =

N∑
n=1

(
En
ρn

∫ ∆t

0
εx(x, t− s)(e

−s
ρn )ds

+
En
ρn

∫ t

∆t
εx(x, t− s)(e

−s
ρn )ds

)
(A1)

The first term in Equation (A1) can be simplified using the trapezoidal
rule as

En
ρn

∫ ∆t

0
εx(x, t− s)(e

−(s)
ρn )ds = −En

ρn

∫ t−∆t

t
εx(x, η)(e

η−t
ρn )dη

=
En
ρn

(e
−t
ρn )

∫ t

t−∆t
εx(x, η)(e

η
ρn )dη (A2)
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Evaluating the integral in Equation (A2) yields;

En
ρn

(
e
−t
ρn

)[(
εx (x, η) ρn

(
e
η
ρn

))∣∣∣ t
t−∆t

−
∫ t

t−∆t

∂εx (x, η)

∂η
ρn

(
e
η
ρn

)
dη

]
(A3)

Simplifying Equation (A3) yields;

En
ρn

(e
−t
ρn )
(
ρn

[(
εx(x, t)(e

t
ρn )
)
− εx(t−∆t)(e

t−∆t
ρn )

]
−
∫ t

t−∆t

∂εx (x, η)

∂η
ρn(e

η
ρn )dη

)
(A4)

Evaluating the integral and simplifying Equation (A4) yields

En
ρn

(
ρn[εx(x, t)− εx(x, t−∆t)(e

−∆t
ρn )]

− ε̇x(x, t)(e
−t
ρn )
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ρn(e

η
ρn )dη

)
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[
−ρne
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ρ2
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(1− e

−∆t
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(A5)

The second integral in Equation (A1) can be simplified as

En
ρn

∫ t

∆t
εx(x, t− s)(e

−s
ρn )ds

=
En
ρn

∫ t−∆t

0
εx(x, t−∆t− u)(e

−u−∆t
ρn )du

= (e
−∆t
ρn )hnσ(x, t−∆t) (A6)
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Consequently, the viscoelastic constitutive relation can be expressed as

σx(x, t) = E(0)εx(x, t)

−
n∑
n=1

Enρn

εx(x, t)

[
ρn +

ρ2
n

∆t
(1− e

−∆t
ρn )

]
+ εx(x, t−∆t)

[
−ρne

−∆t
ρn − ρ2

n

∆t
(1− e

−∆t
ρn )

]


+ e
−∆t
ρn I1n (x, t−∆t)

 (A7)
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[46] A. S. Da Costa Azevêdo, A. C. A. Vasconcelos and S. dos Santos Hoefel,
Dynamic analysis of elastically supported Timoshenko beam. Revista
Interdisciplinar de Pesquisa em Engenharia-RIPE, 2(34), (2016) 71–85.



Dynamic Finite Element Analysis 603

[47] A. A. Abdelrahman, M. A. Eltaher, A. M. Kabeel, A. M. Abdraboh and
A. A. Hendy, Free and forced analysis of perforated beams. Steel and
Composite Structures, 31(5), (2019), 489–502.

[48] G. A. Hassaan, Car Dynamics Using Quarter Model and Passive Suspen-
sion, Part IV: Destructive Miniature Humps (Bumps). Global Journal of
Advanced Research, 2(2), (2015) 451–463.

Biographies

Alaa A. Abdelrahman Associate Professor in mechanical design and pro-
duction Engineering Department at Zagazig University, Faculty of Engineer-
ing since July 2019. His research focuses on Computational Mechanics of
Deformable solids and structures.

Ayman E. Nabawy received his M.Sc. degree in Mechanical Engineering
at the Zagazig University in 2019. He is currently a PhD student at the
department of Mechanical Design and Production Engineering, faculty of
Engineering at Zagazig University. His research focuses on Modeling and
analysis of the dynamic behavior of deformed solids and structures.



604 A. A. Abdelrahman et al.

Soliman S. Alieldin, Professor in mechanical design and production Engi-
neering Department at Zagazig University, Faculty of Engineering. His
research focuses on Theoretical, Experimental, and Computational Mechan-
ics of materials and structures.

Ayman M. M. Abdelhaleem, Associate Professor in mechanical design
and production Engineering Department at Zagazig University, Faculty of
Engineering. His research focuses on Analysis, Design, control of motor
vehicle systems.


	Introduction
	Damping Mechanisms
	Mathematical Formulation of Viscoelastically Damped Suspension System
	Numerical Evaluation of the Viscoelastic Constitutive Equations
	Finite Element Model
	Validation of the Developed Model
	Computational Results
	Effect of Vehicle Velocity on the Transient Response of the Lower Control Arm
	Effect of the Viscoelastic Relaxation Time on the Transient Response of the Lower Control Arm

	Conclusion

