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Abstract

Unexpected pump failures in mobile fluid power systems result in monetary
and productivity losses, but these failures can be alleviated by implementing
a condition monitoring system. This research aims to find the best condition
monitoring (CM) technique for a pump with the fewest number of sensors, to
accurately detect a defective condition. The sensors choice in a CM system is
a critical decision, and a high number of sensors may result in disadvantages
besides additional cost, such as overfitting the CM model and increased
maintenance.

A variable displacement axial piston pump is used as a reference machine
for testing the CM technique. Several valve plates with various magnitudes of
quantifiable wear and damage are used to compare “healthy” and “unhealthy”
hydraulic pumps. The pump parameters are measured on a stationary test
rig. This involves observing and detecting differences in pump performance
between the healthy and unhealthy conditions and reducing the number
of sensors required to monitor a pump’s condition. Observable differences
in drain flow were shown, and machine learning algorithms were able to
successfully classify a faulty and healthy pump with accuracies nearing
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100%. The number of sensors was reduced by implementing a feature selec-
tion process and resulted in only five of the 23 sensors to correctly detect
pump failure. These sensors measure outlet pressure, inlet pressure, drain
pressure, pump speed, and pump displacement. The resulting reduction of
sensors is reasonably affordable and relatively easy to implement on mobile
applications.

Keywords: Axial piston pump, machine learning, condition monitoring,
mobile hydraulics, fault detection.

1 Introduction

Fluid power systems are central to the operation of numerous industries,
such as aerospace, mining, construction, agriculture, forestry, automotive,
and others. The drive to increase reliability, reduce machine downtime, and to
increase the understanding of hydraulic failures brings condition monitoring
to the cutting edge of hydraulic systems. The hydraulic pump is the heart of
these hydraulic systems. If the pump fails, then the entire hydraulic system
is rendered inoperable. As a result, it’s important to ensure the pump doesn’t
break down, and consequently the aim of this work is to determine the best
condition monitoring model for an axial piston pump using the fewest sensors
possible.

Pump failure is often attributed to wear. Wear can be defined as the
removal of material by mechanical and/or chemical interactions [1]. Approx-
imately 80% to 90% of machine breakdowns are attributed to wear [2].

An effective maintenance strategy to prevent excessive wear and failure
is condition-based maintenance. This strategy continuously monitors the
condition of the system through the use of a data acquisition system and a
decision maker to determine the state of the system being monitored [3].

The past 25 years have produced some useful work on condition mon-
itoring of components of hydraulic systems. These works can be divided
into two main categories; the one that exploits experimental data to train the
condition monitoring model and the ones that, instead, use simulation data.
The CM system that uses experimental data counts on the fidelity of the data
acquired. A main drawback to this method is the necessity to possess several
different faulty components with varying degrees of damage or wear. For
example, an axial piston pump can suffer from various faults. One of them
is caused by the debris present in the oil, which may damage the different
components of the pump (i.e., the valve plate, pistons, etc.). From this, it is
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clear that it is already a challenge to obtain these faulty components. Further
increasing the difficulty of this method is that the different fault types can
have various levels of damage (e.g., mild, moderate, and extreme) which may
have a great impact on the performance. On the other hand, CM that uses
simulation data has the ability to represent many faulty conditions, and the
time required to obtain these data can be significantly less if compared to the
one obtained in experimental environments. However, precise representations
of these faults in a simulation environment can be hard to achieve. Therefore,
the disadvantages of the simulation method become the advantages of the
experimental method and visa versa.

The choice between the two approaches is related to the fault considered
and the type of CM model. For example, Crowther et al. in [4] determined
that Artificial Neural Networks (ANNs) trained on experimental data were
more accurate than those trained using simulation data by comparing the
fault detection of cylinder actuators trained using either simulation or exper-
imental data. This is likely because the simulations contain assumptions and
inherently do not capture the complete understanding of the system [5].

Focusing on axial piston pumps, many authors preferred the experimental
approach to train the CM model. In this direction, Lu et al. trained an
ANN to detect piston/cylinder faults on an axial piston pump using purely
experimental data in [6, 7]. Similar work was done by Ramden et al. in [8].
Their work showed the detection of a worn-out bearing and valve plate using
an ANN trained on experimental data. The tests used for the CM model
were conducted under a single operating condition obtained at steady-state
conditions.

Another condition monitoring study on axial piston pumps was done by
Du, Wang, and Zhang in [9]. They adopted a layered clustering algorithm to
detect multiple faults on an aerospace axial piston pump by measuring drain
flow, outlet pressure, radial vibrations, and axial vibrations. More recently,
in [10], Lan used the vibration of the pump to detect the slipper wear on the
axial piston pump. His work was based on implementing a pattern recognition
ANN in conjunction with spectral analyses of the pump vibrations and the
outlet flow.

Alongside the previous research, Baus et al. implemented Fault Tree
Analysis and Design Failure Mode Effects Analysis in connection with
field data to more effectively determine the reliability of axial piston pump
components in [11].

On the contrary, literature presents few works on the second typology of
the CM model, the one based on the simulation of faulty condition. Ramdén,
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Krus, and Palmberg in [12] trained an ANN, Self-Organizing Map (SOM)
type of ANN, to detect faulty valves in a hydraulic system using data obtained
from simulation results. Li in [14] performed remarkable research in the
simulation typology of CM. He used various condition monitoring algorithms
to detect faulty pistons in an axial piston pump. The faulty piston/cylinder
interface was simulated first and then artificially induced in an experimental
setup to simulate the leakage of a worn piston/cylinder interface.

Another interesting work was done by Lu et al. in [15]. They implemented
neural networks (ANN) in conjunction with chaos theory to detect the valve
plate and slipper/swashplate wear. The model build by Lu et al. was able to
accurately approximate the physical outputs of the axial piston pump, while
being able to detect possible faults within the pump.

Many of these previous studies have contributed to the fields of fluid
power and condition monitoring. However, they do not investigate what is
the most suitable condition monitoring model that can be applied to the case
of a axial piston pump, and what are the best features to train the CM model.

This work addresses these aspects on a reference piston pump and ana-
lyzes deeply the damages occurring on one lubricating interface (i.e. cylinder
block – valve plate). Damages at an interface can occur due to debris,
incorrect balancing or cavitation.

The core experimental activity is based on the use of different valve plates
with quantifiable wear and damage for the condition monitoring an axial
piston pump. In the analysis section of this paper, the CM system used on
the axial piston pump is presented in two main aspects. The methodology
behind the classification algorithms is described first, followed by the selec-
tion of the best algorithm based on the results. Existing CM methods for
axial piston pumps on a stationary test rig with physically damaged valve
plates working under dynamic operating conditions are investigated. Finally,
the paper explores the reduction in the number of sensors used to reliably
detect defective conditions. In a stationary test-rig environment, the minimum
number of sensors needed to detect valve plate damage is determined, with
the intention of implementing those sensors on a mobile machine for further
research.

It is important to underline that the feature selection and the choice of the
best algorithm are performed using experimental data.

In summary, the structure of this paper begins with a brief literature
review on some previous work that has been done using condition-based
monitoring on axial piston pumps. Next, an experimental setup will be shown,
where the reference pump and component selection are discussed, the test-rig
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setup and the experimental duty cycles are introduced. The analysis portion
of this paper will show the methodology behind the classification algorithms
used and the sensor selection with corresponding results.

2 Experimental Setup

This section briefly introduces the reference pump and its general specifica-
tions for this work. In particular, the scope of the section is narrowed only
to include the valve plate/cylinder block wear interface: physical wear and
damage on the valve plates are shown in detail using an optical profilometer.

In addition, this section also introduces the stationary test-rig with
its corresponding hydraulic circuit and the duty cycles considered in the
measurement process.

2.1 Reference Pump

A swashplate-type axial piston pump is selected as a reference component in
this investigation. Figure 1 is a simplified graphic of the axial piston pump
discussed in this work, an 18cc Parker P1 swashplate type axial piston pump.
This particular Parker P1 pump is a closed-circuit pump that is capable of
controlling the swashplate to the over-center position, meaning flow can be
reversed without changing the direction of shaft rotation. Table 1 gives the
general specifications for the Parker P1 pump selected for this work.

 
Figure 1 Swashplate type axial piston pump [16].
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Table 1 Summary of specifications for the Parker P1 pump
Max. Displacement 18cc
Pressure Range 0 to 350 bar
Speed Range 600 to 3600 rpm
Temperature Range −40 to +95◦C
Rated Fluid Viscosity 6 to 160 cSt
Pistons 9
Overcenter Capable Yes
Closed-Circuit Yes

Figure 2 Three main lubricating interfaces of a swashplate type axial piston pump.

It is well known that the main sources of energy dissipation in swashplate
type axial piston pumps occur at the slipper/swashplate, piston/cylinder, and
valve plate/cylinder block interfaces [17–19]. These three main lubricating
interfaces are highlighted in Figure 2. These interfaces are also the locations
that exhibit the most wear on a pump, not including the roller bearings
[1, 9, 14, 20–25].

The valve plate is a critical component that can experience large amounts
of wear and damage. Valve plates contribute to up to 38% of pump failures
in some aerospace pumps [9]. For these reasons, the valve plate is the
component that is chosen to investigate condition monitoring of axial piston
pumps in this work.
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2.1.1 Selected valve plates
As mentioned in the introduction, one of the challenges of this method is
possessing multiples of a component each with varying levels of damage
or wear. In this work, five valve plates with varying degrees of wear and
damage are used to perform the necessary experiments. It must be noted
that real production units might have higher variations in the results. It is
recommended to employ a statistical analysis involving a larger population
of “healthy” and faulty units. In this work, wear is the result of metal-to-
metal contact between the valve plate and the cylinder block, and damage is
the result of cavitation or foreign particles causing damage to the valve plate.
It is important to note that the effects on the performance of the pump with the
various states of valve plate health cannot be exactly known and is difficult to
predict because of the high nonlinearity of these interfaces [23]. The selected
valve plates can be seen in the list below.

1. No Wear with No Damage (Healthy)
2. Severe Wear with No Damage (SW ND)
3. Minor Wear with Moderate Damage (MinW ModD)
4. Minor Wear with Severe Damage (MinW SD)
5. Moderate Wear with Minor Damage (ModW MinD)

Each of the different degrees of wear on the valve plates occurred natu-
rally while the pump was mounted on a mini-excavator. Four valve plates with
varying degrees of wear have been obtained: no wear, minor wear, moderate
wear, and severe wear. The wear profile on each of the valve plates is mea-
sured using a ZeGageTM optical profilometer. The wear profile is measured at
the same location for each of the valve plates for consistency. Manufacturing
tolerances have not been taken into account and are considered negligible in
this work.

The valve plate that appears to have negligible wear is considered the
healthy valve plate. The profilometer measurements of the healthy valve plate
can be seen in Figure 3 and show sub-micron variation of surface wear.
Therefore, this valve plate is considered to have negligible wear and no
damage. The lower left black plot in Figure 3 is the zoomed green profile
that can be seen in the upper left surface image of the valve plate in Figure 3.

The wear profiles of the remaining valve plates have more drastic results.
The valve plate that exhibits minor wear is measured and shown to have
approximately a four-micrometer wear profile, see Figure 4. Figure 5 shows
the profilometer measurements of a valve plate with moderate wear, where
a wear profile of about ten-micrometers can be observed. The final wear
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Figure 3 Valve plate with negligible wear and damage.

 
Figure 4 Valve plate with minor wear.

classification for the valve plates is the severe wear case, Figure 6. Not only is
the wear profile of the severely worn valve plate 20 micrometers, but a ridge
at the edge of the wear interface with a height of 20 micrometers is present.
It is speculated that this ridge is caused by the contact of the cylinder block
and valve plate. The cylinder block acts as a plow deforming the soft alloy
material of the valve plate.

2.1.2 Valve plate damage
To observe the effects that a damaged valve plate would have on the perfor-
mance of the pump, some valve plates have been artificially damaged at the
relief groove on the suction side of the valve plate. The artificially induced
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Figure 5 Valve plate with moderate wear.

 

Figure 6 Valve plate with severe wear.

damage is intended to simulate damage from debris particles gouging and
removing material at the suction side of the pump. This debris could have
come from another segment in the system or have been caused by cavitation.
It is to be noted that these valve plates are not used to classify what type of
damage has occurred. Rather, the purpose is to determine whether general
valve plate damage is detectable.

The damage was caused by using a tungsten carbide tip scriber to man-
ually scratch the surface of the valve plate. The scratches were placed in
approximately the same location with varying degrees of depth. An optical
profilometer is used to observe the profile of the damage. Four levels of
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Figure 7 Valve plate with minor damage.

damage are performed and measured: No damage, minor damage, moderate
damage, and severe damage.

Figure 7 shows the minor damage that is induced on the suction relief
groove on the valve plate. The scratch was placed in a radial pattern as to
follow the motion of the cylinder block relative to the valve plate. The damage
has a depth of approximately 30 micrometers but is less than 0.5 micrometers
in width.

The valve plate with moderate damage, Figure 8, has several scratches
approximately 15 micrometers deep and span about 25 microns. The damage
to the relief groove on the next valve plate is severe, Figure 9, and shows
the depth of the damage to vary between 20 and 80 micrometers and spans
over 800 micrometers. Not measured but shown is a major dent that has been
induced on the relief groove of the valve plate. This damage is induced to
provide a severe case to simulate severe abrasion or cavitation damage.

2.2 Stationary Test-Rig

A test-rig is necessary for demonstrating a condition monitoring process
for axial piston pumps. Three main purposes exist for the stationary test-
rig: perform fault detectability, sensor/dimensionality reduction, and machine
learning algorithm selection. The stationary test-rig can be seen in Figure 10
with a few of the highlighted sensors used in the experimental setup. The
nomenclature of these captions can be found in Figure 11.

This section will introduce the experimental setup, hydraulic schematic,
and the duty cycles used in the measurement process of the test-rig.
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Figure 8 Valve plate with moderate damage.

 

Figure 9 Valve plate with severe damage.

2.2.1 Hydraulic schematic
The description of the hydraulic schematic begins with the Parker P1 pump.
The 18cc pump (1) is driven by an electric motor (2), see Figure 11, and
receives hydraulic fluid at 25 bar from a constant pressure source provided
by power supply located at Purdue University. The pump sends the flow
through a gear-type flow meter (7) and, either, over a pressure relief valve
(3) or through a variable orifice (4). Two gear-type flow meters measure the
drain flow (8) and control flow (9), respectively.

Pressures are monitored and measured at the outlet (16 and 17), sup-
ply (13), control (14), and drain (15) lines. All the pressure sensors are
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Figure 10 Stationary test-rig.

piezoresistive, except for the additional piezoelectric pressure sensor on the
pump outlet (16), which is capable of measuring the pump’s pressure ripple.

The pump supply (10), outlet (11), and drain (12) temperatures are
monitored with a thermocouple. An additional thermocouple, not shown in
Figure 11, is mounted outside the hydraulic test-rig near the pump to capture
the ambient air temperature.

The shaft torque (5) and speed (6) are measured with a torque meter
that contains an integrated speed sensor. The pump displacement is measured
using a Hall effect sensor (18) that senses the relative position of the swash-
plate. Finally, nine single axis accelerometers (19) are mounted on the pump
in various locations.

2.2.2 Accelerometer placement
Nine single axis accelerometers are mounted on the outside casing of the
pump to measure the vibrations throughout the pump, see the accelerometer
mounting locations in Figure 12. Critical locations, such as at the pump
inlet, outlet and roller bearings are selected because of the presence of higher
vibrations based on previous experience and literature review. However, other
locations are considered to ensure adequate coverage of the pump. The
purpose of so many accelerometers is to determine the location that has
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Figure 11 Test-rig hydraulic schematic.

the highest vibrational magnitudes, and to use that location for condition
monitoring purposes.

2.2.3 Duty cycles
The duty cycles are split into two main groups: steady-state and dynamic.
The steady-state duty cycle aids in the observations of the data and fault
detectability. The dynamic duty cycle simulates the dynamic and transient
conditions that could be seen on a mobile machine but in a controlled
environment.
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Figure 12 Placement of accelerometers on reference pump.

Table 2 Steady-state operating conditions
Operating N β Tsupply ∆p
Condition [RPM] [−] [C] [bar]
OpCon 1 100
OpCon 2 2000 1 52 150
OpCon 3 200

Three steady-state operating conditions are utilized in this work, see
Table 2. The procedure strictly respected the condition of reaching steady-
state conditions in terms of shaft speed, operating pressures and tempera-
tures, including drain temperatures. This means that the measurements were
recorded with negligible drift over time.

The purpose of the dynamic cycle is to determine if the faulty components
are detectable under transient operating conditions. A simple and repeatable
method to produce a dynamic cycle is through the use of an orifice while
varying the displacement of the pump under a constant speed condition. The
pressure, or load condition, follows the orifice equation seen in Equation (1).

Q = CfΩ

√
2∆p

ρ
(1)

The dynamic duty cycle is achieved by setting the relief valve to a setting
of 200 bar and restricting the variable orifice to a setting that allows all the
flow from the pump with a 50% displacement to pass through the orifice
with a pressure drop of about 25 bar. The orifice area is then kept constant,
and the pump displacement is varied from about 0.5 to 1.0 of the normalized
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Figure 13 Dynamic duty cycle.

swashplate position. Figure 13 is an example of how the pressures change
dynamically as the pump displacement it varied.

3 Analysis

The analysis portion of this work includes the measurement observations
made by a human, the feature selection/sensor reduction methodology, the
algorithm selection methodology, and their corresponding results.

The sensor reduction as well as the selection of the best algorithm for the
reference part are critical steps that should not be overlooked. As mentioned
in the introduction, this sensor selection improves the CM model’s overall
performance by avoiding result overfitting, lowers the total cost of the CM
device, and expands its applicability to mobile machines. The output of each
CM algorithm varies depending on the application and the sensors used. As a
result, in order to ensure the best performance of the CM method, a thorough
examination of the various algorithms is required.

3.1 Measurement Observations

It is valuable for a human to observe if differences in pump behavior exist
between the various states of pump health, regardless of an AI program.
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Figure 14 Drain flow of healthy and unhealthy valve plates.

Human judgement is also a necessity to ensure the machine learning
algorithm is fed the correct data.

Increased drain flow is a logical result of a damaged valve plate due to the
increase in leakage. The comparison of drain flow between the healthy and
unhealthy conditions can be seen in Figure 14. Each of the unhealthy valve
plates produces more drain flow (leakage) than the healthy valve plate. This
one confirmation shows that a difference is observed between the healthy and
unhealthy valve plates.

3.2 Feature Selection/Sensor Reduction

With observable differences between the healthy and unhealthy machines
confirmed, it is now time to begin investigating the machine learning aspect
of this work by starting with the feature selection process. Feature selection
is the process of reducing the number of features or dimensions in the data
that will be fed into the machine learning algorithm. Reducing the number of
features can, in turn, reduce the number of sensors required for monitoring
the condition of a pump. Consequently, this reduction makes the CM system
less expensive and easier to incorporate in mobile applications.

A brief background on feature selection will be discussed. Next, the
different accelerometers are compared to look for redundancy. Finally, a
backward elimination feature selection is shown to reduce the number of
sensors required to accurately detect the healthy and unhealthy pumps.

3.2.1 Feature selection background
The complexity of machine learning algorithms determines the number
of input dimensions, or features, and the sample size, which determines
computational cost and memory usage [26]. Dimensionality reduction not
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only reduces the computational cost and memory usage, but it also generates
simpler models that are robust and more protected against overfitting [26–28].

Dimensionality reduction can be summarized into two main categories:
Feature extraction, and feature selection [26–28]. Feature extraction focuses
on generating a new set of features by combining features from the original
dataset, i.e. Principal Component Analysis (PCA). Feature selection gener-
ates a new subset by selecting a certain number of features from the original
dataset without combining features. The goal is to select the relevant features
and generate a small subset to reduce the complexity of the data. Irrelevant or
redundant features add little to no benefit to the performance of the machine
learning algorithm [29]. Eliminating irrelevant or redundant features can
mean a reduction in sensors required in the experimental measurements. The
method of feature selection used in this work backward elimination.

Backward elimination starts with the maximum number of features and
eliminates one feature at a time until a simplified subset is generated that
results in high accuracy and algorithm performance. The backward elimina-
tion method is selected for the work because of its robustness against over-
fitting, ease of use, and wide acceptability [28]. Many other feature selection
methods exist that vary in complexity and reliability [26, 27, 29, 30].

3.2.2 Accelerometer location comparison
Nine accelerometers are mounted on the case of the pump and an analysis
must be conducted to reduce the required number of sensors. Previous work
has shown that only the amplitudes of the accelerations differ from one
accelerometer location to another without a difference in the frequencies of
the signals [13, 31]. If the accelerometer location only affects the magnitude
and not the frequency content of the signals, then it is possible to only have a
single accelerometer for condition monitoring purposes.

This work confirms previously performed research that only the mag-
nitude and not the frequency content of the accelerations changes with the
location of the accelerometer, for comparison purposes. For brevity and
illustrative purposes, the frequency domain of only four accelerometers at
different locations are compared by taking the Fast Fourier Transform (FFT)
of the vibration signals, see Figure 15. Zooming in, Figure 15(c), it is clear
that only the magnitude of the signals varies and not the frequency. For this
work, the accelerometer located on the case near the roller bearings produced
the higher magnitude of vibrations. This means a single accelerometer will
be used in this investigation into which sensors are most beneficial in the
condition monitoring process.
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Figure 15 Comparison of accelerometers at the locations of the drain port, roller bearing,
end case, and the swash plate pivot.

3.2.3 Backward elimination method and result
Several criteria are used to methodically eliminate certain features/sensors.
First, an accelerometer comparison was made and was determined that a
single accelerometer is sufficient to detect changes in the vibrational char-
acteristics of the pump. Next, the cost and robustness of the sensor is
considered. Torque sensors and flow meters are expensive, prone to damage,
and have larger geometric footprints. Cost, reliability, and size of these
sensors make them less than ideal for mobile hydraulic applications. Finally,
the performance of the machine learning model is observed. This includes the
model training time, prediction speed, accuracy.

This paper utilizes existing tools and algorithms to demonstrate a condi-
tion monitoring process and does not develop and introduce new algorithms.
The Classification Learner App in MATLAB is used to perform the feature
selection, which will help determine the most important and relevant sensors
for the condition monitoring algorithm. The Fine Decision Tree is used during
each iteration of the backward elimination process to observe how different
features influence the accuracy of the model. Later, additional algorithms will
be considered with the reduced features. The accuracy is calculated based on
the ratio of the number of correctly classified data points to the total number
of data points entered into the classification algorithm.

Table 4 shows a summary of the results from the feature selection for each
of the operating conditions, while Table 3 shows feature abbreviations. A full
example of OpCon 1 can be seen in Table 7 in Appendix A. However, the
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Table 3 List of features with their corresponding abbreviations
Abbreviations Description
pA2 Outlet Pressure
pS Supply or Inlet Pressure
pD Drain Pressure
QD Drain Flow
Beta Pump Displacement
N Pump Rotational Speed

summary in Table 4 gives valuable information as to which sensors seem to
provide the best accuracy to the machine learning model.

For the steady-state operating conditions, two sets of features produce the
best results. The drain pressure (pD), drain flow (QD), and pump displace-
ment (Beta) produce the model with the highest accuracy of 99.1% to 100%,
depending on the operating condition. However, the outlet pressure (pA2),
inlet pressure (pS), drain pressure (pD), and pump displacement (Beta) give
the second-best results for the steady-state operating conditions with accura-
cies from 98.6% to 99.6%. This second set of features does not contain a flow
meter, which would greatly reduce the cost and complexity of instrumentation
with only a minor reduction prediction accuracy.

The dynamic operating condition has a lower accuracy, which is to be
expected. The feature set that gives the best accuracy of 88.5% for the
dynamic duty cycle consists of outlet pressure (pA2), drain pressure (pD),
pump displacement (Beta), and pump speed (N). The runner-up is the feature
set that gives an accuracy of 86.4% and consists of outlet pressure, inlet
pressure, drain pressure, pump displacement, and pump speed.

In summary, the inclusion of a flow meter mounted in the drain line gives
the best accuracies for determining the health of the axial piston pump with
regards to the valve plate. This also results in the lowest number of sensors
to receive the highest accuracy. However, flow meters are extremely costly
and sensitive to contamination, so sacrificing a small amount of accuracy for
more sensors at lower cost is a viable option.

Results Summary
In summary, a feature selection process was shown to reduce the number of
required sensors to accurately and effectively detect a faulty valve plate on
an axial piston pump. First, the number of accelerometers was reduced from
nine to one using methods originally proposed by [31]. Next, the number
of sensors was further reduced by implementing the backward elimination
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Table 4 Feature selection summary
Features/Sensors Accuracy [%]

OpCon 1 pA2, pS, pD, Beta 99.6
pA2, pD, Beta 99.5
pD, QD, Beta 100
pD, Beta 99.2
QD, Beta 99.5

OpCon 2 pA2, pS, pD, Beta 99.2
pA2, pD, Beta 98.8
pD, Beta 98.8
pD, QD, Beta 99.1
QD, Beta 97

OpCon 3 pA2, pS, pD, Beta 98.6
pA2, pD, Beta 98.2
pD, Beta 97.9
pD, QD, Beta 99.7
pD, QD 97.7
QD, Beta 99.4

Dynamic pA2, pD, Beta, N 86.4
pA2, pS, pD, Beta, N 88.5
pA2, pD, N 84.3
pA2,pS, pD, Beta 83.6
pD, N 83.9

method. The number of sensors was reduced from 23 to a few combinations
containing three to five sensors.

3.3 Condition Monitoring Algorithm Selection

A condition monitoring system requires the best combination of sensors and
machine learning algorithms to provide an accurate determination of the
condition of the pump. The number of sensors required to accurately classify
a healthy and unhealthy pump has been narrowed down to a few different
combinations of sensors. With this reduced number of sensor combinations
the algorithm selection process will require fewer iterations to find a suitable
algorithm and sensor combination. This section discusses what software is
used to perform the algorithm selection, as well as a brief background on
a K-Nearest Neighbor and decision tree algorithms. Finally, the algorithm
selection results will be presented.

Only the classification algorithms that showed the best results will be
discussed in this work for brevity. The algorithms have been implemented
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using MATLAB’s machine learning toolboxes and have not been developed
by the author of this work. These algorithms are K-Nearest Neighbor (KNN)
and decision trees.

Brief Background on K-Nearest Neighbor (KNN)
K-Nearest Neighbor (KNN) is non-parametric and one of the best-known
classification and regression machine learning algorithms [32, 33]. The basic
principle of KNN is that it assigns an unclassified data point to the classifi-
cation of the nearest set of previously classified points. In other words, the
unclassified data point takes on the classification of its “nearest neighbor.”
As this is a well-known classification method, it is not to be discussed in this
work.

MATLAB’s classification learner contains several different KNN clas-
sification algorithms and many have been used in the investigation. Four
different KNN algorithms have been investigated: Fine, medium, coarse, and
weighted. Essentially, the difference between each of the KNN algorithms is
how many neighbors the data point is compared to, the k value. Weighted
KNN is a variation of KNN where the closer classified datapoints are given
higher weights than those farther away from the unclassified datapoint [34].

Brief Background on Decision Trees
Decision trees are another common type of classification algorithm that
can be used for nonlinear mappings of input variables to a set of output
variables. Decision trees break up the complex decision-making process into
several simpler and smaller decisions. Trees are easy to interpret, provide
needed insight into the data, and often produce models that have high pre-
diction speeds [27]. Detailed explanations of decision trees can be found in
literature [26, 27].

MATLAB contains three different decision tree algorithms in the Classi-
fication Learner toolbox: Fine, medium, and coarse decision trees. Decision
trees in MATLAB’s classification learner are categorized by the maximum
number of splits, or branches, the algorithm is allowed to contain. The more
branches or splits a tree contains then the finer the tree becomes.

Algorithm Selection: Steady-State Results
The four sets of features/sensors previously discussed have been selected to
compare the different classification algorithms using MATLAB’s Classifica-
tion Learner Application. Table 5 shows the results for OpCon 2, and how
the machine learning model accuracy and performance are influenced by the
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different algorithms. Only the results from OpCon 2 are shown because the
two other steady-state operating conditions give near identical results with
the same conclusion.

Table 5 is divided into four separate tables, where each table represents a
single combination of features that are applied to several different algorithms.
For example, Table 5(a) uses pump outlet pressure, inlet pressure, drain
pressure, and pump displacement as fixed features while varying machine
learning algorithms to determine the “best” performer, which is the Fine KNN
algorithm. This provides the best accuracy of 99.9% with a good prediction
speed of 650,000 observations per second, and a low training time of only
23.5 seconds.

Table 5(b) shows that the Weighted KNN algorithm has the highest
accuracy of 99.5%, but has a considerably slower prediction speed than the
Fine KNN. The Fine KNN has a negligibly lower accuracy of 99.4%. This
means the Fine KNN will have a lower computational cost and is a more
efficient algorithm without losing accuracy.

Table 5(c) and 5(d) use the “best” features for the dynamic duty cycle and
also show that the superior algorithm is the Fine KNN, which exhibit high
accuracies and high prediction speeds, thus lower computational expenses
are required.

Observing each condition in Table 5, it can be seen that the decision tree
algorithms have exceptionally fast prediction speeds but sacrifice accuracy.
It is interesting to note that each of the four-feature combinations give
nearly identical results, thus verifying that either of the four feature sets are
reasonable to select for the selected condition monitoring purpose.

Algorithm Selection: Dynamic Results
The same process used for algorithm selection for the steady-state conditions
is used for the dynamic duty cycle. Table 6 shows the comparison of algo-
rithm performance using the same set of features/sensors that are shown in
Table 5. The results for the dynamic cycle are similar to those of the steady-
state cycles, and the Fine KNN algorithm gives the highest accuracies with
fast prediction speeds and low training times. Another similar result is that
each of the four-feature sets have similar performance using the Fine KNN.

Results Summary
An algorithm selection process was conducted comparing various versions
of KNN and decision tree machine learning algorithms. The Fine KNN
machine learning algorithm performs well by producing a model with high
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accuracy, fast prediction speed, and a low training time. The four-sets of
features give similar results, so the selection is up to what is cost effective and
easier to implement on mobile equipment. For this study, it seems reasonable
to include the pump outlet pressure, inlet pressure, drain pressure, speed,
and displacement. Including a flow meter is cost prohibitive for mobile
equipment and is sensitive to contamination. Therefore, the final number
of sensors is reduced from 23 to 5. The combination of the Fine KNN
machine learning algorithms and the five selected sensors is an economi-
cal and effective solution for monitoring valve plate faults on axial piston
pumps.

4 Conclusion

In the past, failures in fluid power systems have been unexpected and resulted
in monetary and productivity losses. However, today’s sensor technology
and available computing power enables mobile fluid power systems to
be equipped with a condition monitoring system to mitigate failures and
machine downtime.

This work provides novel contributions to the field of fluid power and
condition monitoring research. Firstly, different valve plates with quantifi-
able wear and damage were used for condition monitoring on axial piston
pumps. Next, a successful investigation was made using existing condition
monitoring methods to show it is possible to detect a damaged pump under
dynamic operating conditions. Lastly, this work shows a sufficient number
of sensors necessary to successfully detect a fault condition of the pump.
The FFT analysis determined that the accelerometer placed on the pump case
near the roller bearings provides the most significant results. FFT analysis
was possible to determine the most significant accelerometer, the one placed
on the case near the roller bearings. The other sensors are selected by using
the Classification Learner App in MATLAB. From this study, it is possible
to determine that the pump outlet pressure, inlet pressure, drain pressure,
speed, and displacement are the only necessary parameters to observe for
valve plate failure, in conjunction with simple classification machine learning
algorithms.

The process of developing a condition monitoring algorithm for axial
piston pumps with valve plate wear has been successfully demonstrated with
the intent to implement this system on a mobile machine. The procedure
demonstrated in this work could be used in industry R&D, but more variables
could be introduced to enhance the stochastic significance of the data and
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more in-depth sensor analysis can be performed. The cost-effective sensor
selection used for condition monitoring of an axial piston pump can now
be implemented in a mobile condition monitoring process, such as on a
mini-excavator.

Appendices

Appendix A: Backward Elimination of OpCon 1

Table 7 Backward elimination results of OpCon 1 using a Fine Decision tree with 25%
hold-out validation not using the parallel solver

Training Prediciton Reason
Time Accuracy Speed Features Selected for

Features [sec] [%] [M obs/sec] Removed Features Removal

17/17 101.73 100 1.7 − − Temps not
included (not
feasible for

dynamic cycles)

16/17 43.3777 100 1.8 QD − Sensor cost

15/17 31.03 99.9 2 QC − Sensor cost

14/17 29.532 99.9 2.2 QA − Sensor cost

13/17 28.212 99.7 2.1 M − Sensor cost

12/17 28.622 99.7 2.1 pA1 − Sensor cost

11/17 27.623 99.7 2.1 FFT pA1 − Sensor cost

9/17 20.344 99.7 2.2 Back 684,
Back 680

− Not feasible for
dynamic cycles

7/17 17.062 99.7 2.2 FFT 684,
FFT 680

− Not feasible for
dynamic cycles

6/17 17.443 99.7 2.1 c 684 − Possibly
redundant sensor

5/17 15.156 99.6 2.2 N pA2, pD, pS,
Beta, c 680

−

4/17 12.366 99.6 2.2 c 680 pA2, pD, pS,
Beta

−

3/17 12.144 99.5 2.3 pS pA2, pD, Beta −
2/17 16.327 91.7 2.2 − pA2, pD −
2/17 10.398 99.2 2.3 − pD, Beta −
2/17 11.111 95.9 2.3 − pA2, Beta −
1/17 10.417 93.7 2.1 − Beta −
1/17 13.058 79.3 2.2 − pD −
1/17 15.005 88.3 2.1 − pA2 −
1/17 31.316 79.3 2.1 − c 680 −
1/17 11.859 91.1 2.2 − M −
1/17 15.771 97.6 2 − QD −
1/17 21.712 79.5 2.1 − QA −
2/17 18.506 98.3 2.2 − QD, pD −
3/17 19.536 100 2.1 − pD, QD, Beta −
2/17 16.724 99.5 2 − QD, Beta −
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