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Abstract

In this work, the method of fundamental solutions (MFS) and the method
of particular solutions (MPS) are used to solve two and three dimensional
steady-state thermoelastic problems involving curved-shape heat sources. The
geometrical shape of the heat sources can be very complicated. Each curved
heat source is modelled by assembling several simple sources with quadratic
shapes. The particular solutions for temperature and stress are presented in
simple forms and they are used without considering any internal points or
internal cells. Several examples are analysed to demonstrate the efficiency of
the presented formulation. Numerical results show that the presented MFS-
MPS formulation is very efficient and useful. Unlike the finite element method,
only a small number of collocation and source points are sufficient to achieve
accurate results in the proposed MFS formulation.
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1 Introduction

In practical thermo-mechanical problems such as infrared heating, electrical
heating and laser beam welding, it is necessary to consider concentrated heat
sources for accurate modelling of such systems. Only a few analytical solutions
are presented yet for these types of problems. For example, [1] presented a
general analytical solution for an annular involving a point heat source. [2]
presented Green’s functions for some boundary value problems in an infinite
plane with a point heat source, and [3] presented Green’s functions for a
multi-material domain including a point heat source. Despite these analytical
solutions, for complicated practical problems involving concentrated heat
sources, numerical methods should be used.

The finite element method (FEM) is a popular numerical method for
solving large majority of thermo-mechanical problems. But in the FEM, a
concentrated heat source should be modeled as a separated region with a
small area. The size of this area affects the accuracy of the analysis and
a large number of internal elements and nodes should be used, especially
near the heat source region. As a powerful alternative, the boundary element
method (BEM) only requires boundary discretization. The BEM, which is
based on fundamental solutions, has been used effectively to solve direct and
inverse thermo-mechanical problems containing concentrated heat sources.
[4] proposed a BEM approach for identification of intensity of point heat
sources in time-dependent heat conduction. He tested his proposed method by
conducting some 2D experiments [5]. [6] formulated line and distributed heat
sources in the BEM analysis of nonlinear heat conduction problems in two
and three dimensions. They also used the proposed method for inverse non-
linear heat conduction analysis [7]. There is no need for domain discretization
in their proposed method. [8] used the BEM for thermoelastic analysis of
two-dimensional anisotropic media involving concentrated heat sources. They
converted domain integrals to boundary integrals in their formulation. In
another work, [9] presented a BEM approach for heat conduction in anisotropic
non-homogeneous media involving internal point heat sources. They used the
direct domain mapping (DDM) technique to enable the exact volume integral
transformation. [10] presented a BEM formulation with no need to any internal
points or cells for 2D and 3D thermo-elastic problems including point, straight
line and flat surface heat sources. They considered a linear variation for the
strength of heat sources in their formulation. [11] implemented curved line
heat sources with arbitrary variations in 2D and 3D isotropic domains by
considering several quadratic heat sources.
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Another efficient numerical method is the method of fundamental solutions
(MFS), which is used in the present work. Similar to the BEM, the MFS is a
boundary-type technique and it is applicable when a fundamental solution of
the problem is known. However, the MFS does not require any mesh and it
is an integration-free method. Therefore, developing computer codes for the
MFS is much simpler than the BEM and it provides very good results with
low computational cost [12, 13]. The MFS is a simple method in which the
solution of the problem is expressed in terms of fundamental solutions with
some unknown coefficients. The singular points of the fundamental solutions
are positioned on a boundary outside the body. The intensities of the MFS
sources are unknown and are determined by satisfying boundary conditions on
some collocation points on the boundary of the body. After the first numerical
implementation of the MFS by [14], various applications of this method have
been presented in the literature. An overview can be found in the works of
[15–18].

The governing equations of the steady-state thermo-elasticity involving
heat sources are the heat conduction equation including the heat source term
(a standard Poisson equation) and the Navier equations with thermal effects.
To solve these equations using the MFS, particular solutions corresponding
to heat source terms in addition to homogeneous solutions of the equations
should be found. The MFS in conjunction with the dual reciprocity method
(DRM) [19] was used by [20] for solving Poisson’s equation, by [21] to
solve two-dimensional thermo-elasticity with general body forces, by [22] for
thermo-mechanical analysis of functionally graded materials and by [23] to
solve three-dimensional thermo-elasticity with arbitrary body forces. Another
similar approach is the MFS in combination with the so called method of
particular solutions (MPS). The MFS-MPS was used by [24] to solve Poisson’s
equation, by [25] for thermo-elastic problems in axisymmetric domains, by
[26] to solve two-dimensional thermoelasticity, by [27] for three-dimensional
inverse thermoelasticity, by [28] to solve two-dimensional thermoelasticity
with the non-singular MFS (NMFS), and by [13] for steady state heat
conduction in 2D and 3D isotropic domains involving curved heat sources.

To the authors’ best knowledge, the MFS formulation for thermo-elastic
problems involving internal curved heat sources has not been presented yet.
The method proposed by [13] for heat conduction analysis is developed here
for thermo-mechanical problems. In the present work, the MFS-MPS is used
for 2D and 3D analysis of steady-state thermo-mechanical problems involving
curved line/surface heat sources.The particular solutions associated with the
heat source effect are presented in simple forms. They are calculated without
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considering any internal points or internal cells and therefore the attractiveness
of the MFS as a boundary-type mesh-free method is preserved. Several
numerical example problems are presented to demonstrate the advantages
of the proposed MFS in comparison with the BEM and the finite element
method (FEM).

2 Basic Equations and Formulation

Consider a medium Ω with its boundary Γ (Figure 1). In the presence of
heat sources, the governing equation of steady-state heat conduction can be
expressed as

∇2τ(x) = −s(x)
k

in Ω (1)

The boundary conditions can be written as

f1(xb)τ(xb) + f2(xb)
∂τ(xb)

∂n
= f3(xb) on Γ (2)

where f1, f2 and f3 are given functions on the boundary, ∇2 is the Laplace
operator, n is the direction normal to the boundary, x is a point in the domain,
xb is a point on the boundary, τ is the temperature, s(x) is a known function
describing the heat source distribution in the domain and k is the thermal
conductivity.

Figure 1 Domain, main boundary, pseudo boundary, and a curved line heat source.
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Navier equations for two and three dimensional problems with consider-
ation of the thermal effects are given as:

G∇2ui(x) +
G

1 − 2ν̄

d∑∑∑
j=1

(
∂2uj(x)
∂xi∂xj

)
− γ̄

∂τ(x)
∂xi

= 0 (3)

where d is the dimension of the problem, i.e. d = 2 for a 2D problem and
d = 3 for a 3D problem, and i = 1, 2 for 2D problems and i = 1, 2, 3 for 3D
problems.

Mechanical boundary conditions can be expressed as follows:

ui(xb) = gi(xb) on Γ1

ti(xb) = hi(xb) on Γ2
(4)

where Γ1 ∪ Γ2 = Γ. ui and ti are the components of displacement
vector and traction vector, respectively, G is the modulus of rigidity and
gi and hi are prescribed functions on the boundary. In Equation (3)
γ̄ = 2Gᾱ(1 + ν̄)/(1 − 2ν̄), where

ν̄ =

{
ν plane strain and 3D

ν/(1 + ν) plane stress

(5)

ᾱ =

{
α plane strain and 3D

α(1 + ν)/(1 + 2ν) plane stress

where α represents the coefficient of linear thermal expansion and ν is the
Poisson’s ratio.

The solution of Equation (1) in the MFS is represented as follows:

τ(x) =
N∑

l=1

alτ
∗(x, ξl)) + τp(x) (6)

where ξl and al are the location and intensity of the lth source point on the
pseudo boundary Γ′, respectively, and N is the number of source points.
The fundamental solution of the Laplace equation is denoted by τ∗ and is
expressed as

τ∗(x, ξl) =
−1
2π

ln(r(x, ξl)) for 2D

τ∗(x, ξl) =
1

4πr(x, ξl)
for 3D

(7)
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where r is the magnitude of the vector r, which represents the distance between
the source point ξl to the point x.

τp(x) in Equation (6) is the particular solution and it can be obtained by
constructing the associated Newton potential in the following domain integral
form [15]:

τp(x) =
1
k

∫
Ω

s(ξ) τ∗(x, ξ) dV(ξ) (8)

Considering N collocation points on the main boundary and satisfying
the thermal boundary conditions at these points, the coefficients al can be
determined.

Considering thermal effects in the Navier equation, the solution of this
equation can be represented as follows:

ui(x) = uh
i (x) + up

i (x) (9)

The components of the homogeneous displacement vector (solution of the
Navier equation without thermal terms) are expressed as follows [21]:

uh
i (x) =

N∑
l=1

[clU
∗
1i(x, ξl) + cl+NU∗

2i(x, ξl)] (for 2D)

uh
i (x) =

N∑
l=1

[clU
∗
1i(x, ξl) + cl+NU∗

2i(x, ξl) + cl+2NU∗
3i(x, ξl)] (for 3D)

(10)

where:

U∗
ij =

1
8π(1 − ν̄)G

[
(3 − 4ν̄) ln

(
1
r

)
δij + r,ir,j

]
(for 2D)

U∗
ij =

1
16π(1 − ν̄)Gr

[(3 − 4ν̄)δij + r,ir,j ] (for 3D)
(11)

in which
r,i =

ri

r
(12)

where ri are the elements of the vector r.
The coefficients cl in Equation (10) are unknowns, which can be found by

applying boundary conditions. The components of the particular displacement
vector (solution of the Navier equations with thermal terms) can be represented
by the following equation:
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up
i (x) =

1
Ā

N∑
l=1

[alri(x, ξl)τ∗(x, ξl)] +
1

kĀ

∫
Ω

s(ξ) ri(x, ξ)τ∗(x, ξ) dV(ξ )

(13)
where:

Ā =
4G(1 − ν̄)
γ̄(1 − 2ν̄)

(14)

The components of the traction vector at boundary points can be calculated
as follows:

ti(xb) = thi (xb) + tpi (xb) (15)

where thi and tpi are components of the homogeneous traction vector and
the particular traction vector, respectively. The components of homogeneous
traction vector can be derived from the following equations [21]:

thi (xb) =
N∑

l=1

[clP
∗
1i(xb, ξl) + cl+NP ∗

2i(xb, ξl)] (for 2D)

thi (xb) =
N∑

l=1

[clP
∗
1i(xb, ξl) + cl+NP ∗

2i(xb, ξl) + cl+2NP ∗
3i(xb, ξl)]

(for 3D)

(16)

where:

P ∗
ij =

−1
2dπ(1 − ν̄)r(d−1)

[
((1 − 2ν̄)δij + dr,jr,i)

∂r

∂n
− (1 − 2ν̄) (r,inj − r,jni)

]

(17)

in which, ni are the elements of the unit vector n, normal to the boundary.
The components of the particular traction vector can be calculated as

follows:
tpi (xb) = σp

ij(xb)nj(xb) (18)

In order to calculate the components of the particular stress tensor σp
ij at a

point, the following stress-strain relation can be used:

σp
ij(x) = 2G

[
εp
ij(x) +

ν̄

1 − 2ν̄
εp
kk(x)δij

]
− γ̄τ(x)δij (19)

The components of the particular strain tensor εp
ij at a point can be determined

using the strain-displacement relation as
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εp
ij(x) =

1
2

(
up

i,j(x) + up
j,i(x)

)

=
1
Ā

N∑
l=1

[
al

(
τ∗(x, ξl)δij − ri(x, ξl)rj(x, ξl)

2(d−1)πrd(x, ξl)

)]

+
1

kĀ

∫
Ω

s(ξ)
(

τ∗(x, ξ)δij − ri(x, ξ)rj(x, ξ)
2(d−1)πrd(x, ξ)

)
dV(ξ)

(20)

For calculation of stress tensor components at a point of the domain, the
following equation can be used:

σij(x) = σh
ij(x) + σp

ij(x) (21)

In which, the components of the homogeneous stress tensor σh
ij can be

calculated as follows [21]:

σh
ij(x) =

N∑
l=1

[
clΨ∗

1ij(x, ξl) + cl+NΨ∗
2ij(x, ξl)

]
(for 2D)

σh
ij(x) =

N∑
l=1

[
clΨ∗

1ij(x, ξl) + cl+NΨ∗
2ij(x, ξl) + cl+2NΨ∗

3ij(x, ξl)
]

(for 3D)

(22)

where:

Ψ∗
ijk =

−1
2dπ(1 − ν̄)r(d−1) [(1 − 2ν̄) (r,jδik + r,kδij − r,iδjk) + dr,ir,jr,k]

(23)

As it can be seen in Equations (8), (13) and (20), the particular solutions
associated with the heat source effect are represented by domain integrals.
In the next section, these integrals are calculated for curved line/surface heat
sources without any need for internal cells or internal points.

3 Formulations for Heat Sources Concentrated on a
Curved Line/Surface

In this section, the particular solutions associated with curved line/surface heat
sources in the MFS are presented. For the 2D case, curved line sources and
for the 3D case, both curved line and curved surface sources are considered.
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Figure 2 A curved line heat source with quadratic shape and its dimensionless local
coordinate.

3.1 Curved Line Heat Source in Two-dimensional Problems

Any curved line heat source can be discretized by several quadratic segments.
As shown in Figure 2, each segment has a quadratic shape and is represented
by three points. The domain integrals in Equations (8), (13) and (20) for the
2D case, are converted to integrals over the quadratic segment as follows:

IT (x) =
−1
2πk

∫
lsource

s (ξ) ln [r (x, ξ)] dl

Iu(x) =
−1

2πkĀ

∫
lsource

s(ξ) ri(x, ξ) ln [r (x, ξ)] dl

Iε(x) =
−1

2πkĀ

∫
lsource

s(ξ)
(

ln [r (x, ξ)] δij +
ri(x, ξ)rj(x, ξ)

r2(x, ξ)

)
dl

(24)

where dl is an infinitesimal element on the quadratic segment, r(x, ξ) =√
(x − xs)2 + (y − ys)2 is the distance between the field point x = (x, y)

and the source points ξ = (xs, ys) on the quadratic line heat source, r1(x, ξ) =
(x − xs), and r2(x, ξ) = (y − ys).

The coordinates of the point ξ = (xs, ys) on the quadratic segment can be
expressed as

xs = (N1x1 + N2x2 + N3x3) ys = (N1y1 + N2y2 + N3y3) (25)
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where (x1, y1), (x2, y2) and (x3, y3) are respectively, the coordinates of the
starting point, the middle point and the end point of the quadratic segment and
N1, N2 and N3 are the quadratic Lagrangian shape functions. These shape
functions can be expressed as follows [29]:

N1 =
1
2
η(η − 1) N2 = −(η + 1)(η − 1) N3 =

1
2
η(η + 1) (26)

where −1 ≤ η ≤ +1 is a dimensionless local coordinate shown in Figure 2.
Using Equation (25), the integrals in Equation (24) are converted to the
following integrals:

IT (x) =
−1
2πk

1∫
−1

s(η) ln [r(η)] Jdη

Iu(x) =
−1

2πkĀ

1∫
−1

s(η)ri(η) ln [r(η)] Jdη

Iε(x) =
−1

2πkĀ

1∫
−1

s(η)
(

ln [r(η)] δij +
ri(η)rj(η)

r2(η)

)
Jdη

(27)

where J is the Jacobian of transformation.
The integrals in Equation (27) can be calculated using conventional numer-

ical integration methods such as the Gaussian quadrature method (GQM). It
should be noted that if the field point x = (x, y) is exactly on the line source, the
integrals in Equation (27) will be weakly singular with a finite value. In other
words, in the two-dimensional case, stress, displacement and temperature have
finite values at points exactly on the curved line heat source. In this case,
the integral in Equation (27) can be calculated by various methods such as
the weighted Gaussian integration [30], transformation of variable [31] and
subtraction of singularity [32] methods. In this research, weighted Gaussian
integration method has been used.

3.2 Curved Line Heat Source in 3D Problems

Similar to the 2D case, any curved line heat source in 3D is discretized by some
heat sources with quadratic shapes. The domain integrals in Equations (8), (13)
and (20) for the 3D case, are converted to integrals on the quadratic segment
as follows:
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IT (x) =
1

4πk

∫
lsource

s (ξ)
r (x, ξ)

dl

Iu(x) =
1

4πkĀ

∫
lsource

s(ξ)
ri(x, ξ)
r (x, ξ)

dl

Iε(x) =
1

4πkĀ

∫
lsource

s(ξ)
(

δij

r (x, ξ)
− ri(x, ξ)rj(x, ξ)

r3(x, ξ)

)
dl

(28)

where r(x, ξ) =
√

(x − xs)2 + (y − ys)2 + (z − zs)2 is the distance
between the field point x = (x, y, z) and the source points ξ = (xs, ys, zs) on
the quadratic line heat source, r1(x, ξ) = (x − xs), r2(x, ξ) = (y − ys), and
r3(x, ξ) = (z − zs).

Each quadratic segment is discretized by three points, i.e. (x1, y1, z1) at
the starting point, (x2, y2, z2) at the middle point, and (x3, y3, z3) at the end
point. The coordinates of the points ξ = (xs, ys, zs) on the quadratic segment
can be expressed as follows:

xs = (N1x1 + N2x2 + N3x3) , ys = (N1y1 + N2y2 + N3y3) ,

zs = (N1z1 + N2z2 + N3z3) (29)

where N1, N2 and N3 are the quadratic Lagrangian shape functions as given
in Equation (26).

Using Equation (29), the integrals in Equation (28) are converted to the
following integrals:

IT (x) =
1

4πk

1∫
−1

s(η)
r(η)

JdηIu(x) =
1

4πkĀ

1∫
−1

s(η)
ri(η)
r(η)

Jdη

Iε(x) =
1

4πkĀ

1∫
−1

s(η)
(

δij

r(η)
− ri(η)rj(η)

r3(η)

)
Jdη

(30)

The integrals in Equation (30) can be calculated using conventional numerical
integration methods such as the Gaussian quadrature method (GQM). It should
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be noted that if the field point x = (x, y, z) is exactly on the curved line
heat source, the first and the third integrals in Equation (30) will be strongly
singular without any finite values, but the second integral in Equation (30) will
be weakly singular with a finite value. In other words, in the three-dimensional
case, at a point on a curved line heat source, the displacement has a finite value
but the temperature and the stress go to infinity.

3.3 Curved Surface Heat Source in 3D Problems

We consider an arbitrary heat source distributed over a curved surface in a
3D domain. Each surface heat source can be divided into several quadrilateral
surface heat sources. Each quadrilateral surface heat source has a quadratic
shape. A curved surface heat source and one of its quadratic segments are
shown in Figure 3.

The domain integrals in Equations (8), (13) and (20) for the 3D case, are
converted to integrals on the surface of the quadratic segment as follows:

IT (x) =
1

4πk

∫
Asource

s (ξ)
r (x, ξ)

dA

Iu(x) =
1

4πkĀ

∫
Asource

s(ξ)
ri(x, ξ)
r (x, ξ)

dA

Iε(x) =
1

4πkĀ

∫
Asource

s(ξ)
(

δij

r (x, ξ)
− ri(x, ξ)rj(x, ξ)

r3(x, ξ)

)
dA

(31)

Figure 3 An arbitrary curved surface heat source and a quadratic segment with its local
coordinates.
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where dA is an infinitesimal area element on the quadratic surface heat source
and r(x, ξ) is the distance between the field point x = (x, y, z) and the source
points ξ = (xs, ys, zs) on the quadratic surface heat source. As shown in
Figure 3, each quadratic surface heat source is represented by 8 points and a
set of local coordinates (ξ1, ξ2), which vary between −1 and 1. xs, ys, and zs

can be expressed in terms of the 8 Lagrangian shape functions as follows:

xs(ξ1, ξ2) =
8∑

i=1

Ni(ξ1, ξ2)xi, ys(ξ1, ξ2) =
8∑

i=1

Ni(ξ1, ξ2)yi,

zs(ξ1, ξ2) =
8∑

i=1

Ni(ξ1, ξ2)zi

(32)

where (xi, yi, zi) are the coordinates of the 8 points on the heat source. The
shape functions Ni in terms of ξ1 and ξ2 are expressed as follows [29]:

N1 =
−1
4

(1 − ξ1)(1 − ξ2)(1 + ξ1 + ξ2), N2 =
1
2
(1 − ξ2

1)(1 − ξ2),

N3 =
−1
4

(1 + ξ1)(1 − ξ2)(1 − ξ1 + ξ2), N4 =
1
2
(1 + ξ1)(1 − ξ2

2),

N5 =
−1
4

(1 + ξ1)(1 + ξ2)(1 − ξ1 − ξ2), N6 =
1
2
(1 − ξ2

1)(1 + ξ2),

N7 =
−1
4

(1 − ξ1)(1 + ξ2)(1 + ξ1 − ξ2), N8 =
1
2
(1 − ξ1)(1 − ξ2

2).

(33)

Using Equation (32), the integrals in Equation (31) are converted to the
following integrals:

IT (x) =
1

4πk

1∫
−1

1∫
−1

s(ξ1, ξ2)
r(ξ1, ξ2)

Jdξ1dξ2

Iu(x) =
1

4πkĀ

1∫
−1

1∫
−1

s(ξ1, ξ2)
ri(ξ1, ξ2)
r(ξ1, ξ2)

Jdξ1dξ2

Iε(x) =
1

4πkĀ

1∫
−1

1∫
−1

s(ξ1, ξ2)

(
δij

r (ξ1, ξ2)
− ri(ξ1, ξ2)rj(ξ1, ξ2)

r3(ξ1, ξ2)

)
Jdξ1dξ2

(34)
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The integrals in Equation (34) can be calculated using standard 2D numerical
integration methods such as the GQM. In the cases that the field point X is
exactly on the surface of the heat source, the integrals in Equation (34) will be
weakly singular with a finite value. In other words, in the three-dimensional
case, the temperatures, displacements and stresses at points on a surface
heat source have finite values. In this case, the integrals in Equation (34),
which is weakly singular, can be calculated by various methods such as the
transformation of variable and subtraction of singularity methods [32]. In this
research, the method of transformation of variable has been used for such
cases.

4 Numerical Examples

To verify the proposed MFS formulation, four thermo-mechanical examples
are presented. In two-dimensional examples, curved line heat sources and in
three-dimensional examples curved line and curved surface heat sources are
considered. In the MFS modelling of all examples, the location of source
points and collocation points are determined according to the procedure
proposed by [33]. In this procedure, a “location parameter” for a source
point is defined as the ratio of the distance from the source point to its
corresponding collocation point to the distance from the same source point
to the neighbouring collocation point [33]. It is recommended that the value
of the location parameter be greater than a lower bound to obtain solutions
without undesired oscillations. In this work, the locations of source points are
determined in a way that the value of the location parameter of source points
would be greater than 0.85.

In all examples, the results computed by the present MFS are compared
with those of the FEM with a fine mesh as a reference solution. Also in the
first example, the BEM results are included. The software package MATLAB
is used for writing MFS and BEM source codes and ANSYS package is used
for the FE analyses. In all examples, it is assumed that k = 60 W/m ◦C,
α = 11.7 × 10−6 1/◦C, E = 200 GPa and ν = 0.3.

4.1 Two-dimensional Examples

In the two-dimensional examples the state of plane strain is considered. The
first 2D example deals with a circular domain with radius R = 0.5 m, which is
centred at (0, 0). According to Figure 4, boundary conditions are τB = 10 ◦C
and ux = uy = 0. The domain involves two semi-circular heat sources
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Figure 4 The boundary conditions and the curved line heat sources in a circular domain.

with radius of r = 0.125 m and centres at (0.125, 0) and (−0.125, 0). Their
intensity functions are as follows:

s1 = 16000 x + 4000 W/m, s2 = −16000 x + 4000 W/m (35)

In the MFS modelling of the problem, only 8 boundary points and 8 source
points are used. The pseudo boundary is considered as a circle with radius of
R′ = 5 m and each semi-circular heat source is modelled with 2 quadratic
segments. The MFS results are compared with those of the FEM with a fine
mesh as a reference solution. The BEM results are obtained according to the
procedure described in the authors’previous work [11]. In the BEM modelling
of the problem, 8 linear boundary elements are used and each semi-circular
heat source is modelled with 2 quadratic segments. In other words, the number
of unknowns in the MFS and BEM modelling of the problem is the same. In
the finite element modelling, each curved line heat source should be modelled
as an area heat source. The thickness of the area heat source should be selected
small enough to reduce the error of the modelling. Also this thickness should
be chosen so that there is a possibility of generating an appropriate mesh. In
this example, each semi-circular segment is modelled as an area heat source
over a semi-circular strip with the thickness 0.01 m. The whole domain is
meshed by 3463 quadratic quadrilateral elements, which have 10502 nodes.
The finite element mesh is shown in Figure 5.
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Figure 5 The finite element discretization of the circular domain with curved line heat
sources: (a) 3463 elements, (b) 10502 nodes.

Figure 6 Variations of field variables along the vertical diameter: (a) temperature,
(b) displacement in y direction, (c) normal stress in y direction.

The obtained results for field variables along the vertical diameter of the
circle are shown in Figure 6. As can be seen, with only 8 source points
and without using any internal points, the MFS results are better than the
BEM results with the same number of unknowns (8 nodes), and are in a
close agreement with the FEM results with a large number of elements. Also,
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Figure 7 A square with 30 circular heat sources.

as presented in Section 3.1, it can be seen from the figures that the stress,
displacement and temperature have finite values at points exactly on the curved
line heat source.

In the second 2D example, a 1 × 1 m square domain with a large number
of circular heat sources is considered. The domain involves 30 circular heat
sources in different locations. The radius of each heat source is 0.05 m and the
intensity of each heat source is 2500 W/m. The boundary conditions and
the layout of the heat sources are shown in Figure 7.

In the proposed MFS, each circular heat source is modelled with
4 quadratic segments and 36 collocation points and 36 source points are
considered on the main and pseudo boundaries, respectively. The configuration
of these points is shown in Figure 8.

The results of the present MFS are compared with those of the FEM.
In the FEM, 8524 quadratic elements with 25631 nodes are used and each
circular heat source is considered as an area source over a ring with thickness
of 0.005 m. The finite element mesh is shown in Figure 9.

The obtained results for temperature, displacement and stress variation
along the line AB of the square are shown in Figure 10. As can be seen, with
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Figure 8 The MFS modelling of the square with 30 circular heat sources.

Figure 9 The finite element discretization of the square domain with 30 circular heat sources:
(a) 8524 elements, (b) 25631 nodes.



Analysis of Two- and Three-dimensional Steady-state 69

Figure 10 Variations of field variables along the line AB of the square: (a) temperature,
(b) vertical displacement and (c) x-direction normal stress.

only 36 source points and without using any internal points, the MFS results
are in very good agreement with the FEM results with a large number of
elements and nodes.

4.2 Three-dimensional Examples

In the following three-dimensional examples, a spherical domain with radius
R = 1 m, and centred at (0, 0, 0) is considered. The surface of the sphere is
kept at τ = 0◦C. In the first example, A circular heat source with the radius
r = 0.4 m and the centre at (−0.15, 0.2, 0.15) is considered. The plane of the
circular heat source is parallel to the xz plane as shown in Figure 11. For better
visualization, only a quarter of the spherical domain is shown in Figure 11.
The intensity per unit length of the source is considered to be a function of x
and the z coordinates with the following form:

s = 20000(1 + x2 + z) Wm−1 (36)
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Figure 11 A cut out of the spherical domain including a circular heat source.

In the MFS modelling, the circular heat source is divided into 4 quadratic
segments. Only 98 source points and 98 collocation points are used. Source
points are distributed on surface of a sphere with radius R′ = 1.4 m.

The MFS solutions are compared with the FEM solutions. In the FE
analysis, the heat source, which is concentrated over a circular ring, should be
modelled as a torus with a small minor radius. The major and minor radii of
this torus are considered as ro = 0.4 m and ri = 0.02 m, respectively. The
torus and a quarter of the spherical domain are shown in Figure 12.

The whole domain is discretized with 40,094 3D quadratic elements and
54,040 nodes. As can be seen in Figure 13, a large number of nodes should be
used, especially near the heat source region.

Variations of field variables along the y and z axes are depicted in
Figures 14 and 15, respectively. As it can be observed, the MFS results are in
a close agreement with the FEM solutions with a note that the modeling of
the problem in the proposed MFS is much simpler than that in the FEM.

To verify the accuracy of the proposed formulation for curved surface heat
sources, another 3D example is analysed. In this example, the previous sphere
with a cylindrical surface heat source is considered. The base of the cylinder is
centred at (0, 0, 0). The radius and the height of the cylindrical heat source are
0.2 m and 0.8 m, respectively. The heat source intensity is assumed a function
of x, y and z coordinates as follows:
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Figure 12 Finite element modelling of the circular heat source by a torus with a small
thickness.

Figure 13 The nodes in the finite element discretization of the sphere with circular heat
source.
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Figure 14 The MFS and FEM results for (a) the temperature (b) horizontal displacement and
(c) x-direction normal stress along the y-axis in the sphere with a circular heat source.

s = 20y (1 + exz) kW/m2 (37)

In the MFS modelling, 8 quadrilateral quadratic segments are used for
discretization of the cylindrical surface heat source. Pseudo boundary, number
of source points and collocation points are the same as the previous example.
The results of the proposed MFS are compared with the results obtained by
the FEM. In the finite element modelling, the surface heat source is considered
as a cylindrical volume heat source with a small thickness of 0.04. The
cylindrical volume and a quarter of the spherical domain are shown in the
Figure 16.

The total number of 3D quadratic elements is 33448 which include 46376
nodes. The nodal configuraion of the finite element mesh is shown in Figure 17.

The variations of field variables along the y and z axes are shown in
Figures 18 and 19, respectively. These figures show very good agreement
between the proposed MFS results and the FEM solutions. Also, as presented
in Section 3.3, it can be seen from Figure 19 that the stress, displacement and
temperature have finite values at points exactly on the curved surface heat
source.
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Figure 15 The MFS and FEM results for (a) the temperature (b) horizontal displacement and
(c) x-direction normal stress along the z-axis in the sphere with a circular heat source.

Figure 16 Finite element modelling of the curved surface heat source by a thin-walled
cylinder.
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Figure 17 The nodes in the finite element discretization of the sphere with cylindrical heat
source.

Figure 18 The MFS and FEM results for (a) the temperature (b) vertical displacement and
(c) y-direction normal stress along the y-axis in the sphere with a cylindrical heat source.
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Figure 19 The MFS and FEM results for (a) the temperature (b) vertical displacement and
(c) y-direction normal stress along the z-axis in the sphere with a cylindrical heat source.

5 Conclusions

A formulation based on the MFS-MPS was presented for 2D and 3D
thermo-mechanical problems involving curved line/surface heat sources. The
particular solutions associated with the arbitrary heat sources were presented
in simple integral forms. These integrals were evaluated efficiently without
considering any internal cells or internal points. Unlike the FEM, modelling
of the concentrated heat sources is very simple in the proposed MFS. For
reliable FEM modelling, a 2D curved line heat source should be modelled
as an area heat source over a narrow region of the domain and 3D curved
line/surface heat sources should be modelled as volume heat sources with small
thicknesses. The accuracy of the analysis by the FEM depends on the mesh
density especially near the concentrated heat source. On the other hand, in the
presented MFS, a small number of source and collocation points are sufficient
to achieve accurate results. By presenting four examples, the effectiveness
and efficiency of the proposed formulation were demonstrated. The obtained
results showed that the proposed MFS is very efficient.
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[28] Liu, Q. G., & Šarler, B. (2017). A non-singular method of fundamental
solutions for two-dimensional steady-state isotropic thermoelasticity
problems. Engineering Analysis with Boundary Elements, 75, 89–102.

[29] Becker, A. A. (1992). The Boundary Element Method in Engineering:
A Complete Course. McGraw-Hill Book Company.

[30] Stroud, A. H., & Secrest, D. (1966). Gaussian quadrature formulas. New
York, Prentice-Hall.

[31] Telles, J. C. F. (1987). A self-adaptive coordinate transformation for
efficient numerical evaluation of general boundary element integrals.
International Journal for Numerical Methods in Engineering, 24,
959–973.

[32] Aliabadi, M. H. (2002). The boundary element method, applications in
solids and structures (Vol.2). Chichester: John Wiley & Sons.

[33] Hematiyan, M. R., Haghighi, A., & Khosravifard, A. (2018). A two-
constrained method for appropriate determination of the configuration of
source and collocation points in the method of fundamental solutions for
2D Laplace equation. Advances in Applied Mathematics and Mechanics,
10, 554–580.



Analysis of Two- and Three-dimensional Steady-state 79

Biographies

M. Mohammadi received his Ph.D. in Mechanical Engineering from
Shiraz University, Shiraz, Iran in 2010. His thesis was about the boundary
element analysis of thermo-mechanical problems. He is currently an Assistant
Professor at the Department of Mechanical Engineering of Islamic Azad
University, Shiraz branch, where he has been a faculty member since 2010.
His research interests include computational mechanics, boundary element
method, method of fundamental solutions, elasticity and thermo-elasticity.

M. R. Hematiyan received his Ph.D. in Mechanical Engineering from
Shiraz University, Iran in 2000. He is currently a full professor at the
Department of Mechanical Engineering of Shiraz University, where he has
been a faculty member since 2001. He has authored more than 75 journal
papers and has been supervisor of more than 70 Ph.D. and M.Sc. thesis. His
research interests include computational mechanics, inverse problems, finite
element and mesh-free methods, boundary element method, elasticity, thermo-
elasticity, hyper-elasticity, and visco-elasticity.



80 M. Mohammadi et al.

A. Khosravifard received his Ph.D. in Mechanical Engineering from Shiraz
University, Shiraz, Iran, in 2012. He joined the Department of Solid Mechanics
at School of Mechanical Engineering, Shiraz University as an Assistant
Professor, in 2013. He has authored around 50 scientific publications. His areas
of expertise include computational mechanics, meshfree methods, fracture
mechanics, inverse methods, solidification and moving boundary problems,
static and dynamic analysis of structures, and functionally graded materials.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


