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Abstract

In this paper, a direct adaptive fuzzy neural network (DAFNN) controller
for trajectory tracking control of the non-linear non-affine pneumatic servo
system is presented. First, using a neural network identifier, the non-linear
dynamics of a real pneumatic servo system is simulated. By comparing the
output of the neural network and the output of the experimental setup, it
is observed that the non-linear pneumatic actuator system is well-identified
using neural networks. By incorporating the Lyapunov stability theorem, the
adaptive laws for the parameters of the controller are obtained, parameter
boundedness and stability of the closed-loop system are guaranteed. Finally,
practical results are successfully implemented for trajectory tracking control
of the pneumatic servo system, in which the effect of the simultaneous
updating of the antecedent and consequent’s parameters of the fuzzy neural
network controller has been investigated. The tracking error ±1.3mm and
±1 mm for proposed updating method compared to ±2.5mm and ±3.5mm,
for a case that the weigh parameters are merely adjusted, are obtained. The
results indicate the proposed adjustment method improves the performance
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of the controller in the presence of unknown nonlinearities and dynamics
uncertainty.

Keywords: Adaptive control, fuzzy neural network control, trajectory track-
ing control, non-affine pneumatic servo system, neural network identifier.

1 Introduction

Pneumatic actuators, on account of low cost, cleanliness, easy maintenance
and high power-to-weight ratio, exert numerous benefits to the industry.
Despite being exploited these advantages, pneumatic actuators due to some
drawbacks, for instance, the air compressibility, the presence of nonlinear fac-
tors such as friction force in the cylinder and airflow inside the proportional
valve, cannot be modelled accurately. Consequently, achieving a precise
control for these systems is challenging. Some researcher (Maré et al., 2000),
(Ning and Bone, 2005), accordingly, have endeavoured to design accurate
physical models for nonlinear pneumatic actuators.

Identification of pneumatic actuator systems (Al-Saloum et al., 2017),
(Osman et al., 2012) provides another supplementary method for modelling
these systems. Moreover, In the last few decades, having been emerged the
cutting-edge artificial intelligence approaches, its applications are spanned to
modelling and controlling nonlinear systems and led to the Neural network
identifiers (Neji and Beji, 2000), becoming a favoured method for mod-
elling dynamic systems. This technique- based on the input-output mapping-
derives the model of systems in the form of the black box. (Carneiro and
de Almeida, 2012) have presented a neural network identification to model
the pneumatic servo system. Two perceptron multilayer neural networks
have been proposed, one for modelling the flow of mass within the valve,
and another for friction modelling in the cylinder. Eventually, assessing
the obtained model, they indicated that the position error for 95% of the
experiment data is between −7.6% and 1.9% of the working range, and the
velocity error for 95% of the data is between−7.5% and 7.5% of the working
range.

Despite the accuracy-barricaded nonlinearities in these systems, their
unique advantages motivate researchers to improve some satisfactory control
theories for pneumatic systems. Many researchers have challenged their
ability to deal with the nonlinear pneumatic actuator system by designing
controllers such as adaptive control (Zhu and Barth, 2010), sliding mode
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control (Laghrouche¶ et al., 2006), back-stepping control (Hajji et al., 2019)
and observer-based control (S.-Y. Chen and Gong, 2017).

A new structure of back-stepping controller for an electro-pneumatic
system has been designed by (Smaoui et al., 2006). The control law has been
developed along with a nonlinear friction model, which leads to the controller
performing better than classical linear controllers.

In nonlinear pneumatic system examinations, the mathematical model
involves unknown nonlinear dynamics; friction’s mismatched uncertainty
and, payload variations result in the classic controller being incapable to
creating a precise control action to address these drawbacks. Therefore,
nonlinear controllers such as sliding mode control (SMC) (Tsai and Huang,
2008) to overcome these uncertainties could be successfully applied.

Liu et al. (2013) have presented an observer-based adaptive sliding mode
controller for the pneumatic system with input dead-zone. Observer-based
control coped with unmeasurable states and the states of the system are
properly estimated, as well as, the input dead-zone parameters have been
updated through adaptive law derived from Lyapunov theory.

In the last decades, utilizing artificial intelligence and soft computing has
increased in practical applications. Exploiting their well-known ”universal
function approximation” property dealing with unknown and non-linear sys-
tems uncertainty, Fuzzy Logic Control (FLC) (Q. Gao et al., 2012) and Neural
Networks (NN) controllers (Sun et al., 2013) are two common types of soft
computing that could widely solve the engineering problems (for instance,
modelling and control of non-linear dynamical systems).

An FLC for a pneumatic system with friction model, the model of the
unknown system and external disturbance, has been implemented practically
by (Lai and Chang, 2017). Two types of the FLC with friction compensator
and FLC combined with the PD and PI controller for pneumatic actuator has
investigated and their performance compared. The positioning error for the
FLC with the friction compensator and the Fuzzy-PD, Fuzzy-PI controller
have been obtained 93.3% and 91.1% below 30 nm, respectively.

Kaitwanidvilai and Parnichkun (2005) have proposed a hybrid force
controller including adaptive model reference Neuro-Fuzzy and Bang-Bang
control for pneumatic servo system force control. By employing the Bang-
bang controller the large error between actual output and set-point has been
compensated. To update the parameters of the antecedent and consequent part
of the Neuro-Fuzzy controller, the authors have benefited from descending
gradient technique.
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To overcome time-varying nonlinear dynamics and external disturbances
of the pneumatic actuator system, (L.-W. Lee and Li, 2016) applied an
adaptive Fourier Neural Network sliding mode controller with H∞ track-
ing performance (AFNN-SMC+H∞). For fast convergence of controller
parameters, an orthogonal Fourier basis function has been introduced.

An adaptive Recurrent Neural Network (ARNN) controller contributing
control of the pneumatic artificial muscle (PAM) manipulator has proposed
by (Ahn and Anh, 2009), The controller structure consists of two ARNN. One
has been designed to update the PAM manipulator inverse dynamic model,
and the other has been used to produce the proper control signal. The provided
controller has good properties, such as high learning speed and flexibility in
learning.

X. Gao and Feng (2005) have provided an adaptive Fuzzy-PD controller
to control the position of the pneumatic servo system with nonlinear proper-
ties. To increase the accuracy of the pneumatic servo position control system,
a new control algorithm has been used and a friction compensation method
have been done by means of a scaling factor K∆e and an adaptive controller
parameter Ma.

An FLC with velocity feedback (VF), system lag compensator (LC)
and friction compensator (FC) for control the position of the pneumatic
actuator system has implemented by (Nazari and Surgenor, 2016). The FLC
parameters, VF and FC compensators are tuned offline, and the LC com-
pensator parameters are obtained from an online algorithm. In following, the
tracking trajectory problem for sinusoidal references has been experimentally
investigated, the results demonstrated that errors of 5 mm, 6 mm and 10 mm
are obtained for frequencies of 0.1, 0.2 and 0.5 Hz, respectively.

Motivated by above-mentioned studies, in this paper, a direct adaptive
Fuzzy Neural Network (DAFNN) control overcoming the uncertain and
unknown of nonlinear non-affine pneumatic actuator system is presented. A
multilayer feedforward Neural network identification, in which the delays of
input and output should be prepared for the NN model, is utilized to establish
an accurate model for the pneumatic actuator system. It, accordingly, does
not need a mathematical model for the system. A control signal is directly
derived through FNN controller, in which the adaption laws to updating
the parameters are investigated. To demonstrate the effect of hybrid tuning
method of proposed controller’s parameters, the performance of the controller
is compared with a controller in which, only the parameters of the consequent
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part of the controller are updated. This work pursues some contribution which
are outlined as below:

• The NN is used to approximate the time series function based on
input-output delays of practical pneumatic system. Therefore, the model
eradicates the need for a complex mathematical model of friction forces
effected by cylinder and flow mass inside the proportional valve.

• In the term of control design, the FNN controller to approximate the
control signal needless for prior knowledge of the system is directly
employed. Compared to an indirect approach, the singularity and the
complexity of computation could be avoided.

• The proposed control approach reduces the cost of a practical system:
FNN controller does not need to measure pressure from the sensors.
As a result, a more economical practical system can be achievable with
fewer sensors.

• For being more flexible, a hybrid updating method is provided so that
the parameters of the antecedent and consequent of the FNN system are
simultaneously derived.

The paper is organized as follows. In Section 2, a NN is utilized to obtain
the black box model of pneumatic actuator system. In Section 3, DAFNN
controller is designed and stability analysis is accomplished for close-loop
system. The results for experimental and simulation tests are demonstrated in
Section 4. Finally, Section 5 concludes the paper.

2 Modelling and System Description

2.1 System Hardware and Software

In Figure 1 a schematic of pneumatic system has been illustrated which
specifically includes components (see Figure 2) such as an SMC cylinder
(80 mm bore and 125 mm piston stroke), a proportional directional valve
(Festo, Mype-5-1/8-HF-010B model), a linear potentiometer (Opkon, LPT
model), a pressure regulator and a tank for storing compressed air. Fur-
thermore, control purpose realization necessitates that in each sample time
dt = 0.01s, some signals (e.g. tracking trajectory error) which are consid-
ered controller inputs feedback to the PC through PCI1710U A/D card and
appropriate command signal (e.g. control signal) send to servo valve through
PCI1710U D/A card.



6 P. Mawlani and M. Arbabtafti

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic of pneumatic system.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Practical pneumatic actuator system with its components.
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2.2 Modelling and Identification

As mentioned, nonlinearities in the mass flow model, friction force in the
cylinder, and the dead-zone of the spool valve make pneumatic systems hard
to extract an accurate physical model. A summary of principle equations used
to model a nonlinear pneumatic actuator has been presented by (Bone and
Ning, 2007), which formulated as follows.

ṁa = fa(Pa, u), ṁb = fb(Pb, u) (1)

KRTṁa = KPaAaẋ+Aa(ya0 + x)Ṗa (2)

KRTṁb = −KPbAbẋ+Ab(yb0 − x)Ṗb (3)

Fp = (PaAa − PbAb) (4)

Fl =


Fp, ẋ = 0 and |Fp| ≤ Fsf
Fsf , ẋ = 0 and |Fp| > Fsf
Fcf + Cvf ẋ, ẋ > 0
−Fcf + Cvf ẋ, ẋ < 0

(5)

Mẍ = FP − Fl (6)

Where ṁa, ṁb are mass flow with nonlinear relation to pressures Pa, Pb
in chamber A and chamber B, respectively and control signal u. K is specific
heat ratio; R = 287 j

kg.K is ideal gas constant; T = 293K is air temperature.
x is piston position with massM (it includes the masses of payload and piston
mass).Aa, Ab are the piston areas of chamber A and chamber B, respectively.
ya0 is the distance between the piston and the A end of the cylinder when
x = 0; yb0 is the distance between the piston and the B end of the cylinder
when x = 0. Fp is the pneumatic force; Fl is the total friction force; Fsf
the stick-slip friction force; Fcf is the Coulomb friction force; Cvf is the
coefficient of viscous friction.

Ning and Bone (2005) based on step input response and pressure data
obtained force friction parameters as, Fsf = 83N , Fcf = 34N and Cvf =
78N/(m/s) for the Festo rodless cylinder. Afterwards, they improved the
friction model dynamic in (Ning and Bone, 2005) as follows.

Fl =

(Fc + (Fs − Fc)e−(ẋ/vs)
2

)sgn(ẋ) + Fpẋ, ẋ 6= 0
Fp, ẋ = 0 and |Fp| < Fs
Fssgn(Fp), otherwise

(7)
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Where Fc = 1.64N , Fs = 2.73N , Fv = 1.22 N/(m/s) and vs = 0.04 m/s.
In this work we replace the system identification method based input-

output pairs with physical model of real system. The nonlinear autoregressive
exogenous model (NARX) (S. Chen et al., 2007) provides an excellent
method for system identification in which the output in time t is calculated
through input-output pair delays (u(t − i), y(t − j) i = 1, 2, . . . , n, j =
1, 2, . . . ,m) mapping. To accomplish this measure a feed-forward NN system
approximates the nonlinear function of NARX model and a NARX Neural
Network (NARXNN) can be made , this choice is reasonable because NNs
have some advantages such as having high ability of learning the dynamic of
systems.

The NARXNN diagram for pneumatic system modelling has been shown
in Figure 3. As the pneumatic actuator system is considered as second order
system, we select two delays of input and output for NARXNN model which
is presented as follow.

ŷ(t) = FNN(y(t− 1), y(t− 2), u(t− 1), u(t− 2)) (8)

Where ŷ(t) denotes the NN output.
The precise design requires an appropriate data collection, i.e., frequency-

enriched data (the Nyquist frequency law is satisfied) and selected data must

Figure 3 NARXNN diagram for pneumatic system modelling.
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Figure 4 Designed input signal for the proportional valve.

cover the workspace of the practical system. In this study, accordingly, to
train NN model, we strung all constant input signals together (see Figure 4),
and the related output of the pneumatic servo system (position) (see Figure 5)
is obtained by applying the designed input.

2.3 Neural Network Model Validation

The neural network (NN) model consists of 50 neurons with Gaussian acti-
vation functions in the hidden layer and one neuron with a linear activation
function in the output layer. Furthermore, to improve the performance of the
model against noisy and complex data, the neural network is trained by the
Levenberg-Marquardt optimization algorithm with a Bayesian regularization.
The 8400 total data is sampled from which, 5%, 20% and 75% are considered
for validation, test and training of NN, respectively. The performance for
training and test data is achieved around 3 × 10−7 (see Figure 6), indicating
that the nonlinear dynamics of the pneumatic actuator system is properly
identified.
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Figure 5 Output signal of pneumatic actuator system.

Figure 6 Performance diagrams for training and testing data of neural network model.

Validating the trained NN model, three different tests responding to
variant control inputs u = 0V, u = 7V and u = sint(0.5t)V have been
done and compared to the responses of the real pneumatic servo system as
Figures 7–9. In terms of comparison of studies dealing with friction model
identification, it worth to mention that a fair comparison had better estab-
lished in an equal environmental condition, namely stroke length, cylinder
diameter, frequency and experimental equipment. Nevertheless, the output
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Figure 7 Comparison between output of neural network model and actual system
for u = 0V .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Comparison between output of neural network model and actual system
for u = 7V .

error between experimental data and derived neural network proposed in this
study is achieved so that compared to (Ning and Bone, 2005) and (Ning
and Bone, 2005) the steady-state error decreased as well as it lacks delay,
respectively.



12 P. Mawlani and M. Arbabtafti

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Comparison between output of neural network model and actual system for
sinusoidal input.

3 Controller Design and Stability Analysis

3.1 Problem Statement

Generally, a nonlinear, non-affine system can be written as following.

ẋi = xi+1 (i = 1, 2, . . . , n− 1)
ẋn = F (x, u) + d(t)

y = x1

(9)

For a second order nonlinear pneumatic system with Equations (1)–(7),
(9) is obtained for i = 1, F = (PaAa−PbAb)−Fl

M and d(t) = 0. X =
[x, ẋ, Pa, Pb], and u is a control signal, which is defined in the ℵ physical
bound.

ℵ = {X,u|0.1Mpa ≤ P ≤ 0.6Mpa , 0 ≤ x1 ≤ 0.1m, |x2| ≤ 0.5m/s,

0V ≤ u ≤ 10 V } (10)

The purpose of the controller design is to establish a proper control signal
u(t) directly, so that the output of the pneumatic servo system y, in the
presence of uncertainty and nonlinear unknown dynamics, is forced to track



Neural Network Identification and DAFNN Controller 13

the reference signal xd(t) and guaranteed the boundedness of all signals in
the closed-loop system.

To design the controller, it is necessary to consider two following
assumptions.

Assumption 1: for all (X,u) ∈ ℵ × R, the function fu = ∂(F (X,u))
∂u is

nonsingular and bounded as, fu < Ω, where Ω is a positive constant.

Assumption 2: The desired trajectory and its time derivatives xd, x
(1)
d , x

(2)
d

are smooth and bounded.

3.2 Feedback Linearization

According to the strategy presented for non-affine systems in (Park et al.,
2005), linear feedback control for the pneumatic servo system can be defined
as follow,

x(2) = F (X,u) = u+ {F (X,u)− u} = u+ ∆(X,u) (11)

Where ∆(X,u) = {F (X,u)− u}. The ideal control law can be defined
as follows,

u∗ = (x
(2)
d −∆(X,u) +KTE) (12)

Where E = [e, ė]T , e = xd − x, K = [k0, k1]T , substituting (12) in (11)
gives,

ė = −k0e− k1ė (13)

K is chosen in a such way that the (13) is Hurwitz stable, i.e. limt→∞ e =
0 or limt→∞ x = xd.

By adding and subtracting optimal control u∗ in (11), and substituting
(12), the dynamic error equation is rewritten as,

ė = −k0e− k1ė+ (u∗ − u) (14)

From (14), we obtain the error dynamics in terms of controller parameters
which will be mentioned next section. One can obtain compact form of (14)
as below,

Ė = AE +B[(u∗ − u)] (15)

Where A =

[
0 1
−k0 −k1

]
, B =

[
0
1

]
.

Assumption 3: E belongs to a compact set, Ue = {E ∈ Rn: ‖E‖ ≤ me ≤
∞}, where me is the upper bounds of E.



14 P. Mawlani and M. Arbabtafti

3.3 Direct Adaptive Fuzzy Neural Network (DAFNN) Control
Design

Fuzzy Neural Network (FNN) system indicates a Fuzzy logic system (FLS)
that is formed as a network. FNN systems exploit both merits of learning
ability based on input-output pairs of the Neural Network systems and mak-
ing decisions based on a rule-base of the Fuzzy logic systems. FNN systems
consist of four essential ingredients; fuzzification, fuzzy rule base, inference
engine, and defuzzification. To approximate the systems, FLS makes deci-
sions in the inference engine, which combines the “IF-THEN’ rules based on
the knowledge of the systems. Takagi-Sugeno Fuzzy inference (Kasabov and
Song, 2002) is well-known inference engine, which the consequent parts are
formed based on a nonlinear function of the inputs, a simple “IF-THEN’ rule
of this kind of system could be presented as below in which its consequent
part includes a zero-order function;

Rj : IF x̂1 is A
j
1 and x̂2 is A

j
2 . . . and x̂n is A

j
n THEN F̂j = θj

(16)

Where [x̂1, x̂2, . . . , x̂n], [Aj1, A
j
2, . . . , A

j
n] and F̂j are the inputs, Fuzzy

sets and a zero-order function which its value is equal to θj for jth rule,
respectively.

In this paper, we present a Fuzzy Neural Network (FNN) system to
approximate (12) which includes the unknown nonlinear function ∆(X,u).
Due to this fact that ∆(X,u) is a term of the control signal, to generate the
output of the FNN control, it needs the control signal u is feedbacked to the
controller. Hence, control signal u should be regarded as an input to produce
the output of the controller. To overcome this drawback, (Lin and Wai,
2001) Have proposed a Recurrent Neural Network (RNN) control. However,
through the recurrent Fuzzy Neural Network (RFNN) systems, a fixed-point
problem must be solved in each sample time (Park et al., 2005), which
increases the volume of computations and is not appropriate for practical
applications. To solve this problem, Theorem 1 is defined.

Theorem 1: (implicit function theorem): Assume that h : Rn × Rm → Rn

is continuously differentiable at each point (x, y) of an open set S ⊂ Rn ×
Rm. Let (x0, y0) be a point in S for which f(x0, y0) = 0 and for which the
Jacobean matrix [∂f∂a ](x0, y0) is nonsingular. Then there exist neighbourhood
U ⊂ Rn of x0 and V ⊂ Rm of y0 such that for each y ∈ V the equation
f(x, y) = 0 has a unique solution x ∈ U . Moreover, the solution can be given
as x = g(y) where g is continuously differentiable at y = y0 (Khalil, 2002).
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Figure 10 Fuzzy neural network controller structure.

There is u∗ that satisfies the following equation.

L(X, v, u∗) = (v −∆(X,u∗))− u∗ (17)

Where v = y
(2)
d +KTE.

By considering Assumption 1, non-singularity of ∂L∂u |u = u∗ is proved.

∂L
∂u

∣∣∣∣
u=u∗

=
∂((v −∆(X,u))− u)

∂u

∣∣∣∣
u=u∗

= − ∂(F − u)

∂u
− ∂u

∂u

∣∣∣∣
u=u∗

= −fu|u=u∗ (18)

Thus, according to Theorem 1 there exist a unique u∗(X, v) satisfies (17)
for all (X, v) ∈ ℵ × R. Hence, a feed forward FNN controller which is
shown in Figure 10 can be replaced with a RFNN controller. The proposed
Fuzzy system differs markedly from the classic one.

Remark 1: This type of Fuzzy system definition has the capability of being
self-structured and the scheme is achievable to implement. FNN system
considers each rule (each EBF neuron) as a class and for each input assigns
a centre and width of the membership function. In this method, unlike the
classic, the number of rules is not obtained based on the number of Fuzzy
sets but it is a design parameter.

Remark 2: It is worth to mention that, with regard to indirect adaptive
Fuzzy and Neural network (Bounemeur et al., 2018; Theodoridis, et al.,
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Figure 11 EBF neuron for the jth rule schematic.

2012) the control law is derived from u∗ = 1
G(X)(x

(2)
d − F(X) + KTE).

The control design, accordingly, necessitates two FNN to be independently
employed to approximating F(X) and G(X). This measure leads to the
scheme being inefficient addressing practical implementation. However, the
drawback mentioned above is eradicated, thanks to the direct property of the
proposed approach.

As it can be seen in Figure 10, the FNN controller consists of the input
layer, the ellipsoidal basis function (EBF) layer which introduced by (Leng
et al., 2004), the normalized layer, the weighted layer, and the output layer.

Input layer: This layer provides controller with inputs including position
(x1), speed (x2) of the pneumatic actuator and variable v.

EBF layer: The jth Fuzzy rule can be expressed as EBF Neuron (see Fig-
ure 11), in which the membership functions of fuzzy sets are introduced as,

µij = exp

(
−(xi − cij)2

2σ2
ij

)
i = 1, 2, 3; j = 1, 2, . . . ,m (19)

Where m is number of neurons and cij , σij are center and width of ith
input and jth neuron, respectively.

By applying the Multiplication T-norm on the fuzzy sets with Gaussian
membership function (19) in antecedent part of “If-Then” rules, the output of
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the EBF layer is obtained as,

∅j = exp

(
−
∫ 3

i=1

(xi − cij)2

2σ2
ij

)
j = 1, 2, . . . ,m (20)

Normalized layer: This layer normalize the output of EBF layer, the output
of the jth neuron in this layer is calculated as follows.

ξj =
∅j∫m

n=1 ∅n
=

exp

(
−
∫ 3
i=1

(xi−cij)2

2σ2
ij

)
∫m
n=1 exp

(
−
∫ 3
i=1

(xi−cin)2

2σ2
in

) j = 1, 2, . . . ,m (21)

Weighted layer: In this layer, the outputs of the normalized layer are weighed
by weights (the constant parameters in the consequent part of the Takagi-
Sugeno fuzzy model.). The outputs of this layer is

Υj = wjξj j = 1, 2, . . . ,m (22)

Output layer: In this layer, the outputs of the weighted layer that were
normalized in the third layer are aggregated and form the output of the FNN
controller. This layer is the defuzzification section of the fuzzy model. The
output can be obtained as follow.

uFNN =

∫ m

j=1
Υj =

∫m
j=1wjexp

(
−
∫ 3
i=1

(xi−cij)2

2σ2
ij

)
∫m
n=1 exp

(
−
∫ 3
i=1

(xi−cin)2

2σ2
in

) (23)

We can rewrite (23) in matrix form.

uFNN = W TQ([x1, x2, v]|C, σ) (24)

Where,

W = [w1, w2, . . . wm]T ∈ Rm×1, (25)

Q = [ξ1, ξ2, . . . , ξm]T ∈ Rm×1, (26)

C = [c11, c12, . . . , c1m, c21, c22, . . . , c2m, c31, c32, . . . , c3m] ∈ R1×(3m),
(27)

σ = [σ11, σ12, . . . , σ1m, σ21, σ22, . . . , σ2m, σ31, σ32, . . . , σ3m] ∈ R1×(3m).
(28)
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An optimal FNN can be obtained to approximate the control signal.

u∗ = W ∗TQ∗(C∗, σ∗) + δ([x1, x2, v]) (29)

Where δ([x1, x2, v]) is approximation error and |δ| ≤ i, which i is
constant parameter, and W ∗ and Q∗(C∗, σ∗) are the optimal parameters of
W and Q(C, σ), respectively.

Assumption 4: The optimal parameters of controller are obtained so that
[W ∗, C∗, σ∗] = argminW∈mw,C∈mc,σ∈mσ [sup[x1,x2,v]∈ℵ×R|u∗([x1, x2, v])−
uFNN ([x1, x2, v]|w, c, σ)] , with the bounded regions of parameters as,

mw = {W ∈ Rn: ‖W‖ ≤ β}, mc = {C ∈ Rn: ‖C‖ ≤ Υ},

mσ = {σ ∈ Rn: ‖σ‖ ≤ Ω},

mQ = {Q ∈ Rn: ‖Q‖ ≤ χ}, m ∂Q
∂C

=

{
∂Q

∂C
∈ Rn:

∥∥∥∥∂Q∂C
∥∥∥∥ ≤ χ1

}
,

m ∂Q
∂σ

=

{
∂Q

∂σ
∈ Rn:

∥∥∥∥∂Q∂σ
∥∥∥∥ ≤ χ2

}
(30)

Where, β,Υ,Ω, χ are the raduise of parameters region.
To obtain adaptive laws, the dynamic error equation (15) is rewritten in

terms of the parameter variations from their optimal values.

Ė = AE +B

[(
W̃ TQ+W T ∂Q

∂C
C̃ +W T ∂Q

∂σ
σ̃ + ε

)]
(31)

Where W̃ = W ∗−W, C̃ = C∗−C, σ̃ = σ∗−σ and ε = δ([x1, x2, v])+

W Th(O2) + W̃ T Q̃.

Proof: By substituting, (24) and (29) in (15), the following equation is
obtained.

Ė = AE +B[(W ∗TQ∗ −W TQ+ δ)] (32)

By adding and subtracting W TQ∗ and W̃ TQ in (32) and simplification,
following equation is derived.

Ė = AE +B[(W̃ T Q̃+ W̃ TQ+W T Q̃+ δ)] (33)
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Based work of (Han et al., 2017), Taylor series technique is used to
linearize the two-variable nonlinear function Q∗ respect to Q.

Q∗ = Q+
∂Q

∂C
(C∗ − C)T +

∂Q

∂σ
(σ∗ − σ)T

+ h(O2)
yields−−−→ Q̃ =

∂Q

∂C
C̃T +

∂Q

∂σ
σ̃T + h(O2) (34)

Where,

∂Q

∂C
=



∂Q1

∂c11
, ∂Q1

∂c12
, . . . , ∂Q1

∂c1m
· · · ∂Q1

∂c31
, ∂Q1

∂c32
, . . . , ∂Q1

∂c3m

∂Q2

∂c11
, ∂Q2

∂c12
, . . . , ∂Q2

∂c1m
. . . ∂Q2

∂c31
, ∂Q2

∂c32
, . . . , ∂Q2

∂c3m

...
. . .

...

∂Qm
∂c11

, ∂Qm∂c12
, . . . , ∂Qm∂c1m

· · · ∂Qm
∂c31

, ∂Qm∂c32
, . . . , ∂Qm∂c3m


∈ Rm×(3m)

(35)

∂Q

∂σ
=



∂Q1

∂σ11
, ∂Q1

∂σ12
, . . . , ∂Q1

∂σ1m
· · · ∂Q1

∂σ31
, ∂Q1

∂σ32
, . . . , ∂Q1

∂σ3m

∂Q2

∂σ11
, ∂Q2

∂σ12
, . . . , ∂Q2

∂σ1m
. . . ∂Q2

∂σ31
, ∂Q2

∂σ32
, . . . , ∂Q2

∂σ3m

...
. . .

...

∂Qm
∂σ11

, ∂Qm∂σ12
, . . . , ∂Qm∂σ1m

· · · ∂Qm
∂σ31

, ∂Qm∂σ32
, . . . , ∂Qm∂σ3m


∈ Rm×(3m)

(36)

And

∂Qj
∂cij

=
xi − cij
σ2
ij

(ξj − ξ2
j ) (37)

∂Qj
∂σij

=
(xi − cij)2

σ3
ij

(ξj − ξ2
j ) (38)

By substituting, (34) in (33), (31) is derived. �

Theorem 2: For the non-linear, non-affine system (9) with control law (12)
which is derived through a direct FNN control (23), if assumptions are
satisfied, the close-loop system is stable, the parameters of DAFNN are
bounded, and tracking trajectory error tends to zero, i.e. limt→∞E → 0.
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Proof: Define The Lyapunov function as,

V =
1

2
ETPE +

1

2γw
W̃ T W̃ +

1

2γc
C̃T C̃ +

1

2γσ
σ̃T σ̃ (39)

Where γw, γc, and γσ are positive learning rates and P is a n × n
symmetric matrix which satisfies the Lyapunov equation.

ATP + PA = −q (40)

Where q is an arbitrary n×n positive definite matrix. Differentiating (39)
respect time gives,

V̇ =
1

2
ET (ATP + PA)E +

1

2
((W̃ TQ)

T
BTPE + ETPBW̃ TQ)

+
1

2

((
W T ∂Q

∂C
C̃T
)T

BTPE + ETPBW T ∂Q

∂C
C̃T

)

+
1

2

((
W T ∂Q

∂σ
σ̃T
)T

BTPE + ETPBW T ∂Q

∂σ
σ̃T

)

+
1

2

(
(ε)TBTPE + ETPBε

)
− 1

γw
W̃ T Ẇ − 1

γc
C̃T Ċ − 1

γσ
σ̃Tσ

(41)

By applying this fact that,

ETPBW̃ TQ = (W̃ TQ)
T
BTPE (42)

ETPBW T ∂Q

∂C
C̃T =

(
W T ∂Q

∂C
C̃T
)T

BTPE (43)

ETPBW T ∂Q

∂σ
σ̃T =

(
W T ∂Q

∂σ
σ̃T
)T

BTPE (44)

ETPBε = (ε)TBTPE (45)

(41) is rewritten as,

V̇ = −1

2
ET (q)E +

(
ETPBQ− 1

γw
Ẇ

)
W̃ T
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+

(
ETPBW T ∂Q

∂C
− 1

γc
Ċ

)
C̃T

+

(
ETPBW T ∂Q

∂σ
− 1

γσ
σ̇

)
σ̃T + ETPBε (46)

choose the adaptive laws as below,

Ẇ = γwE
TPBQ (47)

Ċ = γcE
TPBW T ∂Q

∂C
(48)

σ̇ = γσE
TPBW T ∂Q

∂σ
(49)

Then the following can be obtained,

V̇ = −1

2
ET (q)E+ETPBε (50)

According to (34), the following inequality always exists.

W Th(O2) ≤ ‖W T ‖|h(O2)| ≤ ‖W T ‖
(
‖Q∗‖+ ‖Q‖+

∥∥∥∥∂Q∂C
∥∥∥∥ ‖C∗‖

+

∥∥∥∥∂Q∂C
∥∥∥∥ ‖C‖+

∥∥∥∥∂Q∂σ
∥∥∥∥ ‖σ∗‖+

∥∥∥∥∂Q∂σ
∥∥∥∥ ‖σ‖) (51)

As well as we can write,

W̃ T Q̃ ≤
∣∣∣W̃ T Q̃

∣∣∣ ≤ ‖W ∗‖‖Q∗‖+ ‖W ∗‖‖Q‖+ ‖W‖‖Q∗‖+ ‖W‖‖Q‖
(52)

Using Assumption 4 we have,

W Th(O2) ≤ Γ (53)

And

W̃ T Q̃ ≤ Λ (54)

Where Γ = c1β + βχ + c2βχ1 + βχ1Υ + c3βχ2 + βχ1Ω and Λ =
c4c1 + c4χ+ βc1 + βχ.
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By substituting (53), (54) we have,

V̇ ≤ −1

2
ET (q)E+ETPB(δ([x1, x2, v]) + Γ + Λ)

≤ −1

2
ET (q)E+ETPB(i + Γ + Λ) (55)

By using young’s inequality for the second terms we can have,

ETPBi ≤ 1

2
ETPBBTP TE +

1

2
i2 (56)

ETPBΓ ≤ 1

2
ETPBBTP TE +

1

2
Γ2 (57)

ETPBΛ ≤ 1

2
ETPBBTP TE +

1

2
Λ2 (58)

Then (55) is rewritten as following,

V̇ ≤ −1

2
ET (Φ)E +

1

2
(i2 + Γ2 + Λ2) (59)

Where,
− Φ = −q + 3PBBTP T (60)

By using this fact, −ET (Φ)E ≤ −λmin(Φ)‖E‖2, (59) rewritten as
below,

V̇ ≤ −1

2
λmin(Φ)‖E‖2 +

1

2
(i2 + Γ2 + Λ2) (61)

Let α = λmin(ΦP−1) and π = 1
2(i2+Γ2+Λ2). Then (61) is obtained as,

V̇ ≤ −αV + π (62)

By integrating over [0, tf] from (62) we have,

V ≤ e−αt
(
V (0)− π

α

)
+
π

α
(63)

As a result it can be said that ‖E‖ ≤
√

2
e−αt(V (0)− π

α
)+ π

α
λmin(P ) , therefore E is

bound and Assumption 3 is satisfied, i.e

Ue =

E ∈ Rn: ‖E‖ ≤

√
2
e−αt

(
V (0)− π

α

)
+ π

α

λmin(P )
≤ ∞


and the proof is completed. �
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Figure 12 Block diagram for control system.

In Figure 12, the block diagram for the control system is shown. The steps
of the controller design algorithm are briefly outlined in a five steps,

• Initial position and velocity of the pneumatic actuator system is deter-
mined

• The initial value of W,C, and σ is specified.
• From Equation (23), the control signal is obtained.
• The control signal is applied to the pneumatic actuator system and feed-

backed error vector E is characterized.
• From Equations (47)–(49) the controller parameters are updated.

4 Simulation and Experimental Results

In this paper, first, an accurate non-linear autoregressive exogenous model
with Neural network (NARXNN) for the practical pneumatic system was
extracted. Secondly, a direct adaptive Fuzzy Neural Network (DAFNN)
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controller for control the output of NARXNN was simulated; finally, the con-
troller is implemented on the practical pneumatic servo system with unknown
dynamics. To evaluate the control simulation results, several comparisons
with practical results are done.

The controller parameters are updated by hybrid method, i.e. the weight
parameters of FNN (the constant parameters of consequent part of Takagi-
Sugeno Fuzzy model) and the EBF neurons parameters (parameters of
antecedent part of Fuzzy rules) are tuned simultaneously.

The initial position and velocity of the pneumatic servo system are x(0) =
0, ẋ(0) = 0 and initial value of controller’s parameters are

W (0) = [0] ∈ R3×1,

C(0) = [0.847, 0.9058, 0.127, 0.9134, 0.6324, 0.975, 0.2785,

0.5469, 0.9]

and σ(0) = [0.6] ∈ R1×9, as well as the design parameters are selected as,

K = [1, 1]T , q =

[
30 0
0 5

]
and γw = γc = γσ = 50, also in term of practical

control system implement, the sampling rate of the PCI1710U card is selected
so that data acquiring is done each 0.01s interval.

The performance of the (DAFNN) controller significantly depends on the
number of EBF neurons. If EBF neurons are chosen large, the controller’s
complexity could arise result in practical implementation being far out of
reach; On the other hand, if it is selected small, the controller accuracy
decreases. Turning to a feasible solution, one can use the self-structure fuzzy
neural network system. However, in this paper, three EBF neurons are chosen.
In following, to examine the performance of the controller, two aspects of
control problems, including trajectory tracking control and robustness test
against the mass parameter change are investigated.

4.1 Trajectory Tracking Control

The performance of the control scheme, tracking two distinct trajectory is
investigated. As the achievable workspace for the piston is limited to the span
of [0–0.125 m], the trajectories are considered as bellow.

case(1): yd = 0.05(sin(t) + 1) (64)

case(2): yd = 0.0284(sin(t) + cos(0.5t) + 1.7602) (65)
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Figure 13(a) Experimental output and simulation output of (DAFNN) controller with hybrid
tuning for tracking case (1).

All results of this section are obtained for the condition in which the nom-
inal mass and supply pressure are selected 18 kg and 0.6 MPa, respectively.
The control system output (the controlled system’s position of the piston), the
control signal, tracking error, and zoomed in error are shown in Figure 13. As
can be seen from Figure 13(a), the practical and simulation results properly
track the desired trajectory. The errors (Figures 13(c) and 13(d)) are obtained
±1.3mm and±1mm, respectively, which indicate that the controller performs
a satisfactory ability in tracking the desired trajectory expressed by the case
(1). Moreover, the performance for the controller tracking case (2), has been
made. The control system output (the controlled system’s position of the
piston), the control signal, and the tracking error are shown in Figure 14.
According to Figure 14(d), the tracking error for the practical and simulation
control system is ±1mm and ±0.5mm, respectively.

The mentioned results are obtained for the case in which the parameter
adjustments are accomplished with a hybrid method. To investigate the effect
of hybrid adjustment for the controller parameters on tracking error, the
presented results have been compared with a situation in which only the
weights of FNN controller (Phan and Gale, 2008) (parameters of consequent
of Takagi-Sugeno fuzzy rules) are updated.
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Figure 13(b) Experimental system and simulation control signal of (DAFNN) controller
with hybrid tuning for tracking case (1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13(c) Experimental and simulation trajectory tracking error of (DAFNN) controller
with hybrid tuning for tracking case (1).
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Figure 13(d) Experimental and simulation zoomed in trajectory tracking error of (DAFNN)
controller with hybrid tuning for tracking case (1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14(a) Experimental output and simulation output of (DAFNN) controller with hybrid
tuning for tracking case (2).
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Figure 14(b) Experimental system and simulation control signal of (DAFNN) controller
with hybrid tuning for tracking case (2).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14(c) Experimental and simulation trajectory tracking error of (DAFNN) controller
with hybrid tuning for tracking case (2).
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Figure 14(d) Experimental and simulation zoomed in trajectory tracking error of (DAFNN)
controller with hybrid tuning for tracking case (2).

Practical and simulation results for controller which parameters are
updated by weight adjustment method for the desired trajectory case (1) and
case (2) are shown in Figures 15 and 16, respectively. As Figure 15(d) and
16(d), in this method, the tracking error of the practical control system and
the simulation for case (1) is ±2.5mm and ±3mm, and for the case (2) is
±3.5mm and ±2mm, respectively.

By comparing the results for both methods, it is obvious that the hybrid
tuning method has a significant effect on the DAFN controller tracking error
reduction.

To measure the performance of the controller for tracking the desired
trajectories, the root square mean error (RSME) performance assessment
criteria obtained as below is investigated.

RSME =

√
1

n

∫ n

i=1
(ydi − xi)

2 (66)

Where n implies the number of samples.
The non-identical initial conditions between the output and the desire’s

values, result in an uncontrollable error, hence, to evaluate the performance
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Figure 15(a) Experimental output and simulation output of (DAFNN) controller with the
weight parameters tuning for tracking case (1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15(b) Experimental system and simulation control signal of (DAFNN) controller
with the weight parameters tuning for tracking case (1).
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Figure 15(c) Experimental and simulation trajectory tracking error of (DAFNN) controller
with the weight parameters tuning for tracking case (1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15(d) Experimental and simulation zoomed in trajectory tracking error of (DAFNN)
controller with the weight parameters tuning for tracking case (1).
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Figure 16(a) Experimental output and simulation output of (DAFNN) controller with the
weight parameters tuning for tracking case (2).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16(b) Experimental system and simulation control signal of (DAFNN) controller
with the weight parameters tuning for tracking case (2).
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Figure 16(c) Experimental and simulation trajectory tracking error of (DAFNN) controller
with the weight parameters for tracking case (2).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16(d) Experimental and simulation zoomed in trajectory tracking error of (DAFNN)
controller with the weight parameters for tracking case (2).
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precisely, the RSME can be calculated when the two values reach each
other. The RSME for hybrid and weight tuning method tracking sinusoidal
is calculated 0.9 and 1.4, respectively.

4.1.1 Discussion
In Table 1, the performance of the proposed controller tracking the sine
trajectories for frequency 0.1, is compared with the references (Najafi et al.,
2009; Nazari and Surgenor, 2016) and (H. K. Lee et al., 2002). An efficient
comparison requires that the environmental conditions, components of the
pneumatic system (cylinder, valve and payload), operation condition (ampli-
tude, initialization, supply pressure) and accuracy of the sensors used for
experiments are similar. Therefore, it is vital to consider these factors to
compare the performance of controllers properly under different conditions.
As it is shown in Table 1, (Najafi et al., 2009) have been obtained the
best performance and our proposed (DAFNN controller with hybrid tuning)
work is the second best based RSME comparison. However, our proposed
controller performs the best MAE compared to other works. Although the
performance of controller with weight tuning has dropped, for both criteria it
has shown better performance compared to (H. K. Lee et al., 2002).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17(a) Experimental output and desired trajectory of (DAFNN) controller with hybrid
tuning for tracking case (1) when M = 18 kg → 3 kg.



Neural Network Identification and DAFNN Controller 35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17(b) Experimental system control signal of (DAFNN) controller with hybrid tuning
for tracking case (1) when M = 18 kg → 3 kg.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17(c) Experimental trajectory tracking error of (DAFNN) controller with hybrid
tuning for tracking case (1) when M = 18 kg → 3 kg.
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Figure 17(d) Experimental zoomed in trajectory tracking error of (DAFNN) controller with
hybrid tuning for tracking case (1) M = 18 kg → 3 kg.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18(a) Experimental output and desired trajectory of (DAFNN) controller with hybrid
tuning for tracking case (2) when M = 18 kg → 3 kg.
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Figure 18(b) Experimental system control signal of (DAFNN) controller with hybrid tuning
for tracking case (2) when M = 18 kg → 3 kg.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18(c) Experimental trajectory tracking error of (DAFNN) controller with hybrid
tuning for tracking case (2) M = 18 kg → 3 kg.
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Figure 18(d) Experimental zoomed in trajectory tracking error of (DAFNN) controller with
hybrid tuning for tracking case (2) M = 18 kg → 3 kg.

4.2 Robustness Tests Against Mass Load Variation

The better the controller adapts to the new conditions, the more robust it
will be. On the other word, the control approach sensitivity, when nominal
parameters of the system change could index whether the control is robust
or not. To investigate the control resistance, in the first test, the controller is
conducted based on a nominal mass load of 18 kg. Afterwards, exploiting the
adaptive property, it is expected that the control strategy could adapt to a new
and non-nominal mass load of 3kg. In Figures 17 and 18, the results of the
practical control system are illustrated when the load is changed from 18 to
3 kg. As presented in Figures 17(d) and 18(d), the tracking error for desired
trajectory case (1) and case (2) is ±3 mm and ±3mm respectively. The
results show that the (DAFNN) controller is robust when payload changes
in practical system.

5 Conclusion

In this paper, a Neural Network (NN) system for modelling and a Fuzzy Neu-
ral (NN) for control the nonlinear pneumatic actuator system are used. Using
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the neural network advantages it does not require modelling of complex terms
such as mass flow in proportional valve and friction force, and an accurate
identification are established for practical pneumatic servo system.

For trajectory tracking control purpose, a direct adaptive fuzzy neural
network (DAFNN) controller is designed. The Fuzzy logic system used in
this paper has some differences in rule base with a traditional system. In
the presence of uncertainty and unknown dynamics, the proposed controller
tracks the desired trajectories successfully, as well as the controller is robust
against payload variation. A novel comparison for adjustment methods of
control parameters is accomplished. Finally, results are Utilizing Lyapunov
theory, close-loop system stability and boundedness of parameters are proved.

Disclosure Statement:

No potential conflict of interest was reported by the authors.

Funding:

Not applicable.

References

Ahn, K. K., and Anh, H. P. H. (2009). Design and implementation of an
adaptive recurrent neural networks (ARNN) controller of the pneumatic
artificial muscle (PAM) manipulator. Mechatronics, 19(6), pp. 816–828.

Al-Saloum, S., Taha, A., and Chouaib, I. (2017). Parameter identification of
a jet pipe electro-pneumatic servo actuator. International Journal of Fluid
Power, 18(1), pp. 49–69.

Bone, G. M., and Ning, S. (2007). Experimental comparison of position
tracking control algorithms for pneumatic cylinder actuators. IEEE/ASME
Transactions on mechatronics, 12(5), pp. 557–561.

Bounemeur, A., Chemachema, M., and Essounbouli, N. (2018). Indirect
adaptive fuzzy fault-tolerant tracking control for MIMO nonlinear sys-
tems with actuator and sensor failures. ISA transactions, 79, pp. 45–61.

Carneiro, J. F., and de Almeida, F. G. (2012). A neural network based non-
linear model of a servopneumatic system. Journal of Dynamic Systems,
Measurement, and Control, 134(2), p. 024502.



40 P. Mawlani and M. Arbabtafti

Chen, S.-Y., and Gong, S.-S. (2017). Speed tracking control of pneumatic
motor servo systems using observation-based adaptive dynamic sliding-
mode control. Mechanical Systems and Signal Processing, 94, pp. 111–
128.

Chen, S., Wang, X., and Harris, C. J. (2007). NARX-based nonlinear sys-
tem identification using orthogonal least squares basis hunting. IEEE
Transactions on Control Systems Technology, 16(1), pp. 78–84.

Gao, Q., Feng, G., Wang, Y., and Qiu, J. (2012). Universal fuzzy models
and universal fuzzy controllers for stochastic nonaffine nonlinear systems.
IEEE Transactions on Fuzzy systems, 21(2), pp. 328–341.

Gao, X., and Feng, Z.-J. (2005). Design study of an adaptive Fuzzy-PD
controller for pneumatic servo system. Control Engineering Practice,
13(1), pp. 55–65.

Hajji, S., Ayadi, A., Smaoui, M., Maatoug, T., Farza, M., and M’saad,
M. (2019). Position control of pneumatic system using high gain and
backstepping controllers. Journal of Dynamic Systems, Measurement, and
Control, 141(8), p. 081001.

Han, H.-G., Wu, X.-L., Liu, Z., and Qiao, J.-F. (2017). Design of Self-
Organizing Intelligent Controller Using Fuzzy Neural Network. IEEE
Transactions on Fuzzy systems, 26(5), pp. 3097–3111.

Kaitwanidvilai, S., and Parnichkun, M. (2005). Force control in a pneu-
matic system using hybrid adaptive neuro-fuzzy model reference control.
Mechatronics, 15(1), pp. 23–41.

Kasabov, N. K., and Song, Q. (2002). DENFIS: dynamic evolving neural-
fuzzy inference system and its application for time-series prediction.
IEEE Transactions on Fuzzy systems, 10(2), pp. 144–154.

Khalil, H. K. (2002). Nonlinear systems. Upper Saddle River.
Laghrouche¶, S., Smaoui, M., Plestan, F., and Brun, X. (2006). Higher order

sliding mode control based on optimal approach of an electropneumatic
actuator. International journal of Control, 79(2), pp. 119–131.

Lai, Y.-Y., and Chang, K.-M. (2017). Fuzzy control for a pneumatic position-
ing system. 2017 9th International Conference on Modelling, Identifica-
tion and Control (ICMIC).

Lee, H. K., Choi, G. S., and Choi, G. H. (2002). A study on tracking position
control of pneumatic actuators. Mechatronics, 12(6), pp. 813–831.

Lee, L.-W., and Li, I.-H. (2016). Design and implementation of a robust FNN-
based adaptive sliding-mode controller for pneumatic actuator systems.
Journal of Mechanical Science and Technology, 30(1), pp. 381–396.



Neural Network Identification and DAFNN Controller 41

Leng, G., Prasad, G., and McGinnity, T. M. (2004). An on-line algorithm for
creating self-organizing fuzzy neural networks. Neural Networks, 17(10),
pp. 1477–1493.

Lin, F.-J., and Wai, R.-J. (2001). Hybrid control using recurrent fuzzy neural
network for linear induction motor servo drive. IEEE Transactions on
Fuzzy systems, 9(1), pp. 102–115.

Liu, Y.-T., Kung, T.-T., Chang, K.-M., and Chen, S.-Y. (2013). Observer-
based adaptive sliding mode control for pneumatic servo system. Preci-
sion Engineering, 37(3), pp. 522–530.
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