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Abstract

This work determines the MHD fundamental viscous flow and electric
potential induced by a concentrated force, with arbitrary strength s, immersed
in a conducting Newtonian liquid bounded by two motionless, parallel and
plane no-slip walls. The walls are perfectly conducting or insulating surfaces
normal to the imposed uniform ambient magnetic field B. Each fundamental
quantity (velocity component, pressure, electric potential) is the analytical
one prevailing in the absence of walls plus another ‘confinement’ quantity
due to the walls. By performing direct and inverse two-dimensional Fourier
transforms, each such confinement quantity is obtained in closed form solely
in terms of one-dimensional Bessel-type integrals. The resulting fundamental
flow and electric potential are found to depend upon the concentrated force
location, the wall-wall gap, the properties of the walls and the problem
Hartmann layer thickness d = (y/p/o)/|B| where 11 and o > denote the
liquid uniform viscosity and conductivity, respectively. For a force normal to
the walls there the electric potential vanishes and the fundamental velocity
components and pressure are independent of the nature of the walls and
also receive tractable closed forms. These properties remain true for the
fundamental pressure and velocity component normal to the walls in case of
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a force tangent to the walls. In contrast, the electric potential and the velocity
component tangent to the walls admit quite involved closed forms and deeply
depend upon the nature of the walls when the concentrated force is parallel
with the walls.

Keywords: MagnetoHydrodynamics, Viscous flow, Fundamental solution,
Parallel plane walls, 2D Fourier transform.

1 Introduction

The determination of the coupled flow (velocity u and pressure p), electric
potential ¢ and magnetic field B about a solid body moving in a conducting
Newtonian liquid, with uniform conductivity o > 0 and viscosity pu, is a
very challenging problem encountered in MagnetoHydrodynamics [2, 15, 24].
In getting (B, u, p, ¢) one indeed must simultaneously solve the Maxwell
equations and the non-linear Navier-Stokes equations subject to the Lorentz
body force f;, = j A B with j the current density. These equations, even when
supplemented with the well-established linear Ohm’s law j = o (uAB —V¢),
are tremendously-involved.

Depending upon the range of the problem dimensionless Reynolds
magnetic number Re,,, Reynolds number Re and Hartmann number Ha,
simplifications can fortunately occur. For body length scale a, flow velocity
typical magnitude V > 0, magnetic field scale B > 0 and a liquid with uniform
magnetic permeability p,,, > 0 and density p; the previous numbers are defined
as Re,,, = pmoVa, Re = pjVa/p and Ha = a/d where d = (\/u/o)/B
is the so-called Hartmann layer thickness [9]. Note that for applications,
Re,, <Re. Neglecting henceforth inertial effects, i.e. assuming that Re < 1,
then gives Re,,, < 1 and therefore, if the body has the same uniform magnetic
permeability pi,,, > 0 as the liquid, shows that B is uniform in the entire liquid
domain (taking the ‘ambient’ uniform value it adopts far from the body).
Because B is uniform, the charge conservation property V.j = 0 becomes
A¢ = V.(u A B). This relation and the body force j A B in the Stokes
equations in general couple the unknown electric potential ¢ and flow (u, p).

As shown by [3], considering an axisymmetric insulating body translating
parallel with both B and its axis of revolution brings considerable simpli-
fications to the previous viscous (Re < 1) MHD problem. Then, (u, p) is
axisymmetric with no swirling velocity and therefore A¢ = 0 in the liquid. In
absence of electric field far from the insulating body, it follows that V¢ = 0
in the entire liquid [3, 5, 6]. Thus, the axisymmetric problem reduces to the
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determination, versus the Hartmann number Ha = a/d, of the creeping flow
(u, p) driven by the body motion and the Lorentz force o (uAB) AB. There is a
huge literature (see, for instance, the standard textbooks [8, 12]) for the “pure’
Stokes case (d — o0j; i.e. Ha = 0) of a body migrating in absence of magnetic
field. For Ha > 0 (d finite) the problem is more involved and therefore much
less has been done. However, for a sphere translating parallel with B one can
cite [3] for Ha < 1, [4] for Ha > 1 and also [22] for the entire range Ha > 0.

One should note that [22] resorts to a new boundary formulation to
deal for arbitrary Hartmann number H a with the viscous axisymmetric flow
(u, p) about the sphere. This efficient approach appeals to two fundamental
axisymmetric viscous flows produced by distributing force points on a circular
ring normal to the magnetic field B. These flows are obtained by [21] using the
coupled electric potential and viscous flow produced in an unbounded liquid
by a concentrated force and analytically determined by [18]. This approach
has been recently extended by [20] to the case of a sphere translating normal to
a plane solid no-slip wall normal to the ambient uniform magnetic field. A key
step in [20] employs the fundamental coupled MHD viscous flow and electric
potential produced by a concentrated force located near a plane insulating or
perfectly conducting wall. Such a bounded fundamental solution, obtained by
[19], is more general than the axisymmetric solutions given in [25, 26]. Of
course, the flow obtained in [19] matches, as d — oo, the fundamental ‘pure’
Stokes flow bounded by a no-slip motionless plane wall and derived by [1].

Nowdays, especially in Microfluidics, many basic applications also con-
cern strongly confined (liquid in a tube or between two parallel flat walls,...)
viscous flows. The relevant fundamental flow produced by a Stokeslet in the
‘pure’ Stokes flow case (d — oo) are given by [14] for a cylindrical tube
and also, in different forms, by [10, 13] for the two-wall geometry. Note that
[23] and [16] implemented in a boundary element approach the form given
by [13] and [10], respectively. In contrast, the form of the solution obtained
by [14] for a circular tube is so involved that it has not yet, to the author’s
very best knowledge, received such a boundary element implementation. The
present work looks, for a finite Hartmann layer thickness, at the fundamental
MHD solution (u, p, ¢) produced by a concentrated force located in a
conducting Newtonian liquid bounded by two parallel plane walls. The point
force location and strength are arbitrary. Moreover, each wall is solid, no-
slip, motionless, normal to the ambient uniform magnetic field B and either
insulating or perfectly conducting.

The paper is organized as follows. The addressed MHD fundamental
problem together with two basic properties and a fruitful decomposition are
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given in §2. The axisymmetric case of a force normal to the walls is solved in
§3. Three solutions for a force parallel with the walls and different natures of
the walls (insulating or perfectly conducting surfaces) are established in §4.
Finally, a few concluding remarks close the paper in §5.

2 Addressed MHD Problems and Basic Properties

This section gives the MHD problem governing the coupled fundamental
creeping flow and electric potential produced by a point force located in a
conducting liquid bounded by the two parallel flat walls. It also gives two
basic properties and introduces the auxiliary regular MHD flow and electric
potential which are obtained in §3 and §4.

2.1 Governing Fundamental MHD Problem

As illustrated in Figure 1, we consider a concentrated force, with arbitrary
strength s, placed at the point My in a conducting liquid domain occupying
the 0 < z < h domain D.

The flat surfaces ¥o(z = 0) and X (z = h > 0) are motionless and no-
slip. Cartesian coordinates (O, x, y, z), with associated unit vectors (e;, €, €)
and origin O on 3, are employed. Then, each point M in the liquid is
located by the vector x = OM. Accordingly, xo = OMj. Inertial effects are
neglected and therefore (see the introduction) the magnetic field B in the liquid

Z/‘\ E/L(Z = h)
NN |
| / D
B — Be. My | oz >0
o
X

Figure 1 A concentrated force, with strength s, located at a point Mg in the 0 < z < h
liquid domain D bounded by two motionless, plane and parallel no-slip walls 3¢ (z = 0) and
Yn(z = h). The prescribed ambient magnetic field B is uniform and normal to the walls.
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is uniform. Here, B = Be, is normal to the walls with prescribed magnitude
B > 0. The liquid uniform viscosity 4 and conductivity o > 0 are given and
therefore so is the Hartmann layer thickness d [9] definedasd = (\/p/0)/B.
The concentrated force produces, at each point x # xg in the liquid, coupled
electric potential ¢ and viscous flow with velocity u and pressure p. Owing
to Ohm’s law, the current density j in the liquid is j = o(u A B — V). The
steady flow (u, p) obeys the creeping flow equations with the Lorentz body
force j A B. Finally, the liquid is quiescent and free from electric field far from
the point source My. Requiring the charge conservation property V.j = 0, the
fundamental quantities (u, p, ¢) then obey the MHD problem

pV?u = Vp+oBVoAe, —oB (une,)Ae, —6(x —xp)s

for x # x¢ in D, (D
V.au = 0 and A¢p = BV.(uAe;) for x # x¢ in D, 2)
(w,p,6) — (0,0,0) far from x, 3)

with A and § the usual three-dimensional Laplacian operator and Dirac delta
pseudo-function, respectively. The problem (1-3) must be supplemented with
boundary conditions on the walls complying with the far-field behaviours (3)'.
On the no-slip walls u = 0 and, therefore, j = —oV¢. Moreover, on
a (perfectly) conducting or insulating surface, with unit normal n, it is
required [15] that j An = 0 or j.n = O, respectively. On the plane walls
n A e, = 0 and the boundary conditions complying with (3) thus are

u=0 and ¢ = 0 (conducting) or Ve¢.e, =0 (insulating) on 3, >y,
4)
Clearly, the problem (1-4) is linear in s. Thus, its solution (u, p, ¢) writes
G(x,xp).s
Smu

P(x,Xp).s
8T

_ BV(x,Xp).s

S 5)

u(x) = ,p(x) = ; 0(x)
with second-rank velocity tensor G, pressure vector P and potential ‘vector’
V to be determined. These tensor and vectors solely depend upon the vector
(x — Xg) A\ e, the coordinates z = x.e,, zy = Xg.€, and the given wall-wall

gap h and Hartmann layer thickness d.

IThe electric potential being defined up to a constant it is here required to vanish far from
the point force.
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2.2 Basic Properties

This subsection shows that there is no electric potential when the force is
normal to the walls and also gives, whatever the force orientation, a key
symmetry property for the velocity tensor G.

2.2.1 Axisymmetric Case

For s parallel with e, (case of a force normal to the walls) the flow (u, p) is
axisymmetric about the (M, e,) axis and without swirl velocity component.
Thus, the second Equation (2) becomes A¢ = 0. Using the far-field behaviour
(3) and the boundary conditions (4) on the walls then shows that ¢ = 0 in the
liquid. Accordingly, the vector V in (5) satisfies V.e, = 0.

2.2.2 Symmetry Property

Consider the solution (u/, p’, ¢’) to (1-4) for a concentrated force, of strength
s’, placed at point x{, # x( . Denoting by o and o” the stress tensors for the
flows (u, p) and (u/, p’), the Equations (1-2) rewrite

Vo+jAB = —d6(x—x¢)s,Vu=0,A¢ =V.(uAB), (6)
Vo' +JAB = —6(x—yo)s,Vu' =0,A¢' =V.(d AB). (7)

Since the stress tensors are symmetric and the flows are divergence-free,
u.(V.o)—u.(V.o')=V.(c.u —d'.u). (8)
Moreover, using Ohm’s law for the currents j and j’ and the identities

V.(¢u' AB) = ¢V.(u' AB) + Vé.(u' A B), )
V.(¢uAB) = ¢V.(uAB) + V¢'.(uAB) (10

in which the last scalar products on the right-hand sides are expressed, from
(6-7), in terms of A¢ and A¢’ also yields

u.(jAB) —u(j' AB) = V.(¢ - ). (n
Taking the first Equations (6—7) and using (8) and (11) finally gives
V.(ou' —o' u+9¢j —¢'j) = §(x—x()(u.s')—§(x—xp)(u'.s) inD. (12)

Integrating (12) over the liquid domain (exploiting the far-field behaviours
(3)) for the considered fundamental solutions and recalling the definition (5)
of the velocity tensor G then shows that
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s.G(xg,x().s" — 8" .G(x(,x0).s = 877;@/ JdS, (13)
>oUXs

J=(ou)n—- (o' u)n+¢j'n—¢jn (14)

where n denotes the unit normal on the walls directed info the liquid. The
boundary conditions (4) have not been employed in establishing (13). These
conditions dictate the value of the flux J, defined by (14), and thereby the prop-
erties of the velocity tensor G. Using the usual tensor summation convention
for repeated indices / and 7 in {x,y, z}, this tensor reads G = Gye; Q) €.
Inspecting (4) readily shows that J = 0 on both walls ¥ and ;. Thus,
(13) yields the following key symmetry property

Gu(xg,x0) = G (x0,x5) for t,lin {z,y,z}. (15)

The property (15), of importance for the present work, deserves a few
comments:

(1) this symmetry property has already been noticed for the case of a single
plane wall in [19] but after the determination of G. It can be easily proved
for this single wall case by mimicking the above treatment.

(ii) even in the absence of magnetic field, i.e. for the usual ‘pure’ Stokes case
(d — o0), the property (15) is not necessarily true. For instance, while it
holds for a Stokeslet close to a no-slip plane wall (see [1] and also [17])
it is not valid any more for a Stokeslet close to a porous slab (see [11]).

(iii) owing to (15), it is sufficient to determine in this work the components

G:cz(xa X0)> Gyz(xa XO)a Gzz(xa X0)> Gex (X) X0)7 Gy:c(x) XO)- (16)

2.3 Free-space Solution and Regular Auxiliary MHD Problem

A solution to (1-3) in absence of walls (unbounded liquid), termed the free-
space solution and denoted by (u®, p>, ¢°°), has been analytically obtained
by [18]. It is expressed in terms of a function H = H (x, Xg) solution to the
problem

1 0°H

AAH) B o2

= d(x—x¢) forx # xo and H(x,%x¢) — O0far fromxg
(17)
with d = (\/u/0)/B the Hartmann layer thickness. Here, it is no use giving

H which is available in [19, 21]. As shown by [18], the flow (u®°, p*°) reads

u® = ;{v AV A[HS))}, p™® = A[V.(Hs)| — %%[H(S-ez)]- (18)
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For further purpose, some useful Cartesian components of the free-space
(recall (5)) velocity tensor G*°, pressure vector P> and ‘potential’ vector
V©° are given in Appendix A.

By superposition, the solution (u, p, ¢) to (1-3) and (4) is sought as

u=u*+Up=p*+Q,¢=0¢>+9o. (19)

Clearly, the auxiliary viscous flow (U, Q) and electric potential ®, regular in
the entire liquid domain D, obey the MHD problem

pV2U = VQ +0BVoAe, —oB* (une,)Ae,inD, (20)
V.U = 0and A® = BV.(UAe;)in
D, (u,P,®) — (0,0,0) far from xo, (21)

U=-u®and ®=—¢®orVd.e, = —Vop>™.e, on Xy, . (22)

The solution (U, @), @), due to the walls, is linear in the force stength s. More
precisely, setting G = G*° + GY,P=P* +P” and V = V> 4 V¥ gives

~ G¥(x,xq).s PY(x,xq).8 _ BV¥(x,x¢).s

UG = o208 ) = =22 .

St , D(x) (23)

Recall that G fulfills the symmetry property (15). As noticed in Appendix A,
the free-space tensor G also obeys (15). Hence, G = G}je; ) e; satisfies

G (x4, %0) = G (x0,%() for t, 1 in {z,y, 2} 24)

3 Point Force Oriented Normal to the Walls

This section considers the case s = e, of a force normal to the walls.

3.1 Advocated Form of the Auxiliary MHD Viscous Flow

The point force, with strength s = e, , is located at My(zo, yo, z0) with
X9 = OMp and 0 < zy < h. As noted in §2.2.1 and in Appendix A,
¢ = ¢>° = 0 while (u, p) and (u™, p*>) are axisymmetric about the (My, e,)
axis and without swirl. Accordingly, ® = 0 and (U, Q) is axisymmetric about
the (M), e,) axis and without swirl. Following [24], U = U,e; and Q are then
sought as
2 2

uUz(x) = [883352’} (x,%0), pUy(x) = [(f?aygz] (x,x0), (25)
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WUL(%) = — Blf ¥ g} exn). Q) = |5 {ar = ] o)

(26)

with F'(x, X¢) an unknown function. As the reader may check, (U, Q) is found
to obey the Equations (20-21) with & = 0 as soon as F' satisfies

E(F)—0for0<z<h‘£(F)'—A(AF)—i82—F 27
N ’ T d? 922
Moreover, from (25-26), the far-field behaviours (2) require that
0*F 0’F  0°F 0 F
ZIAF - =
atazﬁo’f)x?—i_ay?ﬁo’@z{ dZ}_’O
if |x —xo| — o003t = z,y. (28)

Injecting s = e, in (18) shows that (u*°, p*) is obtained from the function
H by relations similar to (25-26). Thus, the no-slip boundary conditions (4)
read
82
otoz

2 2
522 T By

[F+ H](x,%x0) = [ ] [+ H](x,x0) forz =0, h;t = x,y.

(29)
In summary, the task reduces to the determination of F solution to (27-29).

3.2 Associated Problem in Two-dimensional Fourier Space
and Its Solution

Inspecting (27-29) shows that F'(x,xg) = F'(t1,t2, 2z, 20) with t; = = — xg
and t2 = y — yo. This suggests using the two-dimensional Fourier transform,
f, of a function f(t1,t2) given by
. 1 oo oo . é!\f
=— t1,to)e' M dt dty, —~
f(a) 271_/00/00]0(17 2)e't dtrdts, o

X

=—iqf, gf = —iqa2f
Y
(30)
with q = q1e; + g€, the vector in the two-dimensional Fourier space and
i the usual complex square root of —1. Omitting its dependence upon 2z, the
Fourier transform of F is denoted by F (q,z). Setting ¢ = Iql and taking the
Fourier transform of (27) yields for F the linear differential equation

. 1\ &?F  0'F
4 2 _
qF—<2q +d2> 82Z—Fa%—0f01r0<z<haundq20. (31)
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Seeking solutions of (31) of the form A(q)e™* easily provides four different
real values for a.. These values are a; < as < 0 < —ag < —aq and such
that

1 1 2 1 1/2
o1 =—0g — 5500 = —00 + 500 = (¢ + 5 5)', (32)
G+T - =00 -Z - =0 = (3

Accordingly, the general form of the solution Fto(31)is
F(q,2) = Ai(@)e™™% + A2(q)e™” + A3(q)e™ + Ag(q)e™>.  (34)

The unknown functions (A1, Ao, A3, Ay) are determined by enforcing the two
dimensional Fourier transform of each velocity boundary conditions (29).2
Denoting by H (q, z) the Fourier transform of the free-space function
H (x,x0) = H(t1,t2,2z — 29), then gives the linear system

Ay + Ag + A3+ Ay = —H(q,0), (35)
Are™ ™ 4 Ageth 4 Agem2h 4 Age®2h = —H(q, h), (36)
oH
— a1 A1 + a1 Ay — Az + Ay = — e (q,0), 37
oH
— a1 Are” " 4 oy Ase™ — qap Aze P + apAye®h = — laz] (q,0).
(38)

The right-hand sides of (35-38) are analytically obtained from the Appendix A
(use (106) and also the property ajan = ¢2 ). It is immediately found that

. d[age®1?0 — 1 e®2%0]
H(q,0) =
. d[ageal(h_z()) . aleag(h—zo)]
H(q,h) = 3
(q,h) 8o ) (39)
OH d [e*?%0 — e™1%0]
[32 (a,0) = 8mayg

’The behaviours (29), discarded at that stage, are satisfied by the solution given in §3.3.
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0z (40)

8mayg

8f[ d eal(h_zo) _ eaz(h—zo)
[]mm: [ |

The problem (35—40) is analytically solved using Maple algebra software.
After many manipulations and exploiting the identity ajay = ¢ both
functions F' and 0F'/0z have been cast into the following condensed closed
forms

fiian + farao + (fi3a8 + faza3)/q?
87Ta0q2D(a17 «2,(q, h’)

(@) = food® + fr207 + f203
8nag?D(aq, az, q, h)

ﬂmzﬂmzd[
5%
o

] , (4D

OF

(q) = 9z

(42)

with dimensionless functions D and f,,, analytically given in Appendix B.
The pressure Fourier transform (), obtained by taking the Fourier transform
of the second relation (26), is given by (45). Exploiting (33-34) yields

2

Q(4:2) = - [Ar(@e™™* = Ax(@)e”* — As(q)e * + Ay(q)e”*].
(43)
Injecting the solution (A1, Ao, A3, A4) into (43) the Maple software then gives
Olq) = (prioa + pa12)g® + p13ad + pasass 44)

87TCV0q2D(041a a2, dq, h)

with dimensionless functions p,y,,, still analytically displayed in Appendix B.

3.3 Obtained Auxiliary Flow and Pressure

The Fourier transform of (25-26) immediately provides the relations

. oF . oF . .. PF 1 0F
Uy = —iqi—, pU, = —igg—, uU, = ¢*F,Q = — — (¢* + =) =—.
1 iq1 51Uy 25— 1 F,Q 553 (q +d2)8z

(45)

Since each function F’ , OF /0z and Q, derived in §3.2, depends upon the
vector q soley through its magnitude g the inverse Fourier transform of (45)
is obtained from Appendix C. Setting p = {(z — 20)? + (y — y0)?}"/? and
recalling (23) yields

w (x —xp).€¢
" (x,x0) = —d——FF—
i-(X,%0) P
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Titt = 2,y (46)

/Oo [food® + fr2ad + f2203] Ji(pg)d
0 aoD(a1, 2,4, h)

G (%, %0) = /OO [fnoq + f21olc§ + (fizod + f2304§')/q2]
0 (&) (04170627Qah)

qJo(pq)dq, (47)
P _ > [(pria1 + p21a2)q® + p1sat + pasas
Z(X7 XO) -
0 Oéqu(Oé]_,OéQ,(Lh)

in which Jy and J; denote the usual Bessel functions. In summary, the auxiliary
flow (U, Q) has been analytically expressed in terms of three one-dimensional
Bessel-type integrals for the case s = e,.

4 Point Force Oriented Parallel to the Walls

This section considers the case s = e, of a force parallel with the walls. The
case s = e, will follow immediately and is therefore let to the reader.

4.1 Auxiliary Pressure and Velocity Component Normal to the
Walls

From (20-21) and the scalar product of (20) with e, the auxiliary velocity
component U, and the pressure Q obey (recall the definition (27) of £)

0
L(U:) =0, L(Q) =0, pAU. = a—cj for 0 < z < h. (49)
Taking (18) with e = e, gives for the free-space velocity Cartesian
components
uX = — aQ—H + 82—}] ul® = 782}1 uyr = o°H (50)
Mo == oy " 922 ) "™ = dway ' T owoz

Thus, on the walls the condition U = —v and the property V.U = 0 read

0 |0H oU, 0 [02H
pU, = =
022

c= o | o =5 } for 2 =0, h. (51)

It appears from (49) and (51) that both U, and Q are independent of the walls
properties (insulating or perfectly conducting walls). Invoking (49) and the
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two first properties (33), the (two-dimensional) Fourier transforms UZ and Q
write

pU, = —iq1{G1(q)e”“** + Ga2(q)e*'?

+G3(q)e™ 2% + G4(q)e™?*}, (52)
Q = —iq{G1(q)e™ ™" + Ga(q)e™*
—G3(q)e *%* 4+ G4(q)e*?*}/d, (53)

with unknown functions (G, G, G3, G4) dictated by the Fourier transform
of the conditions (51). Such conditions yield the linear system

G1+Gy+ Gy +Gy=— [%ZI (q,0), (54)
Gre™ M 4 Gpeh 4 Gze™ 22 4 Gue®?h = — [%ill (q,h), (55)
—a1G1 + a1Go — aaG3 + anGy = — [8;;[] (q,0), (56)
—a1Gre” " 4 o Goe™ ! — ayGge™ 2" + s Gue®?”

=- %2;[] (q,h). (57)

which is analytically solved by Maple algebra software using (40) and also,
from the result (106) in Appendix A, the identity

O2H d ailz—zo| _ az|z—zo|
[322] (q,2) = (e — Qe ]]for 0<z<h 58)
ugen)

After many manipulations the following condensed results are obtained

~ N food® + fiea? 4 faoad| o [Pood? + Pr120? + Proal
pU, = iqid , Q= —iq
STFCVOQQD(CVL a2, (q, h) 877040Q2D(041a a2, (4, h)

) (59)
with new functions py,, given in Appendix D while f,,, is obtained from the
function f,,, encountered in (42) and defined in Appendix B, by switching z
and zg. Inother words, fy,, (a1, a2, h, 2, 20) = fimn (a1, a2, h, 29, z). Exploit-
ing this property and taking the inverse Fourier transform of (5§9) immediately
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recovers the symmetry property 8tul, = G¥.(X,X0) = G¥,(Xo,X) the-
oretically predicted in §2.2.2. Using the second identity (115) also easily
yields

(x —xp).€,
p

/OO [Pooq® + D120 + Pazcid] J1(pq)dq
0 agD(o, a2, q, h)

P.(x,%x9) = 81Q = —

(60)

4.2 Auxiliary Electric Potential and Velocity Tangent to the Walls

The determination of the velocity components (U, U,), tangent to the walls,
and of the electric potential ® is a bit tricky. As shown in [19], for s = e,
the free- space electric potential is 9> = (B/u)[0H /0y]. Recalling (50), the
boundary conditions (22) require that on each plane wall ,qu = qlqgﬁ and

N

BH
O = igo [] (conducting) or
i

BOH

0P

5 (insulating) on Xg, 3. (61)

= iqo

Moreover, (20-21) show that, recalling (27), L(U,) = L(U,) = L(®) = 0.
The Fourier transform of these Equations (seg also (3{)) and the previous
boundary conditions on the walls (in which H and 0H /0z depends upon
q = gi1e1 + geeo only through ¢ = Iql) then suggest to write

pUe = U(q)e™ ™" +Us(q)e™” +Us(q)e™ 2% + Us(q)e™7, (62)
Uy = qraa{Wi(g)e™ ™" + Wa(q)e™” + Wi(g)e *** + Wi(q)e™**},(63)

Bd
= ige [M] {U1(g)e™™" +1ha(q)e™” + ¥s3(q)e™ 2" + Yu(q)e™**}.
(64)

Taking the Fourier transform of the identity A® = BV.(U A e;) (second
Equation (21)) and using the two first properties (33) easily provides
Uy = GiWh — aqiy, Us = GGWa — anihs, (65)
Us = ¢t W3 + a3, Uy = i Wy + aathy. (66)
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These relations reveal that, in contrast to the functions W,,, and ,,, the
functions U,,, do not solely depend upon g. Taking the Fourier transform of
the Equation V.U = 0 yields relations involving the functions G, (see (52))
determined in the previous section for the axisymmetric case s = e,. These
relations are

U = oGy — Wy, Uy = —a1Gy — ¢3Wo, (67)
Us = asG3 — W3, Uy = —aaGy — ¢ W. (68)

Combining (65-66) with (67—68) and using the links ¢*> = ¢3 + ¢3 = ajasz
gives

P = =G+ Wi, P = Ga + asWs, (69)
Y3 = G3 — W3, 4= -Gy — oWy (70)

On both walls (z = 0, h) the divergence-free condition and the no-slip require-
ments Uy = —u,” and U, = —u3” have been already combined to obtain the
second condition (51). Therefore, the required functions (W1, Wa, W3, Wy)
are obtained by enforcing on the walls four conditions: the ones (61) for d
and the additional ones ,qu = q1q2H for z = 0, h. These latter conditions
read R

Wi+ Wy +Ws + Wy = H(q,0), (71)

Wie @ 4 Wae™" 4 Wie 2" + Wie™2" = H(q, h) (72)

with the right-hand sides given by (39). The two linear Equations (71-72) for
(W1, Wa, W3, Wy) have to be supplemented with two relations obtained by
expressing (61), using (64) and (69, 70). These relations depend upon each
wall nature (insulating or conducting surface). Inspecting (62, 64) and (67-70)
suggests the decompositions U, = US) + U;,g2) and ® = &) 4+ &) with
the following Fourier transforms

T — a1Gre” % — 1 Goe™? — a2G367a2 — 042G4ea22 (73)

B0 = gy [id] {-G1e™% + Goe™* + Gge™ 2% — Gye™7}.(74)

3As the reader may easily check, the forms (62-64) ensures that, using the relations (33),
the Fourier transforms of the scalar product of (20) with e; and e2 are indeed satisfied.
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The functions MUS) and ®(1) are gained from the solution (G1, G2, G3,G4)
derived in §4.1 for US) and by recalling (53) and (59) for P. It is found that

. 205 2 s 02 s 2
$0) — _192BEGoog® + przad + proad) (75)
87TM060(]2D(05170527Q7 h)
uH = g (crin + c1202)¢” + ci30f + cazai (76)
8napg®D(aq, aa, q, h)

with each previously-encountered function p,,,,, and new function c,,, given
in Appendix D. Accordingly, the required quantities Ug(;l) and ®) are

d [ [(c1101 + c1202)¢? + c1303 + cazai
Ul = / [ L 21 Jo(pq)dq, (17)
87TILL 0 anD(ala a2, (4, h) O(pq) 1

o) — _M [BdQ] /OO [1500(12 + P120? + Pagais
p 8mu ] Jo | 8muagD(a,az,q,h)

] J1(pq)dq.(78)

The velocity Uggl) and the electric potential (1) do not depend upon the

walls properties. In contrast, the solution (U;Z), Uy, <I>(2)) is, as the quantities
(W1, Wo, W3, Wy), sensitive to each wall nature. It is obtained from the
relations

pUl? = —¢*w, ,UUy =W, % =igBdl/u, (79)
W = Ly + Ly, T=oasly—ails, (80)

L1 = Wie ™% 4 We™?, Ly = Wse 2% + Wye™*  (81)
which, from Appendix C, readily yield the following solutions

r—X - > 1
U, = ( 0)(2'” yO)/ ¢*W Jx(pg)dg,
pp 0
Bd(y — o
o2 — (?/M)yﬂ) / ¢*T T (pq)dy, (82)
0

(2)_(?4—90)2 g d—i o d
U7 = ——5— o W J2(pq)dq ), 4 W.Ji(pq)dq. (83)

[1p

As shown below, it is possible to analytically obtain the required functions Ly
and Ly (see (81)) for the considered insulating or conducting flat walls >y and
3. Combining (77-78) with (82-83) finally provides the desired quantities
(recall (23))

GY,(x,%0) = 8mp{U) + UL}, Vi (x,x0) = 8rp{ @) + 03} (84)
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4.2.1 Solution for Two Conducting Walls
For two conducting walls the first condition (61) is enforced for z = 0, h.
Using (64) and (69-70) thus yields the Equations
Wi + aaWo — ayWs — ay Wy = Si + H(q,0)/d, (85)
Oénge_alh + Oéngealh — Oque_th — 041W4ea12h

= Sy + H(q, h)/d, (86)
S1 =G1— Gy — G35+ Gy,
Sy = Gre~ M — GoeMh — Gzem 2P 4 Gue®2h, (87)
It has been possible to cast S7 and S5 into the following condensed forms
ds; & _ U) (’)

¢ + 575 o3 +sgé)ag for j=1,2

(83)
with functions 3%21 given, versus (a1, &g, h, 2g), in Appendix D. Still using
Maple software algebra in solving the linear system made of (71-72) and
(85-86) provides in closed form both (W7, Wy, W3, W,) and also, from
(81), ﬁl and ﬁg . The Fourier transforms i)l and .i/Q, expressed in terms
of (51, 5’2) and (a1, ag, q, h, 2, 2p), are also given in Appendix D.

S. — , S5 =
J 64mang®D(aq, aa, q, h) 7700

4.2.2 Solution for Two Insulating Walls
This time (71-72) are supplemented with two equations obtained from the
second condition (61) on each wall. These equations are
¢l — Wi+ Wa+ W3 — Wyl = D1+ [(0H/2)(q,0)]/d,  (89)
qQ[ . Wle—alh + W2ea1h + Wge—agh . W4ea2h}

= Do+ [(0H/02)(q, h)]/d, (90)
D, = Ozz[Gg + G4] — Oq[Gl + GQ], 1)
Dy = OéQ[Ggeith + G4ea2h} — Ozl[Glefalh + Ggealh]. 92)
This time, D; admits for j = 1, 2 the condensed form
dD;
D; = J ,
647T040q2D(0417 a2, (q, h)

Dy = (d¥) a1 +dPas)g® + d¥ ot + d5) a3 (93)

with functions dfﬂb)n still given, versus (a1, g, h, 20), in Appendix D. Solving
(71-72) and (89-90) provides (Wl , Wa uW?” Wy) for the case of two insulating

walls. The resulting quantities L1 and Lo are displayed in Appendix D.
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4.2.3 Solution for One Conducting Wall and a Second Insulating
Wall

For symmetry reasons, the attention is restricted to a perfectly conducting

z = 0 wall and an insulating z = h wall. Accordingly, (W7, Wa, W5, Wy)

is obtained by solving (71-72), (85) and (90). The resulting needed Fourier

transforms Ly and Lo are again available in Appendix D.

5 Conclusions

The fundamental MHD viscous flow and electric potential produced by a
concentrated force located in a conducting liquid bounded by two parallel solid
plane no-slip walls has been analytically obtained whatever the point force
location and orientation. It has been achieved, assuming a prescribed uniform
ambient magnetic field normal to either perfectly conducting or insulating
walls, by using a two-dimensional Fourier transform. The obtained results,
expressed in terms of one-dimensional Bessel-type integrals, agree with a
key symmetry property established for the fundamental velocity field without
solving the problem. For a force normal to the walls there is no electric potential
and the axisymmetric pressure and velocity receive a tractable form which is
independent of the nature (insulating or perfectly conducting) of the walls. The
same property holds for the pressure and velocity component normal to the
walls when the concentrated force is parallel to the walls. In addition, when the
force is tangent to the walls the results for each velocity component tangent to
the walls and for the electric potential are pretty involved and strongly depend
upon the properties of the walls.

The derived analytical fundamental fields will be used in future to inves-
tigate the migration of a solid sphere immersed in the conducting liquid and
translating normal to the walls. As shown in [22] for the unbounded liquid
case and recently in [20] for a liquid bounded by one solid plane wall, this
issue can be tackled by numerically inverting a suitable boundary-integral
equation on the sphere surface only. The key step in such an efficient procedure
is the determination of the axisymmetric MHD viscous flows produced by
distributing on a circular ring, located in a plane immersed in the liquid
and parallel with the walls, some point forces. These flows comply with the
boundary requirements on the walls (no-slip and additional relevant condition
for the current), and can be built using the results established in the present
work. However, such a task requires many additional efforts and is therefore
postponed to future investigations.



Fundamental MHD Creeping Flow and Electric Potential 19

A. Free-space Solution

The free-space solution (U, p™°, »>°), analytically determined by [18], is
given in [19, 21] versus R = x — xg9, R = |R| and the Hartmann layer
thickness d. The free-space velocity tensor G = Gje; Q) e, pressure
vector P>° = Pe; and ‘potential’ vector V> = V,>°e; are then deduced.
The tensor G* is found to obey the symmetry property (15). Moreover,

(i) taking [ = z (case s = e,) gives V. °(x,x0) = 0 and

. L Z— 20 2d] [R.e;] e 1/(2d)
G (X, x0) = smh( 57 > [14— R} [R] 7

if t=uxz,y;V°(x,%0) =0, O4)
G3(x,x0) = {cosh <Z;dZO> 1 sinh (z ;jo)

{1 i 21?] [2 }ZO]} — 95)
PXX(x,xq) = 2 {sinh <Z;dzo> + cosh (Z ;dzo)

[1 + iﬂ [z ;{zo] } 6_13;/;250 | 06)

(i1) taking [ = x (case s = e, ) gives

z— z[)) e~ 11/ (24)

G3(x,Xg) = 2cosh<

2d R
+ d[T(x,%0) — (x — 20)*Ta(x — %0)], 97)

Gya(x,%0) = —d(z — x0)(y — yo)T2(X, X0),

GZ(Xa XO) = G;Z'(X&X)v (98)

1 — 2 — —R/(2d)
P2(x,X0) = - cosh (z 2;“) [1+1ﬂ [w R””O] ¢ = (99)
e ) d( ) 2 e—\x—x0|/(2d)

X,Xg) = —d(y — -
= (%% v (x —20)% 4+ (y — yo)? |x — Xl

(—20)/(24) ~(e—20)/(2d)
L ¢ T ” (100)

Xx—xg| —(z—20) |x—x0|+2—20
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with the following definitions

T e_R/(Qd) e(z_zo)/(2d) e_(Z_ZO)/(Qd)
1% %0) = R R—(z—z0)+R+(z—z0)
2
CR2—(z—2)? (oD
T e 1/(2d) R4+ 2d e(z—20)/(2d) e—(2—20)/(2d)
2 %0) = — 3 [ 2dR } R-(:—2)  R+:-2

o(2—20)/(2d) o—(2—20)/(2d) } 4
_|_

B—(c—2F [Rtz—nl( [R=(r==2)
(102)

The free-space function H, solution to (17), reads H (x,x0) = H(t1,t2,13)
with t1 = x — z9,t2 = y — yo,t3 = 2z — 2zo. Thus, H = H(q,t3). Setting
q = |q|, the two-dimensional Fourier transform of (17) yields the equation

5?2 9 2 A 1 ({921:1 5(t3)
— — H-——=—%>* 1
(815% ) d? ot? 2w (103)

which is solved by introducing the one-dimensional Fourier transform h, on
the variable ¢3, of H. Using (103) and the definitions (32) of a; and a gives

R o] _H t ist3 R [e'e) iL ist3
h(s) =/ %dtg, H(q,t3)=/ (j/)%ds, (104)
h(s) = . = ! —.(105)

(2m)32[s2/d? + (s? + ¢2)?]  (2m)3/%(s? + aF)(s* + a3)]

Injecting (105) into the second equality (104) provides H (q,t3) in terms of
a one-dimensional integral analytically given in [7] (page 409). Dropping
the dependence in zp and using the defintion (32) of g, the result for
H(q,z)is

. d[a2€a1\z—zo| _ aleag\z—zo\]

H(q,2) =

106
8mq2ay (106)
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B. Auxiliary Material for the Axisymmetric case s = ¢,

The functions D and f;,,,, arising in the result (41) for F are defined as

D(aq,a2,q,h) = cosh(aih) cosh(ash)

2 2
_ sinh(ash) sinh(ash) [%;20‘2} —1, (107)
q
fii(an, a9, hy 2, z9) = —cosh[aa(z — 20)]{1 — eO‘thosh(alh)}

+sinh(agh){cosh|a; (h — z — 2p)]
+e?theoshan (2 — 20)]}/2
—sinh(agzp)cosh(ag2) — sinh(agz)cosh(aq 2p)
—cosh[ag (h — zo)sinh[ag(h — 2)]

—sinh[ag(h — zp)]cosh[aq (h — 2)], (108)

inh(a1h
fis(ag, e, hy z,20) = sinh(a1h) {cosh[ag(h —z—2)]

2
cosh[ag(z — 20)]
- (109)
and by the additional identities fa1 (1, 2, h, 2, 20) = — f11 (2, a1, h, 2, 20)
and fo3(a1,9,h,2,20) = —fiz3(az2,a1,h, 2, 2). The functions f,,

appearing in (42) for OF /0z are

foo(aa, e, hy 2, z9) = cosh(aazp) cosh(ayz) — cosh(agzp) cosh(agz)
+sinh[oq (2 — 20)]{1 — e cosh(ash)}
—sinh[aa(z — 20)]{1 — e*2"cosh(a1h)}
+cosh[ag (h — zp)]cosh[aa(h — 2)]
—cosh[aa(h — zp)]cosh[aq (h — 2)], (110)

fi2(aa, 9, h, 2, z9) = sinh[aa(h — zp)] sinh[ay(h — z)]
—sinh(agzg) sinh(a z) — sinh(agh)
{sinh[a(h — 2 — 20)] — e sinh[oq (2 — 20)]}/2
—sinh(ayh){sinh[az(h — z — 20)]
+e22sinh[ag (2 — 20)]}/2 (111)
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and foo (o, a9, h, 2, z0) = — fi2(ag, a1, h, 2, zp). Finally, the functions py,,
for the formula (44) are
pi1(aq, e, h, 2, z9) = cosh[aa(h — z)] cosh[ag (b — 2p)]
+sinh(aezp) sinh(a;z) — sinhag(h — 20)]
sinh[ay (b — 2)] — cosh(aaz) cosh(aizp)
—sinh[ag(z — 20)] + sinh(azh)
{sinh[a1(h — z — 20)] — e sinh[o (2 — 20)]}/2
+e22cosh(ayh) sinh[as(z — 2)], (112)

pis(aa, g, h, z, z9) = sinh(agh){sinhaa(z + 2o — h)]
—e“2Msinh[ag(z — 20)]}/2 (113)

while

pak (a1, o, h, 2, 20) = pik(an, a1, h, 2, 29) for k =1, 3.

C. Two-dimensional Inverse Fourier Transform

Recalling (30), the inverse Fourier transform f of a function f is defined by
1 00 oo )
f(tl,tg) = 2/ / f(q)eflq'tdqldqg. (114)
T J—00oJ-0
Consider for h(q) = h(q) the functions h, hy, hy; defined as i/L;(q) = igih(q)

and l;;:l(q) = quqih(q) for k and [ in {1, 2}. Introducing the usual functions
Jo, J1 and Jo then gives the useful relations

hi(t) = {ttk OOquL(q)Jl(tq)dq for t >0, (115)
0
a(t) = ) = | 42] [ Pt tor >0, e
0

2 ro
- [t] / ¢>h(q)Ja2(tq)dq for t > 0. (117)
0
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Since Jo(u) ~ 1 — u2/4 and Jq (u) ~ u/2— u3/16 for u ~ 0t also follows
that
o0 00 3,\
7 h
hi(0) = h12(0) = 0,h(0) = / gh(q)dg, hax(0) = / q;%.
0 0
(118)

D. Auxiliary Material for the Asymmetric Case s = ¢,
The dimensionless functions pgg,p12 and poo in (59) are defined as
pa2(an, ag, b, 2, 20) = pr2(az, a1, h, 2, 20) and
poo(aa, e, h, z,z9) = —coshai(h — zp)] sinh[aa(h — z)]
— cosh(ag zp)sinh(aez)
[aa(h = z0)]sinh[aq (h — 2)]
— cosh(agzp)sinh(a; z)
— coshan(z — z0)]{1 — e*?"cosh(ayh)}
— cosh[oy (2 — 20)]{1 — e "cosh(azh)}, (119)

— cosh

pr2(ar, ag, h, 2, 29) = sinh(agzg) cosh(asgz)
+ sinh[ay (h — 2z0)]cosh[ag(h — 2)]
— sinh(ajh){cosh[ag(h — z — zp)]
+ e coshlag(z — 20)]}/2
+ sinh(agh){cosh[a; (h — z — 2p)]
— e eoshlag(z — 20)]}/2. (120)
The coefficients ¢, occurring in (76) for the quantity MU,,SI) are
c13(a1, ag, h, 2, 20) = sinh(agh){cosh[ay(z + 29 — h)]
—e“coshlag (z — 20)]}/2, (121)
c11(aq, a9, hy 2z, z9) = —sinh(a;z) cosh(agzg) — sinh(ay2p) cosh(aaz)
—sinh[ag (b — 2)] coshlaa(h — 20)]
—sinh[ay (b — 2¢)] cosh[ag(h — 2)]
+sinh(a;h){sinh[as(z — 2o — h)]
+e22coshlan(z — 2)]}/2
+coshlay (z — zo)[{e®" cosh(agh) — 1}, (122)
co3(, a2, h, 2,20) = —ciz(az, a1, h, 2, 20), (123)
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co1(on, o0, h, 2,20) = —ci1(ae, a1, h, 2, 29). (124)

In expressing in closed form the required Fourier transforms L1 and Lo it is
convenient to adopte the following notations and property

d
F= W’D = D(a1ya27q7h)7a/1 = ozz,o/Q =, a109 = q2. (125)

(i) Material for two c.onducting walls:
The functions 57(1%, introduced in (88), depend upon (a1, ag, h, zp).
Dropping the dependence upon (h, zp), one gets

sin (a1, a2) = 1§ (ar, az) + 1§ (az, 1),
s (a1, a2) = s (az, 1), (126)
t(() )(al, ag) = —8cosh(azp) + felor—az)h—anzo

+ 421 (hF20) cogh (aph) — 4610 Msinh(anh), (127)
t(()z) (a1, ap) = e %0 (2R cosh(aph) — sinh(anh)]

—8 cosh[ay (h — z)] + 4e170—2h (128)
5512) (a1, a2) = 8sinh(ayz) + 8 cosh(agh) coshjag (h — 29)]

—4e°2(h=20)ginh (o h) — 4e1% sinh(ash) cosh(ayh)

—4e“?**sinh (a1 h) cosh(agh), (129)
3522) (a1, ) = 8sinh(ayzg) cosh(agh) — 8 sinh(agh) cosh(agzg)

+8 sinh[ay (h — 29)] 4 2 sinh(ah)e™@2%0[1 — 222"

+2 sinh(agh)e™ 1% [1 — ?*1"] (130)

Elementary algebra then provides ﬁj for j =1, 2. The results read

- F

I, =
I (o1 + ap)sinh(ajh)
{Sinh[aj(h — 2)]S1 + sinh(a;2) Sy

8D(—1)j+1 + (_1)j[E(C)(C)(ajva;’)q2

+E1i (o, o )ax JQ‘]—[ES(C)(%’ D+ Efi(aj, a))a j]/d} (131)
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with new functions Egj and E{{ given by

ESS(a, ) = cosh[a(h — z — z)] — cosh[a(z — 2)]e®", (132)
E(a, ) = sinh[a(h — 2)]e%*0 + sinh(az — Bz)e’".  (133)
(i) Material for two insulating walls:

The functions d%% introduced in (93), solely depend upon (1, o, h, 2g).

Dropping again the dependence upon (%, 2p), it is found that

d$) (a1, a0) = d)(as, 1),

d) (a1, 00) = d) (g, 1) for j=1,2 (134)

d\) (a1, 2) = 4 sinh(agh){e* " sinh(ay20) — sinh[as (h — 2)]},
(135)

d%)(al, o) = 4 sinh(agh){sinh(a;zo) — e*Psinh[ay (h — 20)]},
(136)

di(a1,02) = 8 sinh(a120) - 8 cosh(azzo) + 2672 sinh(ar )
+4e22(h=20)cogh (g h) + 46 G0 Msinh (agh)
—4e21(hH20)cogh (agh) + 4el@1—a2)h—a1z0
+3ezz0—(artaz)h, (137)
dﬁ)(ab az) = 8 cosh[as(h — z9)] — 8 sinh[ay (h — 20)]
—4e”*“*0ginh(agh) — 4e*?* cosh(ah)
—2e22(h=20)ginh (o h) + 4e®12h720) cosh(agh)
L getiz—ash _ garh—asz _ ge-ath-asn (13g)

After many elementary manipulations, it is then found that (for 7 =1, 2)

i, = F
J eogh —e azh)(eazh _ e—alh)

J+1 11 a]v )al + Eézl (aj’a;‘)c“?] + E(%(O‘j’a;)/d

1)i+!1 / ' .

[ 3D ] (sinh[aj(h — 2) — ajh] — sinh(a;2)) D1
(_1)J+1

N { 3D

—|—f—"\

] (sinh(eyz + ajh) 4 sinh[o (h — z)])DQ} (139)
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with the following definitions

Eil (o, B) = (e®" — e PM){cosh[a(h — z — )] + €”"cosh[a(z — 20)]}
+ (e7 " — M) {cosh[B(z — z0)]e™ + cosh(Bzg)e® a(h— 2)}

(140)
Efi(a,f) = (e7®" — ") {sinh(Bz0)e" ")
+sinh[a(h — 29)]e**}, (141)
Efi(a, ) = (¢*" — e ") {cosh[a(h — z)]e™
—cosh[a(h — z — 29)] }. (142)

(iii) Material for a conducting wall and an insulating wall:
For 7 =1, 2 it has been found, in such circumstances, that
. F

I (a1 + a2) sinh[(a1 + a2)h]

[Eﬁ(aj, a;-)oaj + Egﬁ(aj, Oz;-)oz;- + d(—l)jJrl [Egé(aj, 04;-)q2

+E(0y, 0‘;‘)%2‘ + ESy(aj,a J)(a;)Q]

8Dg?
(_1)j+1

+ [(—1)“1} (a1 + a2) sinh(a;2) sinh(ajh) Do

+ {sinh(c;z) + sinhfo;(h — 2) + a;h]}gl (143)

with the following definitions

ng)(a, B) = e** sinh|a(h — 2z) 4+ Bh] 4 sinh(az){sinh(8h)e” a(h—z0)

+2sinh(Bz) + e P*0[1 — e2Ph] /21, (144)
ES (a, B) = eﬁzosinh[a(h — 2) + Bh] + sinh(az){sinh(Bh)e* a(h—z0)
—2sinh(Bzg) — e P[1 + e291]/2}, (145)

ESt (a, B) = e {sinh[a(h — z) + Bh] + sinh(az)}
+sinh(az){sinh(Bh)e"~20) 4 ¢=F20[1 — &1 /2}, (146)
Efy(e, #) = —e {sinh[a(h - 2) + 3]
—sinh(az)e P01 + 21 /2}, (147)
ESh(ar, B) = sinh(az){cosh(3h)e*h—20)=e0 (148)
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