
The BEM Solutions of MHD Flow and Heat
Transfer in a Rectangular Duct with
Temperature Dependent Viscosity

Elif Ebren Kaya∗ and Münevver Tezer-Sezgin
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Abstract

The steady, laminar, fully developed magnetohydrodynamic (MHD) flow of
an incompressible, electrically conducting fluid with temperature dependent
viscosity is studied in a rectangular duct together with its heat transfer.
Although the induced magnetic field is neglected due to the small Reynolds
number, the Hall effect, viscous and Joule dissipations are taken into consider-
ation. The momentum and the energy equations are solved iteratively. Firstly,
the momentum equation is solved by using the boundary element method with
a parametrix since the diffusion term contains variable viscosity parameter
depending on the temperature exponentially. Next, the momentum equation is
also solved by using the dual reciprocity boundary element method (DRBEM)
for comparison. The energy equation is solved by using the DRBEM keeping
all the terms containing the velocity as inhomogeneity. The temperature
and the velocity behaviours are examined for several values of Hartmann
number, dimensionless viscosity parameter, Brinkmann number and the Hall
parameter. As Hartmann number is increasing, the velocity magnitude drops
which is a well known property of the MHD duct flow. Increasing viscosity
parameter reduces both the flow and the temperature magnitudes whereas the
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increase in the Hall parameter accelerates the flow and increases the fluid
temperature.

Keywords: BEM, DRBEM, MHD duct flow, variable viscosity.

1 Introduction

The problems of MHD flow and heat transfer via rectangular ducts have
very important applications in areas such as designing heat transfer, cool-
ing of electronic systems, chemical reactors, nuclear reactor, combustion
systems and MHD generators. MHD generators of rectangular cross-section
are widespread applications of MHD flow. They are made of tubes having
insulating walls which are cut with two electrodes placed parallel to each other
and perpendicular to insulating walls. This configuration resembles the MHD
flow in rectangular duct [5]. Therefore, there have been many theoretical and
experimental studies for the MHD flow in rectangular ducts. Some researchers
and their methods are the followings. Türk and Tezer-Sezgin [13] have studied
natural convection flow in square enclosures under magnetic field using the
finite element method (FEM). In their study, the momentum equations include
the magnetic effect and the induced magnetic field, due to the small magnetic
Reynolds number, is neglected. They showed that, the FEM with quadratic
elements enables one to solve MHD natural convection flow under the effect
of a magnetic field for large values of Rayleigh and Hartmann numbers.
Alsoy-Akgün and Tezer-Sezgin [2] have studied natural convection MHD
flow equations in cavities by using the dual reciprocity boundary element
method and the differential quadrature method (DQM). They have compared
these two methods in terms of the flow and temperature behaviors concluding
that the DRBEM and the DQM give almost the same accuracy. Although
these studies differ from each other in their numerical implementations, they
have a common feature which is the constant viscosity in the momentum
equations considered in all of them. However, the momentum equations can
contain a variable viscosity depending on space and time variables and even
on the temperature. Sayed-Ahmed and Attia [10] have solved MHD flow and
heat transfer with variable viscosity for Newtonian fluids in a rectangular
duct with the Hall effect by using the finite difference method (FDM). Their
results are confirmed by an experimental study of laminar flow and heat
transfer in 2:1 rectangular duct filled with mineral oil, conducted by Xie and
Hartnett [14] since the viscosity of the mineral oil changes dramatically. They
obtained good agreement between the experimental data and the analytical
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solution. Shin et al. [11] also investigated the influence of variable viscosity of
temperature-dependent fluids on the laminar heat transfer and friction factor in
a 2:1 rectangular duct. The governing mass, momentum and energy equations
were solved using a finite volume method (FVM). They get the excellent
agreement with the experimental results conducted by Xie and Hartnett [14].
Evcin et al. [6] have also studied the same variable viscosity MHD flow and
heat transfer problem by using mixed finite element method (FEM) together
with optimal control techniques in order to control the system in desired
velocity and temperature by the help of physically significant parameters of
the system as control variables. Moreover, Prasad et al. [9] have presented
FDM solution for the non-linear equations of MHD flow and heat transfer of
an electrically conducting fluid over a stretching sheet with variable thickness.
Cherlacola et al. [4] have examined the magneto hydrodynamic boundary layer
flow with heat and mass transfer of Williamson nanofluid over a stretching
sheet with variable thickness and variable thermal conductivity under the
radiation effect. They have solved the differential equations subjected to
the appropriate boundary conditions by using the spectral quasi-linearisation
method (SQLM) and the sheet is non-flat in their study. Türk [12] also has
proposed a Chebyshev spectral collocation method (CSCM) approximation to
solve the thermally coupled MHD equations. In this study, the flow is subjected
to a vertically applied magnetic field, and the presence of the induced magnetic
field is also taken into consideration.

There are quite a number of fluid dynamics problems in which the fluid
viscosity is varying with space, time and even with temperature. Among
the viscosity depending on the temperature, exponential dependence is the
most suitable according to the experimental results which has been indicated
in [7].Also, Capone and Gentile [3] have considered the exponentially varying
temperature dependent viscosity and they have constructed the nonlinear
stability analysis of convection for fluids with stress-free boundary conditions
by using the Lyapunov direct method. In our case, the diffusion operator
contains the viscosity function in its outer derivative terms. Thus, if the
weighted residual statement is required for an equation containing a diffusion
operator with a variable function, the corresponding fundamental solution
or a weight function is required. For this purpose, Al-Jawary and Wrobel [1]
derived such a weight function for variable coefficient diffusion equation.They
have also considered the general partial differential equation with variable
coefficients and they have used a parametrix (Levi function) which is usually
available to solve the problem containing variable coefficients directly and
accurately. In their study, with the help of the parametrix, the differential
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equation is reduced to a boundary-domain integral or integro-differential
equation (BDIE or BDIDE).

In this paper, the steady, laminar, fully developed MHD flow of an
incompressible, electrically conducting fluid with temperature dependent
viscosity is solved in a rectangular duct together with its heat transfer by
using both the boundary element method (BEM) with a parametrix (parametrix
BEM) and the DRBEM with the fundamental solution of Laplace’s equation.
Although, the induced magnetic field is neglected by taking small magnetic
Reynolds number, the Hall effect, viscous and Joule dissipations are taken into
consideration. The BEM procedure given in this paper uses the fundamental
solution (parametrix) which treats the variable viscosity in the diffusion term
directly [1]. That is, it is capable of addressing to the diffusion operator of the
equations in its original form. Then, the momentum equation is also solved by
using the dual reciprocity boundary element method using the fundamental
solution of Laplace’s equation as is done in the energy equation by taking all the
terms other than Laplacian as inhomogeneity. The velocity and the temperature
profiles are obtained for several values of Hartmann number (Ha), Brinkmann
number (Br), viscosity parameter (B) and the Hall parameter (m). The BEM
implementations (both parametrix BEM and the DRBEM) discretizing only
the boundary with constant elements capture the well known behavior of the
MHD flow and the temperature of the fluid. Therefore, their computational
costs are very small comparing with the other numerical methods, especially
the DRBEM requires less CPU time since it involves no domain integral
computation.

2 Mathematical Formulation of the Problem

The laminar, steady flow of a viscous, incompressible, electrically conducting
fluid is considered in a long pipe with the pipe-axis velocity w = w(x, y)
and the temperature T = T (x, y) varying only in the cross-section (duct)
Ω = [0, a] × [0, b] of the pipe. The governing non-dimensional momentum
and energy equations with viscosity coefficient μ = e−BT are given in the
domain (duct) Ω as

∂

∂x

(
μ

∂w

∂x

)
+

∂

∂y

(
μ

∂w

∂y

)
= −1 +

Ha2

1 + m2 w, (1)

∇2T + Brμ

[(
∂w
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)2

+
(

∂w
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)2]
+

Ha2Br

1 + m2 w2 =
w

wm
, (2)
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Figure 1 Physical configuration of the problem.

where viscosity parameter, B, Hall parameter, m, Hartmann number, Ha and
Brinkmann number, Br are given as

B = (blρcpwma2(dTm/dz))/k, m = σβB0, wm =
∫ b

0

∫ a

0
wdxdy,

Ha =
aB0

√
σ√

μ0
, Br =

kμ2
0(−dp/dz)

ρcpwm(dTm/dz)
.

(3)

Here, B0, σ and β are the applied magnetic field intensity, electric
conductivity of the fluid and the Hall factor, respectively. ρ, cp, k, μ0 and
l, a, b are the density, the specific heat capacity, the thermal conductivity,
the viscosity at T = Tm of the fluid and the characteristic lengths in the
z- and x-, y-directions, respectively. dp

dz and dTm
dz represent uniform pressure

and temperature gradients in the pipe-axis direction, respectively. As is clearly
seen from the definition of μ above, the relation between the temperature and
the viscosity is stated such that the increase of the temperature results in
exponential decrease in the viscosity coefficient. This is due to the attractive
interactions of the fluid molecules. Turning back to our concern, the boundary
conditions w = 0 and T = 0 are imposed on the walls Γ of the duct indicating
no-slip velocity and the cold wall conditions.

3 The BEM Implementations

3.1 The Parametrix BEM

The velocity Equation (1) is solved by using the BEM with the fundamental
solution of diffusion equation containing a variable coefficient which is called
as a parametrix P (x, xi; y, yi) = ln|r−ri|

2πμ(xi,yi)
given in [1], where r = (x, y)
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and ri = (xi, yi) are the variable and fixed points in Γ ∪ Ω, respectively, Γ
defines the boundary of the duct Ω. The boundary of the duct is discretized
by N number of constant elements. Multiplying the velocity Equation (1) by
the parametrix P (x, xi; y, yi) and integrating over the domain, the equation
is obtained as∫

Ω

(
∂

∂x

(
μ

∂w

∂x

)
+

∂

∂y

(
μ

∂w

∂y

) )
P (x, xi; y, yi)dΩ

=
∫

Ω

(
− 1 +

Ha2

1 + m2 w

)
P (x, xi; y, yi)dΩ, i = 1, . . . , N (4)

where i is the source point.
Applying Green’s second identity two times, the following discretized

boundary integral equation is obtained

ciwi − 1
2π

N∑
j=1

∫
Γj

w
(r − ri)�n
|r − ri|2

μ(x, y)
μ(xi, yi)

dΓj

+
1
2π

N∑
j=1

∫
Γj

μ(x, y)
∂w

∂n
ln|r − ri| 1

μ(xi, yi)
dΓj

+
1

2πμ(xi, yi)

(N/4)2∑
j=1

∫
Ωj

w
(r − ri)−→n
|r − ri|2

∂μ(x, y)
∂n

dΩj

=
1

2πμ(xi, yi)

(N/4)2∑
j=1

∫
Ωj

ln|r − ri|
(

−1 +
Ha2

1 + m2 w

)
dΩj ,

i = 1, . . . , N (5)

where i denotes the source point, Γj and Ωj are constant boundary element
and domain cell, respectively. The vector �n is the outward normal vector to Γ.

The Equation (5) is rewritten in matrix-vector form

Hw − Gq = I1(w) − I2(w), (6)

where the vector q = μ(x, y)∂w
∂n , and the entries of the matrices H and G are

given as

Hij = −1
2
δij +

1
2π

∫
Γj

(r − ri)�n
|r − ri|2

μ(x, y)
μ(xi, yi)

dΓj , Hii = −
N∑

j=1,j �=i

Hij ,
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Gij =
1
2π

∫
Γj

ln|r − ri| 1
μ(xi, yi)

dΓj , Gii =
1

μ(xi, yi)
ξ

2π

(
ln

(
ξ

2

)
− 1

)
,

(7)

where ξ represents the length of the constant boundary element.
The vectors I1(w) and I2(w) have the entries as

I1
i (w) =

1
2πμ(xi, yi)

(N/4)2∑
j=1

∫
Ωj

wi
(r − ri)−→n
|r − ri|2

∂μ(x, y)
∂n

dΩj

I2
i (w) =

1
2πμ(xi, yi)

(N/4)2∑
j=1

∫
Ωj

ln|r − ri|
(

−1 +
Ha2

1 + m2 wi

)
dΩj ,

(8)

with i = 1, . . . , N and j = 1, . . . , (N/4)2.
The unknown normal derivative vector q on the boundary can be solved

from the system (6) since w = 0 everywhere on the boundary nodes by
Gaussian elimination.Then, these boundary values are used in the Equation (5)
by taking ci = 1 to compute the velocity values w at each interior
point i,

wi =
N∑

j=1

H ijwj −
N∑

j=1

Gijqj −
(N/4)2∑

j=1

I1
i (w) +

(N/4)2∑
j=1

I2
i (w), i = 1, . . . , L

(9)
where L is the number of interior points and

H ij =
1
2π

∫
Γj

(r − ri)�n
|r − ri|2

μ(x, y)
μ(xi, yi)

dΓj , i = 1, . . . , L, j = 1, . . . , N

3.2 The DRBEM Formulation

The velocity Equation (1) is rewritten as

∇2w =
1
μ

(
−1 +

Ha2

1 + m2 w − ∂μ

∂x

∂w

∂x
− ∂μ

∂y

∂w

∂y

)
, (10)

to be able to use the fundamental solution of Laplace’s equation, u∗ = ln|r−ri|
2π

given in [8]. Multiplying by u∗ both sides of the equation and applying Green’s
second identity two times the following boundary-domain integral equation
is obtained
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ciwi −
∫

Γ
q∗wdΓ +

∫
Γ

u∗ ∂w

∂n
dΓ

=
∫

Ω

1
μ

(
−1 +

Ha2

1 + m2 w − ∂μ

∂x

∂w

∂x
− ∂μ

∂y

∂w

∂y

)
u∗dΩ,

(11)

where q∗ = ∂u∗
∂n , i = 1, . . . , N .

The integrand on the right hand side of the Equation (11) is considered
as inhomogeneity b1(x, y). This inhomogeneity term can be expanded by a
series of a radial basis functions as

b1(x, y) =
1
μ

(
−1 +

Ha2

1 + m2 w − ∂μ

∂x

∂w

∂x
− ∂μ

∂y

∂w

∂y

)
=

N+L∑
j=1

αjfj(x, y),

(12)
where L denotes the number of interior points, fj(x, y) are the radial basis
functions which are connected to the particular solutions ûj with ∇2ûj = fj ,
the coefficients αj are undetermined constants.

Substituting fj = ∇2ûj in (12) and applying Green’s second identity
two times again for the right hand side of the Equation (11), the following
boundary integral equation is obtained.

ciwi −
∫

Γ
q∗wdΓ +

∫
Γ

u∗ ∂w

∂n
dΓ

=
N+L∑
j=1

αj

(
ciûij −

∫
Γ

q∗ûjdΓ +
∫

Γ
u∗q̂jdΓ

)
,

(13)

where q̂j = ∂ûj

∂n = ∂ûj

∂x
∂x
∂n + ∂ûj

∂y
∂y
∂n , i = 1, . . . , N .

Constructing the matrices Û , Q̂ and coordinate matrix F by taking the
vectors ûj , q̂j and fij = 1 + rij , rij being the distance from the point i to
the point j, as columns respectively, and evaluating the values of b1 at N + L
points, a set of linear equations as b1 = Fα is obtained. The resulting H and
G matrices are extended to (N + L) × (N + L) matrices by adding zero
and identity matrices [8]. Thus, the Equation (13) can be written now as a
(N + L) × (N + L) system.

Hw − G
∂w

∂n
= (HÛ − GQ̂)F−1b1 (14)
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where the vector b1 has entries as

b1
i =

{
1
μ

[
− 1 +

Ha2

1 + m2 wi −
(

∂μ

∂x

)
i

(
∂w

∂x

)
i

−
(

∂μ

∂y

)
i

(
∂w

∂y

)
i

]}
,

i = 1, . . . , N + L.
(15)

and the vectors in this equation are multiplied entrywise.
The space derivatives of the velocity w and viscosity coefficient μ in the

vector b1 are computed by using the coordinate matrix F as

∂w

∂x
=

∂F
∂x

F−1w,
∂w

∂y
=

∂F
∂y

F−1w,
∂μ

∂x
=

∂F
∂x

F−1μ and

∂μ

∂y
=

∂F
∂y

F−1μ. (16)

Then, the Equation (14) becomes

Hw − G
∂w

∂n
=(HÛ − GQ̂)F−1

{
1
μ

[
− 1 +

Ha2

1 + m2 w − ∂F
∂x

F−1μ
∂F
∂x

F−1w

− ∂F
∂y

F−1μ
∂F
∂y

F−1w

]}
(17)

The components of H and G matrices for a constant element in DRBEM
are the same as the matrices H and G given in the Equation (7) if μ(x, y) = 1
is taken in parametrix BEM. Thus, the Equation (14) is rewritten in matrix-
vector form

Hw − Gq = (HÛ − GQ̂)F−1 1
μ

(−1), (18)

where the entries of the matrix H are given as

H ij = Hij − Rij , where

R = (HÛ − GQ̂)F−1 1
μ

(
Ha2

1 + m2 − ∂F
∂x

F−1μ
∂F
∂x

F−1 − ∂F
∂y

F−1μ
∂F
∂y

F−1
)

,

H ii = −
N∑

j=1,j �=i

H ij . (19)

Then, the energy Equation (2) is solved by using the dual reciprocity
boundary element method. Similar to the flow Equation (10), all the terms
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other than ∇2T are treated as inhomogeneities. Multiplying by u∗ both sides
of the equation and applying Green’s second identity two times on the left
hand side of the equation, the following boundary-domain integral equation
is obtained

ciTi −
∫

Γ
q∗TdΓ +

∫
Γ

u∗ ∂T

∂n
dΓ

=
∫

Ω

(
− Brμ

[(
∂w

∂x

)2

+
(

∂w

∂y

)2]
− Ha2Br

1 + m2 w2 +
w

wm

)
u∗dΩ

=
∫

Ω
b2(x, y)u∗dΩ, (20)

where

b2(x, y) = −Brμ

[(
∂w

∂x

)2

+
(

∂w

∂y

)2]
−Ha2Br

1 + m2 w2+
w

wm
=

N+L∑
j=1

βjfj(x, y)

(21)

is also approximated using the radial basis functions fj(x, y). βj are unde-
termined coefficients to be determined from the system Fβ = b2 when b2 is
collocated at N + L points.

Substituting fj = ∇2ûj in (21) and therefore in (20), and applying Green’s
second identity two times again for the right hand side of the Equation (20),
the following boundary integral equation is obtained

ciTi −
∫

Γ
q∗TdΓ +

∫
Γ

u∗ ∂T

∂n
dΓ

=
N+L∑
j=1

βj

(
ciûij −

∫
Γ

q∗ûjdΓ +
∫

Γ
u∗q̂jdΓ

)
. (22)

Thus, the equation (22) results in the matrix-vector system

HT − G
∂T

∂n
= (HÛ − GQ̂)F−1b2 (23)

where the vector b2 has entries as

b2
i = −Brμ

[(
∂w

∂x

)2

i

+
(

∂w

∂y

)2

i

]
− Ha2Br

1 + m2 w2
i +

wi

wm
, i = 1, . . . , N +L.

(24)
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The squares of the vectors
(

∂w
∂x

)
i
,
(

∂w
∂y

)
i

are computed by multiplying

corresponding entries.
The squares of the first order derivatives of w in b2 vector in the equation

(21) are also computed with the help of coordinate matrix F as

(
∂w

∂x

)2

=
(

∂F
∂x

F−1w

)2

,

(
∂w

∂y

)2

=
(

∂F
∂y

F−1w

)2

, (25)

Then, the Equation (23) becomes

HT − G
∂T

∂n
= (HÛ − GQ̂)F−1

(
− Brμ

[(
∂F
∂x

F−1w

)2

+
(

∂F
∂y

F−1w

)2]

− Ha2Br

1 + m2 w2 +
w

wm

)
. (26)

Now, first the parametrix BEM discretized flow Equation (6) and the
DRBEM discretized temperature Equation (26) are going to be solved itera-
tively giving the flow and the temperature of the fluid. Then, also the DRBEM
discretized Equations (18) and (26) are going to be solved iteratively to
determine the velocity and the temperature of the MHD flow to be able to
compare with the parametrix BEM results.

4 Numerical Results and Discussions

The matrix-vector Equations (6) and (18) for the flow are solved by using
the BEM using a fundamental solution which is a parametrix and by using
the fundamental solution of Laplace’s equation in the DRBEM, respectively.
Then, the matrix-vector Equation (26) for the temperature is solved by using
the DRBEM. The equations are solved iteratively by taking w = 0 and T = 0
initially. The domain of the problem, the cross-section of the pipe is taken as
a square [0, 1] × [0, 1] and discretized by using N = 100 (25 on each side),
and N = 180 (45 on each side) constant boundary elements and L = 625,
and L = 2025 interior nodes (interior domain mesh is obtained from the lines
passing through the end points of the constant boundary elements) to obtain
the solution using the BEM with a parametrix, and by using N = 180 constant
boundary elements and L = 2025 interior nodes to obtain the solution using
the DRBEM. The velocity and temperature isolines on the cross-section
[0, 1] × [0, 1] of the pipe are simulated for several values of the Brinkman
number as Br = 0, 1, the Hartmann number range 0 ≤ Ha ≤ 10, the viscosity
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parameter B = 0, 1, 2 and the Hall parameter m = 0, 3, 8. The velocity of the
flow is relaxed as wn+1 = αwn+1 + (1 − α)wn with a relaxation parameter
0 < α < 1 to slow down the sharp decrease of velocity magnitude in using the
parametrix BEM. The domain integrals in the parametrix BEM formulation
are computed by using the composite trapezoidal rule.

Figure 2(a, b) show the velocity and temperature behaviors as Hartmann
number is increasing in which the velocity is obtained from the parametrix
BEM and the DRBEM, respectively. It is observed that as Hartmann number
increases, the velocity magnitude drops, due to the damping effect of the
magnetic field with increasing intensity, this is a well-known flattening
tendency of the MHD duct flow. It is observed that as Hartmann number
increases, the temperature magnitude also drops. The magnitudes of the
velocity obtained from the parametrix BEM are slightly less than the velocity
magnitudes obtained with the DRBEM. This may be due to the computations
of the domain integrals.

From Figure 3(a, b) and also from Figure 4(a, b), it is also observed
that, as the viscosity parameter is increasing, the magnitudes of the velocity
and the temperature drop due to the increment in the viscosity for different
Hall parameter and Brinkmann number values. The same is observed as, the
increase in the velocity magnitudes in the parametrix BEM is less than the
increase in the velocity magnitudes obtained from the DRBEM.

From Figure 5(a, b) and also from Figure 6(a, b) it is seen that when the
Hall parameter increases, the damping effect of the magnetic force decreases
due to the term σ/(1 + m2). That is, the velocity magnitude increases. It is
also observed that as the Hall parameter increases, the effective conductivity
decreases, which reduces the Joule dissipation. Therefore, the magnitude of
the temperature also increases.

The effects of the Hall parameter and Hartmann number on the Nusselt
number, Nu, are given on Tables 1–3 where Nu = − 1

4Tm
and Tm =

1
wm

∫ 1
0

∫ 1
0 wTdxdy respectively, for the parametrix BEM and the DRBEM

results.
It is observed that as Hartmann number increases, the values of Nusselt

number are increasing as shown in Tables 1–3 since the values of the
temperature decrease. However, as the Hall parameter is increasing, the values
of Nusselt number are decreasing since the values of the temperature increase.
But, it can be seen that, the effect of Hall parameter on Nusselt number may
be neglected for small values of Hartmann number (Ha < 2).
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Figure 2 Equavelocity and isolines for m = 0, Br = 0 and B = 1. (a) pBEm, (b) DRBEM.
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Figure 3 Equavelocity and isolines for Ha = 3, m = 0 and Br = 0. (a) pBEm,
(b) DRBEM.
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Figure 4 Equavelocity and isolines for Ha = 3, m = 3 and Br = 1. (a) pBEm,
(b) DRBEM.
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Figure 5 Equavelocity and isolines for Ha = 3, Br = 0 and B = 1. (a) pBEm, (b) DRBEM.
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Figure 6 Equavelocity and isolines for Ha = 3, Br = 1 and B = 1. (a) pBEm, (b) DRBEM.
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The solutions obtained by the parametrix BEM and the DRBEM in terms
ofwmax andTmin slightly differ (still with almost10−2 accuracy) in the values,
they all catch the same behaviour of the velocity and the temperature of the
MHD duct flow. When the number of boundary elements is increased from 100
to 180, Nusselt numbers are computed more accurately than DRBEM when
FEM results [6] are taken as a basis. As the number of boundary elements is
increased form 100 to 180 in parametrix BEM, the Nusselt numbers are close
with almost 10−2 accuracy as shown in Tables 1–3 and in agreement with FEM
results given in [6]. However, m = 0 case needs relaxation parameter in using
parametrix BEM and parametrix BEM has to compute domain integrals. This
is why it takes more CPU time compared to DRBEM. Thus, the Table 4 shows
that solving this MHD flow problem with temperature dependent viscosity by
using the DRBEM is more time saving than solving with the parametrix BEM
formulation due to the domain integrals computations. For this reason the
DRBEM is preferable for solving this MHD flow problem.

Table 1 The effect of the Hall parameter, m, and Hartmann number, Ha, on Nusselt number,
Nu, by using the parametrix BEM with 100 boundary elements (Br = 0, B = 1)

m Ha 0.0 1.0 2.0 3.0 4.0 5.0
0.0 3.5662 3.6113 3.7533 3.7772 3.8586 3.9340
3.0 3.5662 3.5711 3.5896 3.6082 3.6247 3.6774
5.0 3.5662 3.5680 3.5738 3.5873 3.5981 3.6101
8.0 3.5662 3.5669 3.5692 3.5730 3.5830 3.5889

Table 2 The effect of the Hall parameter, m, and Hartmann number, Ha, on Nusselt number,
Nu, by using the parametrix BEM with 180 boundary elements (Br = 0, B = 1)

m Ha 0.0 1.0 2.0 3.0 4.0 5.0
0.0 3.6125 3.6595 3.8099 3.8342 3.9202 4.0000
3.0 3.6125 3.6176 3.6368 3.6563 3.6735 3.7294
5.0 3.6125 3.6144 3.6204 3.6344 3.6458 3.6583
8.0 3.6125 3.6132 3.6156 3.6196 3.6299 3.6361

Table 3 The effect of the Hall parameter, m, and Hartmann number, Ha, on Nusselt number,
Nu, by using the DRBEM with 180 boundary elements (Br = 0, B = 1)

m Ha 0.0 1.0 2.0 3.0 4.0 5.0
0.0 3.6276 3.6417 3.6825 3.7467 3.8294 3.9250
3.0 3.6276 3.6290 3.6333 3.6403 3.6500 3.6623
5.0 3.6276 3.6282 3.6298 3.6325 3.6363 3.6411
8.0 3.6276 3.6278 3.6285 3.6296 3.6311 3.6330
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Table 4 CPU Times in pBEM and DRBEM with 180 boundary elements (Br = 0, B = 1)
pBEM DRBEM

m Ha 3.0 5.0 10.0 3.0 5.0 10.0
0.0 139.2711 69.8268 21.2650 13.3409 13.4086 13.3453
3.0 21.7195 28.3811 132.2293 13.4548 13.3198 13.3639
5.0 21.4600 21.6551 42.2826 13.4389 13.3265 13.1714
8.0 14.6996 21.3188 21.5575 13.3785 13.2181 13.2437
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Figure 7 Midline velocity profiles at y = 0.5 using DRBEM.
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Figure 8 Midline velocity profiles at y = 0.5 using DRBEM.

Figures 7 and 8 show the velocity profiles along the midline of the
rectangular duct obtained by using the DRBEM for increasing Hartmann
number, viscosity parameter and Hall parameter. It can be seen from the
Figure 7(a), as Hartmann number increases, the velocity magnitude drops
for fixed values of the Hall parameter, Brinkman number and viscosity
parameter. From the Figure 7(b) it is observed that, as the viscosity parameter
is increasing, the magnitude of the velocity drops for fixed values of Hartmann
number, Hall parameter and Brinkman number. Also, it can be seen from the
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Figure 9 Midline temperature profiles at y = 0.5 using DRBEM.

Figure 8(a, b) that, as the Hall parameter increases, the flow magnitude also
increases for Hartmann number, viscosity parameter and Brinkman number
values as in the refence papers [10] and [6].

Figure 9 shows the temperature profiles along the midline of the rectan-
gular duct obtained by using the DRBEM for increasing Hartmann number
and viscosity parameter. It can be seen from the Figure 9(a), as Hartmann
number increases the temperature magnitude drops for fixed values of the Hall
parameter, Brinkman number and viscosity parameter. This is why the terms
which are multiplied by these parameters form the force term for the diffusion
equation for the temperature. Figure 9(b) the effect of viscosity parameter
is almost negligible in the magnitude of the temperature for fixed values of
Hartmann number, Hall parameter and Brinkman number.

Finally, the Figures 10–13 show velocity and temperature profiles obtained
from both the parametrix BEM and the DRBEM for increasing Hartmann
number, viscosity parameter and Hall parameter along the midline of the
rectangular duct.Although the velocity magnitudes obtained by the parametrix
BEM is less than the velocity magnitudes obtained by the DRBEM, the
velocity profiles show the same flattening tendency behavior of the MHD
duct flow. From Figure 11 it is seen that, as the viscosity parameter increases,
the difference between the velocity magnitudes obtained from the parametrix
BEM and the DRBEM increases due to the increment in the viscosity term
μ = e−BT . We can see from Figure 11 that, as Hartmann number increases,
the difference between the velocity magnitudes obtained from the parametrix
BEM and the DRBEM increases due to the increment in the nonlinearity term
Ha2

1+m2 w, and from Figure 12, when Hall parameter is increasing, the effect
of the nonlinearity term decreases and so the difference between the velocity
magnitudes obtained from the parametrix BEM and the DRBEM decreases.
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Figure 10 Midline velocity profiles at y = 0.5, and Ha = 3, m = 5 and Br = 1.
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Figure 11 Midline velocity profiles at y = 0.5, and Br = 1, B = 1, m = 3.
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Figure 12 Midline velocity profiles at y = 0.5, and Br = 1, B = 1, Ha = 3.

However, the difference in the velocity magnitudes from both methods
results from the extra domain integral computations in the parametrix BEM
procedure. The computations of the domain integrals in parametrix BEM must
be numerical, and the composite trapezoidal rule has been used. They cause
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Figure 13 Midline temperature profiles at y = 0.5, and Br = 1, B = 1, m = 3

at least computational and round-off errors. This may be responsible for
the discrepancies in parametrix BEM and DRBEM velocity values near
the maximum. The increase of the number of constant elements, N , from
100 to 180 does not further reduce this discrepancy in the velocity values.
However, from Figure 13, it can be seen that, the coincidence of the two
methods, the parametrix BEM and the DRBEM is very well in terms of midline
temperature values.

5 Conclusion

The steady, laminar, fully developed MHD flow of an incompressible, elec-
trically conducting fluid with temperature dependent viscosity is studied in
a rectangular duct together with its heat transfer. The flow and the energy
equations of the problem are solved iteratively. Since the diffusion term
contains variable viscosity parameter depending on the temperature expo-
nentially, the velocity equation is first solved by using the boundary element
method with a parametrix which treats the variable viscosity in the diffusion
term directly. Thus, the use of this fundamental solution makes it possible
to discretize the diffusion operator of the equation in its original form. The
velocity and the energy equations are also solved by using the DRBEM with
the fundamental solution of Laplace’s equation. Although the obtained results
from parametrix BEM and the DRBEM differ in wmax and Tmin values,
both method capture the well known flattening property of the MHD duct
flow as Hartmann number is increasing. As the value of Hartmann number
is increasing, the velocity magnitude drops, however, increasing the Hall
parameter, increases the velocity and temperature magnitudes. In addition,
increase in the viscosity parameter reduces the magnitudes of the velocity and
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the temperature due to the exponential increment in the viscosity inside the
diffusion term. Parametrix BEM with the same number of elements requires
more CPU time than DRBEM. In that sense, the DRBEM is still preffered in
solving MHD flow and heat transfer in rectangular pipes.
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