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Abstract

Good estimation of flow mapping (FM) and inverse flow mapping (IFM) for
electrohydraulic valves are important in automation of fluid power system.
The purpose of this paper is to propose adaptive identification methods
based on LSM, BPNN, RBFNN, GRNN, LSSVM and RLSM to estimate
the uncertain structure and parameters in flow mapping and inverse flow
mapping for electrohydraulic valves. In order to reduce the complexity and
improve the identification performance, model structures derived from new
algorithm are introduced. The above identification methods are applied to
map the flow characteristic of an electrohydraulic valve. With the help of
novel simulation architecture via OPC UA, the accuracy and efficiency of
these algorithms could be verified. Some issues like invertibility of flow
mapping are discussed. At last, places and suggestions to apply these methods
are made.
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1 Introduction

For many years, hydraulic-mechanical control systems have been character-
ized by extremely high requirements for good operability, high reliability,
robustness and a favorable cost-benefit ratio. However, an increase in effi-
ciency and productivity for control systems can only be achieved through
the use of electrohydraulic components in combination with electronics,
sensors and software. Among the many components that contributed to the
success of electrohydraulic control systems, the proportional valve elements
are of considerable importance. The flow rate of valves cannot be described
precisely enough by simple physics-based equations because of highly non-
linear characteristic. Offline-Identification of flow mapping is an efficient way
to compensate the complex non-linearity in valves partially. Unfortunately,
this method cannot adapt to changes in the system properties over time,
e.g., the influences of temperature, erosion on the valve edges and wear of
valve spool. Therefore, a self-learning system for adaptive identification of
flow mapping for proportional valve elements in electrohydraulic system is
crucial, in which not only the complex non-linearity can be compensated,
but also the flow mapping can be adapted to the varying system parameters.
Numerous system identification methods are now available, but the suitabil-
ity of adaptive identification for valve elements has not been sufficiently
investigated yet. In addition, it is necessary to make a prediction based on
limited data about flow mapping in some cases. As for the application of flow
mapping, various fields can be found such as demand-based flow rate control
for energy-efficient operation, high precision control, autonomous control,
maintenance and fault detection, condition monitoring and diagnostics. If the
flow rate characteristic relationship Q = f (U, ∆p, T. . . ) is inverted to U = f
(∆p, Q, T. . . ), the inverted flow mapping could also be used for feedforward
control instead of the traditional lookup table method.

Starting with research and comparison of different adaptive identifi-
cation methods, suitable for an adaptive identification of flow mapping
in electrohydraulic valves, considering offline/online-processing capability,
signal-to-nosie ratio, model fidelity and so on, different adaptive identifi-
cation methods based on LSM, BPNN, RBFNN, GRNN and LSSVM are
chosen for offline identification and RLSM for online identification of flow
mapping of electrohydraulic valves. Examples of adaptive identification with
RLSM can be found in the work by Vahidi et al. [1], C. Kamali et al. [2], S.
Dong et al. [3] and M. Kazemi et al. [4]. Modern BPNN was first published by
S. Linnainmaa in his master thesis [5]. BPNN is a supervised learning neural
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Figure 1 Combination of source data types for identification [22].

network, which is one of the most popular NN for approximation. D.J. Jwo
et al. [6] have applied the BPNN to geometric dilution of precision (GDOP)
approximation. BPNN for 2-D GDOP and weighted GDOP approximation
can also be found in works by C.S. Chen [7, 8]. O. Nelles et al. [9] presented
a comparison between RBF networks and classical methods for identification
of nonlinear dynamic systems. RBFNN has wide applications in many areas
such as computer science, aircraft and mathematics [10–14]. The comparison
among BPNN, RBF and GRNN for function approximation could be found
in [15, 16]. The application of LSSVM for classification and regression has
been proposed by [17–19].

Besides the identification methods, the source data types play an impor-
tant role in identification. Figure 1 proposes different source data types for
identification. Static data are time independent. On the contrary, dynamic
data are time dependent and inertial effects have to be taken into account.
The transition data type between them are quasi-static data, which are time
dependent but slow enough to neglect its inertial effects. Usually, structured
data characterize the flow behavior of throttle valves. These data are deter-
mined at discrete input signals, representing the operating range. There is a
high resolution along the x-axis, whereas only a few data point exist along the
y-axis. The data-gap increases the requirements for the training procedures
(optimization) and eventually creates great deviations between model and
estimation. A comprehensive scatter data-set appears to be advantageous
in terms of coverage. However, arbitrary data is difficult to interpret and
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to evaluate, which is why the use of such data is not very widespread.
Limited and noisy flow data are more common. The restrictions mostly result
from limited capacities of the test rig or system setup. Noise is inherent to
measurement data, which requires filtering of data or smoothing capabilities
of the approximation procedures. Operating point data contain operating
points resulting from a typical working cycle of machine. In this paper, quasi-
static data combined with structured data and scattered data are used for
identification.

The subsequent paper is organized as follows: In Section 2, to be
acquainted with the static characteristics of the electrohydraulic valve, a
test rig in laboratory has been set up. After that, a virtual demonstra-
tor with real-time and streaming OPC UA data has been implemented,
which was carried out in simulation environment to validate the adaptive
parameter identification methods. Then the suitable adaptive identification
methods are chosen and derived in Section 3, including LSM, BPNN, RBF,
GRNN, LSSVM and RLSM. After that, the previously developed adaptive
identification methods have been applied in order to obtain the evolving flow
mapping (FM) and inverse flow mapping (IFM) of a piloted proportional
valve. The results demonstrate that the adaptive identification methods have
convincing performance for the flow mapping (FM) and inverse flow mapping
(IFM) of electrohydraulic valves. In Section 4, the previously developed
flow mapping (FM) and inverse flow mapping (IFM) have been applied
in order to enhance the control performance and robustness of system.
Finally, conclusions are drawn and some issues to be solved are discussed in
Section 5.

2 Modelling and Test Rig of Electrohydraulic Valve

2.1 Modelling of Electrohydraulic Valve

Figure 2 shows the construction of a proportional seat valve also known as
“Valvistor”, which is based on hydraulic position feedback.

Due to a negative overlap of the variable orifice between control chamber
(2) and main poppet (3), the pressure pC in the control chamber VC is equal
to the pressure p1 at the valve inlet V1. Because the upper area of the main
poppet is greater than the area facing p1, the closing position of seat valve
is ensured. Opening the pilot valve (1), pressure drop creates the pilot flow
QPV and reduces the control pressure pC in the control chamber. The main
poppet starts moving until the equilibrium of forces is established. Neglecting
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Figure 2 Construction for flow direction p1 to p2 (left)/simplified simulation model structure
(right) [22].

flow- and friction forces and rearranging the force balance equation for the
main poppet leads to:

pC =
p1

ϕ
+

(
ϕ− 1

ϕ

)
p2 with ϕ =

A1 +A2

A1
(1)

The flow rate across control-orifice KC results in:

QC = QPV = KC(x0 + x)
√

∆p1C (2)

Where x is the displacement of main poppet and x0 is the negative
overlap. According to Equations (1) and (2), the following interrelation can
be obtained:

x =

(
QPV
KC

√
(ϕ− 1)

ϕ (p1 − p2)

)
− x0 (3)

The flow rate across main poppet is given by:

QMP = KMPx
√

∆p12 (4)

Neglecting the negative overlap x0 in Equation (3) and substituting
Equation (3) into Equation (4), results in following equation:

QMP =

(
KMP

KC

√
ϕ− 1

ϕ

)
QPV (5)

The total flow rate QPV is given by:

QT = QMP +QPV (6)
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From Equations (5) and (6), it can be seen that Valvistor amplifies a
small flow rate QPV through the pilot valve, which is similar to a transistor.
Therefore, the name “Valvistor” is derived from valve and transistor. More
about the Valvistor can be found in [20, 21] and [22].

2.2 Test Rig and Results

Figure 3 shows the hydraulic plan and corresponding test rig built in lab-
oratory. It consists of a hydraulic reservoir, an adjustable pump, a pressure
relief valve, a test valve (Valvistor), a pressure control valve (load valve) and
a cooling system, which is not shown here. The instrumentations installed
in the system are various pressure sensors, temperature sensor, a flow meter
and displacement sensor, which is responsible to measure the displacement of
main poppet. For the static measurements, the hydraulic system could be seen
as constant pressure system with p0 = 200 bar. Because of limited power of
pump, max. flow rate is restricted to Qmax = 200 l/min. Furthermore, in order
to reduce temperature fluctuation and latency, the oil temperature ϑT is mea-
sured inside the tank instead of at the test valve outlet in ISO 4411. Another
advantage of using tank temperature is the ability to reduce renovation costs
and temperature sensors in multiple actuators system. To acquire the static
characteristics of the electrohydraulic valve, the tank temperatures and the
control signals for test valve are given in the manner of discrete values. At the
same time, with the help of load valve, the outlet pressure p2 varies between
maximum and minimum so that the flow rate through test valve is changed in
a quasi-static manner.

Figure 4 presents the flow rate-pressure drop characteristic curves of test
valve at different control voltages and constant tank temperature (ϑT =
40◦C) on left side. On right side is the flow rate characteristic is plotted
against temperature at different control voltages and a constant pressure drop
(∆p = 70 bar). As a whole, the simulation results are in good agreement

 
Figure 3 Hydraulic plan for test rig (left)/ Test rig in laboratory (right).
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Figure 4 Flow rate – pressure drop characteristic curves at different control voltages Urel

and ϑT = 40◦C (left)/flow rate – temperature characteristic curves at different control
voltages Urel and ∆p = 70 bar (right).

with the measured results. Based on the validated model, it’s convenient to
apply the adaptive identification methods in next section.

2.3 Simulation Test

With the help of software-in-the-loop (SIL) testing, the developed iden-
tification algorithms and control strategies could be tested within virtual
environment. Compared with hardware-in-the-loop (HIL), SIL is a useful
tool to ensure the more efficient software development at earlier stages. It
is not necessary to consider the expensive hardware and physical interfaces.
Figure 5 depicts the MATLAB-SimulationX Co-Simualtion via an OPC UA
coupling layer. The coupling layer is not only responsible for exchange of
process variables and time synchronization between controller and simulation
model, but also for the data exchange between host PC or Cloud and lower
embedded system.

As is well known, model identification consists of model structure
identification and model parameter identification. In general, the change of
system structure is very slow, for example, the erosion in electrohydraulic
valve. Therefore, the offline identification could take place in host PC or
Cloud, which need much computational effort and storage space but less
real-time requirement, especially for the model structure identification. The
online identification and controlling mission would be implemented in lower
embedded system, which could meet the requirement of real-time but suffer
from the lack of computational effort and storage space. In particular, it is
of great significance for model parameter identification which needs to be
running constantly in real time. By this way, it’s easy to solve real-time,
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Figure 5 MATLAB-SimulationX Co-Simulation via OPC UA.

computational effort and storage problem at the same time. Because almost
all the Clouds in the market that support OPC UA are not free, the offline
identification could only be carried out in a host PC for this paper. After the
definition of the interface, all the relevant input/output signals between virtual
controller, simulation model and host PC are exchanged via OPC UA Server.
The UaExpert is designed as an OPC UA viewer, which supports OPC UA
features like browsing OPC UA address space, reading and writing of variable
values and UA attributes, monitoring of data changes and events.

3 Adaptive Identification Algorithm

3.1 Outline of Adaptive Identification

Figure 6 shows the simplified basic sequence of the identification.
The first step is to define the purpose of identification. The purpose of

this paper is to identify the relationship among flow rate Q, control voltage
U , pressure drop ∆p and temperature T for electrohydraulic valves. In other
words, the objective is to identify flow mapping (FM) Q = fFM (U,∆p, T )
and inverse flow mapping (IFM) U = fIFM (Q,∆p, T ). With the help of a
priori knowledge, it can be presented in Figure 7.
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Figure 6 Basic sequence of the identification [23].
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Figure 7 Identification for flow mapping (left)/ Identification for inverse flow mapping
(right).

The next step is the determination of model structure. Model structure
identification is based on the purpose of identification and the application of
mathematical models in practice. Most of the mathematical model structures
of linear systems can be easily identified by input and output data. However,
since the static characteristics of electrohydraulic valves are more complex,
which contain strong nonlinear factors, prior knowledge, assumptions and
experiments have to be included in the determination of model structure.
Based on these, there are two ways to determine the model structure.

The first way is to linearize the nonlinear system at first. Then use the
linear system identification methods. This method will be adopted with LSM
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in the next step. According to Taylor’s theorem, the following Algorithm 1
show the procedure to find optimal approximation for the Valvisor valve‘s
structure:

Algorithm 1 Linearization of model structure for flow mapping identification
Input:

Control voltage U ; pressure drop ∆p; tank temperature T ; flow rate Q
max. Order of Control voltage OrUmax;
max. Order of pressure drop Or∆pmax; max. Order of tank temperature OrTmax;

Output:
Model Criterion AICc
Model Terms Index

1: Normalization U = U/Umax; ∆proot =
√

∆p/∆pmax;T = T/Tmax;Q = Q/Qmax

LOOP Process
2: for OrU = 1:1: OrUmax

3: for Or∆p = 1:1: Or∆pmax

4: for OrT = 1:1: OrTmax

5: n = 0;
6: for i = 0:1: OrU
7: for j = 0:1: Or∆p
8: for k = 1:1: OrT
9: n = n+1; C(n, 1) = i; C(n, 2) = j; C(n, 3) = k; % calculate order

matrices C
10: end for
11: end for
12: end for
13: for i = 1:1:length(C)
14: for k = 1:1:length(Q)
15: X(k, i) = U(k)∧C(i, 1)* ∆p∧rootC(i,2)* T(k)∧C(i,3); % generate new

inputs X
16: end for
17: end for
18: Y = Q;
19: use LSM to fit the data (X, Y) and calculate the significance level of all terms

X(k, i), according to the t-test
20: filter the terms X(k, i) which are not significant at the 5% significance level
21: replace X and generate new inputs XX whose terms are complete significant
22: use LSM to fit the data (XX, Y) and calculate model criterion AICc
23: store the index for terms which are significant
24: end for
25: end for
26: end for
27: find the min. value in model criterion AICc and the corresponding index.
28: at last, get the optimal polynomial for model
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For simplicity, a lot of codes are not shown in algorithm. It is worth
mentioning that the information criteria for model selection, e.g., Akaike
information criterion (AIC), Bayesian information criterion (BIC), corrected
AIC (AICc) and consistent AIC (CAIC). Because AIC tends to overfit in
small data set. Corrected AIC (AICc) is adopted in algorithm for better
performance in small samples. More information about criteria for model
selection can be found in [24–27]. Pressure drop ∆p is replaced by

√
∆p in

algorithm. The reasons for that are closer to the theoretical flow rate formula
and a kind of simple and efficient order-reduction means. By means of this
linearization, it can greatly expand the scope of identification methods. Then
the system approximation can be simplified as:

Q = XT θ (7)

where θ is the estimated parameter and X is the new input whose terms are
complete significant.

The second method is to directly identify the nonlinear system model
structure. For certain types of nonlinear systems, models can be formulated
that match well with the requirements on the model structure of known
identification methods [23]. A nonlinear system identification using different
neural network will be covered in the following.

The following task is the application of suitable identification methods
to identify model parameters. By means of a weighted point evaluation on
the basis of the criteria suitability for linear or nonlinear processes, allowable
signal-to-noise ratio, suitability for offline or online processing, ability for
time variant system and resulting model fidelity, preferred adaptive identifica-
tion methods could be determined. At the end, LSM (Least Squares Method),
BPNN (Back-Propagation Neural Networks), RBFNN (Radial basis function
Neural Network), GRNN (General regression Neural Network) and LSSVM
(Least-Squares Support-Vector Machine) are chosen for offline identification
and RLSM (Recursive Least Squares Method) for online identification of
flow mapping of electrohydraulic valves.

3.2 Offline-Identification Methods

A complete derivation of all considered identification methods would go
beyond the scope of this paper. Therefore, a selection of algorithms is
explained in the following subsections. More Information about offline
identification methods please to refer to [1–19].
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3.2.1 Non-recursive least squares method (LSM)
The non-recursive least squares method (LSM) can be utilized for linear
systems. In general, the model estimation for electrohydraulic valves is
given as:

QM = a1X1 + a2X2 + · · ·+ anXn (8)

The error ε between measured output QP and model estimation QM is
determined as:

QP = QM + ε = a1X1 + a2X2 + · · ·+ anXn + ε (9)

At different time steps t = 1, 2, . . . , t, it is easy to get the measured inputs
Xi and output QP , which can be noted as Xi̇(t) and QP (t). Similarly, the
error ε can be defined as ε(t). Then the system equations can be written as:

QP (1) = a1X1(1) + a2X2(1) + · · ·+ anXn(1) + ε(1)
QP (2) = a1X1(2) + a2X2(2) + · · ·+ anXn(2) + ε(2)

...
QP (t) = a1X1(t) + a2X2(t) + · · ·+ anXn(t) + ε(t)

(10)

If the vector θ and X(t) are defined as θ =
[
a1 a2 · · · an

]T
and X(t) =[

X1(t) X2(t) · · · Xn(t)
]T

, the system equation can be reduced to matrix
form:

QP (t) =
[
X1(t) X2(t) · · · Xn(t)

] [
a1 a2 · · · an

]T
+ ε(t)

= XT (t)θ + ε(t) (11)

If the vector QP ,t, Xt and εt are defined as QP ,t = [QP (1) QP (2) · · ·
QP (t)]T , Xt =

[
XT (1) XT (2) · · · XT (t)

]T
and εt = [ε(1) ε(2) · · ·

ε(t)]T , the system Equations (10) can be reduced to matrix form:

QP ,t = Xtθ + εt (12)

Where θ is the parameter vector, which is to be identified.
According the principle of least square, the cost function:

J(θ) =

L∑
t=1

ε(t)2 =

L∑
t=1

(QP (t)−XT (t)θ)
2

= εTt εt

= [QP ,t −Xtθ]
T [QP ,t −Xtθ] (13)
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To compute the minimum of cost function, the first derivative with regard
to the parameter vector θ is set to zero:

∂J(θ)

θ̂θ

∣∣∣∣
θ̂LS

= −2XT
t (QP ,t −Xtθ) = 0 (14)

This equation can be solved to provide an estimation for parameter
vector θ̂LS as:

θ̂LS(t) =
(
XT

t Xt

)−1
XT

t QP ,t =

[
L∑
t=1

X(t)XT (t)

]−1 [ L∑
t=1

X(t)QP (t)

]
(15)

Where L is the length of data.

3.2.2 Radial basis function neural network (RBFNN)
RBFNN has recently drawn much attention due to their good generalization
ability and a simple network structure that avoids unnecessary and lengthy
calculation as compared to the multilayer feed-forward neutral network
(MFNN). RBFNN has three layers: the input layer Xi, the hidden layer Hj

and the output layer QM , which are shown in Figure 8.
The input vector X and radial basis function vector H in RBFNN are

defined as: X =
[
X1 X2 · · · Xn

]T
and H =

[
H1 H2 · · · Hm

]T
with i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Where Hj is the Gaussian function
value, which is given as:

Hj = exp

(
−‖X − Cj‖

2

2b2j

)
(16)

Figure 8 Typical RBFNN structure [28].
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Where Cj =
[
cj1 cj2 · · · cjn

]T
is the center vector of neural net j

and bj is the width of Gaussian function for neural net j. The width vector

of Gaussian function can be given as B =
[
b1 b2 · · · bm

]T
& bj > 0.

Furthermore, the weight vector is given by w =
[
w1 w2 · · · wm

]T
.

The output of RBFNN is a linear combination of the Gaussian function
values:

QM (t) = HwT = H1w1 +H2w2 + · · ·+Hmwm (17)

The cost function of RBFNN can be defined as:

ε(t) =
1

2
(Qp(t)−QM (t))2 (18)

3.2.3 Results analysis and verification of offline identification
The last step is the performance evaluation of the identified methods, the so-
called verification by comparison of measured plant output (QP or UP ) and
predicted model output (QM or UM ). In order to identify the parameters of
the electrohydraulic valve, following structured data in Figure 9 are used. To
get the system excited enough, the signals cover the whole operating range U
∈ [0, 100] %, ∆p ∈ [0, 200] bar and T ∈ [20, 60]◦C.

In order to identify the parameters of the electrohydraulic valve, the
scattered data can also be utilized. For a better comparison, structured data
in Figure 9 could be randomly distributed and be approximately used as
scattered data.

In order to illustrate the merit of the above-mentioned methods, it is
appropriate to use the test signals in Figure 10 for verification. The test data
include data that does not exist in the training data.

Table 1 shows verification of different identifications with structured data
and scattered data. In order to compare the performance of identification

Figure 9 Process of structured data to identify.
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Figure 10 Process of test data to identify.

for the different methods, the estimated flow rate QM is plotted against the
measured plan flow rate QP (or the estimated voltage UM is plotted against
the measured plant voltage UP ) from test data. With an ideal identification,
all points would lie exactly on the 45◦ red diagonal curve. The relative errors
are plotted in grey color and calculated from:

εQ = abs

(
QM −QP

QP

)
× 100% and εU = abs

(
UM − UP

UP

)
× 100%

(19)

It could be found in table that all identification methods show almost the
same results for structured data and scattered data. That is to say, the data
types are insensitive to the selected offline identification methods. Addition-
ally, a conclusion can be drawn that all identification methods show a good
approximation for flow mapping (FM). However, compared with the flow
mapping identification, all identification performances decrease for inverse
flow mapping (IFM), which can be deduced from the grey area in diagram.
There are two main reasons for that one is stronger nonlinearity for IFM and
the other is the irreversibility in IFM. To illustrate this, look at the flow rate
equation in Equation (20) for electrohydraulic valves:

lim
∆p→0
Q→0

U =
Q

KC
√

∆p
(20)

As the pressure drop and flow rate approach zero at the same time, zero
divided by zero is going to come up. The corresponding case in reality is that
there are no flow rate and pressure drop or a little, but the input voltage for
valves could be arbitrary in working area. In order to get better performance
for identification, it’s necessary to filter the data in small pressure drop area



124 J. Liu et al.

with threshold value ∆pmin. It depends not only on the operating rage of
the valve but also on the signal-to noise ration of signals. The only way to
determine this threshold value ∆pmin is by trial and error. The threshold
value ∆pmin for IFM identification in Table 1 is set to 9 bar. In the identifi-
cation methods listed in table, BPNN presents the best approximation results,
especially in IFM. Unlike RBFNN and GRNN, BPNN with multiple hidden
layers can achieve a better nonlinear mapping. LSSVM not only has the worst
results but also needs the most computational efforts. In the case of large data
set, it’s best to avoid using LSSVM. According to the verification results,
BPNN will be preferred in use-cases with low real-time requirements and
high-performance computers, e.g., machine tool, thermoforming machine.
But for mobile machines, an implementation of neural network algorithms
in embedded systems could be problematic, since massive floating-point
calculations are inevitable, which require much computational efforts and
storage space. It can be seen in table that LSM could also reach the com-
parable identification goodness with neural networks. In particular, LSM can
be adopted for FM identification at first and then newton’s method can be
used to find the numerical solution for IFM. If LSM is replaced with RLSM,
it’s possible to run on an embedded system with real-time requirements.

3.3 Online-Identification Methods

3.3.1 Recursive least squares method (RLSM)
The precondition for non-recursive least squares method (LSM) requires all
the measured data had first been stored then estimates the parameter in one
pass. Such a method requires a lot of computational efforts, especially the
matrix inversion in (15). Therefore, the non-recursive least squares method
(LSM) is not suitable for real time identification. In order to overcome these
deficiencies, recursive least squares method (RLSM) is introduced.

Furthermore, with appropriate modifications and forgetting factor, it’s
easy to realize the adaptive identification and solve the data saturation
problem at the same time. With

P−1(t) = XT
t Xt =

L∑
t=1

X(t)XT (t) =
L−1∑
t=1

X(t)XT (t) +X(t)XT (t)|t=L

(21)

The following equation can be given:

P−1(t) = P−1(t− 1) +X(t)XT (t), P (0) = P0I > 0 (22)
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Table 1 Verification of Identification with structured data and scattered data
 Structured data Scattered data 
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In order to reduce the error in matrix inversion of P (t), according to
matrix inversion lemma:

(A+BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1

The Equation (22) can be given as:

P(t) = (P−1(t− 1) +X(t)XT (t))
−1

= P(t− 1)− P(t− 1)X(t)

× (1 +XT (t)P(t− 1)X(t))
−1
XT (t)P(t− 1)

=

(
I − P(t− 1)X(t)XT (t)

1 +XT (t)P(t− 1)X(t)

)
P(t− 1)

= (I − L(t)XT (t))P(t− 1) (23)

Where L(t) is the gain vector:

L(t) =
P(t− 1)X(t)

1 +XT (t)P(t− 1)X(t)
(24)

Together with Equations (23) and (24), one then obtains:

P(t)X(t) =

(
I − P(t− 1)X(t)XT (t)

1 +XT (t)P(t− 1)X(t)

)
× P(t− 1)X(t) =

P(t− 1)X(t)

1 +XT (t)P(t− 1)X(t)
= L(t) (25)

According to the definition of QP ,t = [QP (1) QP (2) · · · QP (t − 1)
QP (t)]T = [QP ,t−1 QP (t)] and Xt = [XT (1) XT (2) · · · XT (t −
1) XT (t)]T = [Xt−1 X

T (t)], the Equation (15) can be transformed as:

θ̂LS(t) = (XT
t Xt)

−1
XT

t QP ,t = P (t)

[
Xt−1
XT (t)

]T [QP ,t−1
QP (t)

]
= P (t)

(
XT

t−1QP ,t−1 +X(t)QP (t)
)

= P (t)
(
P−1(t− 1)P (t− 1)X

T
t−1QP ,t−1 +X(t)QP (t)

)
= P (t)

(
P−1(t− 1)θ̂LS(t− 1) +X(t)QP (t)

)
(26)
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Base on Equation (22), one can substitute P−1(t − 1) = P−1(t) −
X(t)XT (t) in Equation (26) and obtains

θ̂LS(t) = θ̂LS(t− 1) + P (t)X(t)
(
QP (t)−XT (t)θ̂LS(t− 1)

)
(27)

Which combined with (25), one can write:

θ̂LS(t) = θ̂LS(t− 1) + L(t)
(
QP (t)−XT (t)θ̂LS(t− 1)

)
(28)

From Equations (23), (24) and (28), recursive least squares method
(RLSM) can be descripted by:

L(t) =
P(t− 1)X(t)

1 +XT (t)P(t− 1)X(t)

θ̂LS(t) = θ̂LS(t− 1) + L(t)
(
QP (t)−XT (t)θ̂LS(t− 1)

)
P(t) =

(
I − L(t)XT (t)

)
P(t− 1)

(29)

If the estimation parameters of an electrohydraulic valve change abruptly,
for example, damage of valve, RLSM can’t capture the new values in time.
The estimation parameter from RLSM will vary continuously but slowly, this
is co called data saturation. With some modification, RLSM can be changed
to RLSM with forgetting factor, in which less weight is given to older data
and more weight to recent information. With new definition:

Xt =
[
λ

1
2Xt−1 XT (t)

]T
Where λ is the forgetting factor and ∈ (0, 1]. The Equation (21) can be

modified as:

P λ(t) = XT
t Xt

=

L∑
t=1

X(t)XT (t) =
1

λ

L−1∑
t=1

X(t)XT (t) +X(t)XT (t)|t=L

=
1

λ
P−1(t− 1) +X(t)XT (t) (30)

Thus, it follows:

P λ(t− 1) =
1

λ
P−1(t− 1) (31)
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If one substitutes the Equation (31) in Equation (29), RLSM with
forgetting factor is given as:

Lλ(t) =
P λ(t− 1)X(t)

λ+XT (t)P λ(t− 1)X(t)

θ̂LS(t) = θ̂LS(t− 1) + Lλ(t)(QP (t)−XT (t)θ̂LS(t− 1))

P(t) =
1

λ
(I − Lλ(t)XT (t))P λ(t− 1)

(32)

3.3.2 Results analysis and verification of online identification
For a better comparison, the same training data and test data already applied
in the previous methods are used for online identification. Table 2 shows
verification of RLSM (λ = 1) with structured data and scattered data. In
general, RLSM with these two data types show suitable identification results.
Compared with scattered data, RLSM with structured data can achieve the
same accuracy at the end, although the rate of convergence is slow. Without
consideration for difficulty in data acquisition, methods with scattered data
are much faster than methods with structured data in terms of the rate of
convergence (less than 100s). Compared to offline method LSM, RLSM not
only shows almost the same results regarding accuracy at the end but also
more effective. If the forgetting factor is set to 1 (λ = 1), RLSM with
forgetting factor will be degenerated as classical RLSM, which will eliminate
the fluctuation. However, classical RLSM deals with all the past data equally
and can result in data saturation problem. Therefore, it is necessary to select
suitable forgetting factors in practice.

The RLSM can be used only if the model structure is known. In practice,
valve manufacturers usually provide measured data for some type of valve,
which is sufficient to identify the model structure. Otherwise, it’s reasonable
to identify the model structure with offline method and parameters can be
estimated online. By contrast, RLSM with forgetting factor is more suitable
for real application. At first, RLSM with forgetting factor is able to deal
with all kinds of data types. Furthermore, another advantage of RLSM with
forgetting factor in contrast to other methods is that it enables to integrate
multi-dimensional dependencies with a reduced set of parameters in the
software development for embedded systems. Regrading to the fitting quality
of RLSM, one way to improve the accuracy is to adopt partition identification
for local areas. The second way is to increase order in model structure until
the accuracy meets the requirements.
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Table 2 Verification of RLSM (λ = 1) with structured data and scattered data
 Structured data Scattered data 

 FM IFM FM IFM 
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 s 
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00

 s 
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00

 s 

    

55
00

 s 
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4 Application of Flow Mapping (FM) and Inverse Flow
Mapping (IFM) Identification

Since the flow rate can be calculate accurately using the measured veloc-
ity of cylinder, the flow mapping (FM) and inverse flow mapping (IFM)
identification methods can be applied in the flow rate control or velocity
control. Therefore, a compound flow rate control is proposed based on the
identification methods, and the schematic of the application of FM and IFM
is given in Figure 11. The control loop consists of two parts: feedforward
control and closed-loop control. The control voltage UP , pressure drop ∆p,
together with the temperature T and the measured flow rate QP are given to
FM and IFM for the training process. After that, the calculated flow QFM

from FM is compared with the reference flow QRef and the error is given to
a PI controller to obtain FM voltage UFM . Combined with the IFM voltage
UIFM , it’s not so hard to get the total voltage UFFC for feedforward control.
At the same time, the measured flow QP is also compared with the reference

 

FM
identification

IFM
identification

PI
Controller

PI
Controller

p0

M

U

p1Q

U

p2

U

Load valve

Test valve

Closed-loop control

Feedforward control

Figure 11 Application of FM and IFM for flow rate control.
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flow QRef and the error is given to another PI controller to obtain closed loop
voltage UCL. At last, the feedforward voltage UFFC and closed loop voltage
UCL build the control voltage UP for valve together. There are two reasons
for using FM in feed forward control: the first reason is that FM is generally
more accurate than IFM and the second reason is to compensate for IFM’s
irreversibility at small pressure drop (e. g. ∆pmin = 9 bar). In addition, with
the help of condition of monitoring, it is easy to realize redundant control
and improve the robustness in system. If the flow rate or velocity transducer
fails, the hydraulic system could be still controlled by feedforward control
(FM+IFM). If the pressure or temperature transducer fail, the closed loop
control (CL(PI)) could ensure controllability for the whole system, although
the control performance will be reduced.

Figures 12–14 show the system response under different conditions. As
is shown in the figures, flow mapping (FM) + inverse flow mapping (IFM)
+ PI controller in closed in loop (CL(PI)) presents the best performance.
Conventional PI controller in closed in loop (CL(PI)) can hardly work well
at all operating points. Compared with FM, FM + IFM can enhance the
tracking performance of the output and further reduce the control error.
As expected, the FM control can be problematic under the low pressure
drop conditions. The controller with Newton’s method (NM) shows worse
performance than expected in real time. The reason is that Newton’s method
cannot obtain the optimal numerical value in limited sampling time (10 ms) at
big step response. Therefore, Newton’s methos should be avoided in practical
applications, especially for embedded controller. The results demonstrate that
the performance of the controller FM + IFM + CL(PI) can track the reference
input QRef satisfactorily and reduce the settling time.

Figure 12 Step response at (QRef = 600 l/min, ∆p = 190 bar, T = 20◦C).
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Figure 13 Step response at (QRef = 100 l/min, ∆p = 70 bar, T = 40◦C).

Figure 14 Step response at (QRef = 10 l/min, ∆p = 6 bar, T = 40◦C).

5 Conclusion and Outlook

In this research, different flow mapping identification methods for electrohy-
draulic valves are proposed. This paper presents an analysis and comparison
of different identification methods and data structures for 4D-flow map-
ping. The proposed methods can be applied to adaptive identification for
real machines in the future. Moreover, their identification accuracy and
convergence property have been sufficiently investigated.

So far, the flow mapping identification methods have been applied for
only one valve with little hysteresis. In order to improve the generalization of
the methods and get a more reliable conclusion, the next investigation steps
are concerned with the further development of the proposed methods with
respect to different types of valves and inclusive hysteresis. After that, the
adaptive PI controller with FM and IFM should be further tested.
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Nomenclature
Designation Denotation Unit
Fi Force N
a1, a2, . . . , an Estimated parameters –
A Matrix –
A1 Piston area of main poppet in

inlet
mm2

A2 Ring area of main poppet in
outlet

mm2

bj Width vector –
B Matrix –
cji Parameter in center vector –
C Matrix –
Cj Center vector –
H Radial basis function vector –
H1, H2, . . . ,Hm Gaussian function value –
I Index –
I Unit Matrix –
L Gain vector –
j Index –
J(θ) Cost function –
KC Flow coefficient of control-orifice l/min·bar−0.5·mm−1

KMP Flow coefficient of main poppet l/min·bar−0.5·mm−1

p0 Constant system pressure bar
p1 Pressure in valve inlet bar
p2 Pressure in valve outlet bar
pc Pressure in the control chamber bar
P(t) Data matrix –
P0 Initial data matrix –
Q Flow rate through valve l/min
QC Flow rate through control-orifice l/min
Qmax Max. Flow rate through main

poppet
l/min

QM Estimated flow rate for
valve(model)

l/min

QMP Flow rate through main poppet l/min
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Designation Denotation Unit
QP Measured flow rate for valve(plant) l/min
QP,t Measured flow rate vector –
QPV Flow rate through pilot valve l/min
QT Total flow rate through valve l/min
t Time s
U Input voltage for valve V
V1 Valve chamber in inlet mm3

V2 Valve chamber in outlet mm3

VC Control chamber in valve mm3

w1, w2, . . . , wm Weight vector –
x Input variable –
xMP Displacement of main poppet mm
x0 Negative overlap of control-orifice mm
X Matrix for inputs –
X Input vector –
X1, X2, . . . , Xn Input parameters in input matrix –
Xt Input parameters matrix –
y Input variable –
Z Output variable –
∆p Pressure drop through valve bar
∆p12 Pressure drop between inlet and outlet bar
∆p1C Pressure drop between inlet and control chamber bar
ε Error –
εt Error matrix –
ϕ Area ratio –
ϑ Temperature ◦C
ϑT Temperature in tank ◦C
θ Vector for estimated parameter –
θ̂LS (t) Estimated parameter vector in LSM –
λ Forgetting factor –
FM Flow mapping
IFM Inverse flow mapping
LSM Least square method
BPNN Back propagation neural networks
RBFNN Radial basis function neural network
GRNN General regression neural network
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Designation Denotation Unit
LSSVM Least-Squares Support-Vector Machine
RLSM Recursive least squares method
MFNN Multilayer feed-forward neutral network
OPC UA Open Platform Communications Unified Architecture
CL Closed in the loop
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