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ABSTRACT
In this paper, comprehensive mathematical models of hydraulic hoses for fluid power systems 
and a modelling and simulation technology based on using multi-pole models and intelligent 
simulation environment are proposed. Principles of composing multi-pole mathematical 
models for hydraulic hoses with lumped parameters having various causalities are discussed. 
Computing transient and frequency responses of hydraulic hoses in a visual simulation tool 
CoCoViLa are considered. The CoCoViLa environment is a visual programming tool, which 
supports declarative programming in a high-level language and automatic program synthesis. 
The proposed technology enables to find optimal solutions for hydraulic hoses in design and 
development of various fluid power systems.

1. Introduction

A hydraulic hose is an environment for energy transfer 
and transmitting signals in fluid power systems. The 
hydraulic hoses compensate the relative movement, 
replace the complicated bent tubes, reduce the pressure 
pulsation and prevent the forwarding of vibrations. 
Dynamic phenomena of hydraulic hoses have an influ-
ence on the dynamic behaviour of fluid power systems. 
Design of a hydraulic hose is shown in Figure 1.

The hydraulic hose typically consists of four ele-
ments: soul of hose, braids (1, 2, 4, 6 layers), cover of 
hose and fittings (nipple and socket). Braid is com-
posed of a number of wires wrapped helically around 
the hose in a basket weave fashion and fixed to the hose 
at both ends. The angle between crossing wires is called 
braiding angle. Researchers have dealt with problems of 
hydraulic transmission lines for a long time. A number 
of research papers are concerned with the investigation 
of fluid transmission lines with distributed parameters. 
Exact models of a distributed parameter system are con-
siderably troublesome to develop simulation programs 
for the reason that they involve Bessel and hyperbolic 
functions. It requires work with modal approximations. 
In (Muto et al. 1996), a method has been introduced 
for simulating the transient response of viscoelastic 
transmission lines. Irrational functions for describing 
transfer matrix elements were approximated with high 
accuracy by rational polynomials. Various lumped 
parameter models and their solutions have been used 
to reduce complexity of dynamic analysis (Korobochkin 

and Komitowski 1968, Stecki and Davis 1986, Krus et 
al. 1994, Taylor et al. 1997, Kajaste 1998, Mäkinen et al. 
2000, Manning 2005, Soumelidis et al. 2005, Kojima et 
al. 2006, Pršić et al. 2011, Watton 2014).

Frequency characteristics are widely used to describe 
dynamic behaviour of hydraulic transmission lines 
(Grossschmidt 1971, Grossschmidt and Vanaveski 1971, 
Sänger 1985, Xu et al. 2014).

Linear models with distributed parameters are suit-
able for calculating frequency characteristics of tubes 
(Grossschmidt 1971, Stecki and Davis 1986). Frequency 
characteristics of large fluid power systems can be 
directly calculated only in case of linear models of com-
ponents. In case of non-linear models of components 
frequency characteristics can be calculated only using 
transient responses.

When calculating dynamic transient responses of 
large fluid power systems it is preferable to use non-lin-
ear simple models with lumped parameters for hydraulic 
transmission lines to save calculation resources.

Approximate models with distributed parameters can 
be considered consisting of a couple of similar mod-
els with lumped parameters. In this way, we take into 
account several natural frequencies of the transmission 
line.

Our objective is to propose non-linear models with 
lumped parameters and with various causalities that can 
be used as components in modelling and simulation of 
fluid power systems. The aim of the current research is 
to make the computer simulation of large and complex 
fluid power systems easier, more precise and faster.
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A hydraulic hose can be considered as a tube with 
viscoelastic walls. The mathematical models of hoses are 
quite complex, it makes difficult using them in simula-
tion of fluid power systems (Sänger 1985, Chipperfield 
and Vance 2002, Kannisto and Virvalo 2002, Johnston 
2006, Johnston et al. 2010 Ohashi and Hayashi 2014, 
Speicher et al. 2014). Radial and longitudinal deforma-
tions of hoses depend on the material of soul and on 
the construction of braid (material of wire and braid-
ing angle). In practice hoses with minimal longitudi-
nal deformations are manufactured (Sänger 1985). 
Therefore, in the current paper we concentrate only on 
radial deformation of hoses.

Multi-pole mathematical models are used for 
describing hydraulic hoses. Fundamentals of mul-
ti-pole model construction principles and methods 
have been described in (Grossschmidt and Harf 2009). 
Models of hoses are based on models of hydraulic tubes 
(Grossschmidt and Harf 2010).

A modelling and simulation technology is pro-
posed for calculating dynamic transient and frequency 
responses of hydraulic hoses. A visual simulation envi-
ronment CoCoViLa (Grigorenko et al. 2005, Kotkas et 
al. 2011) is used as a tool.

The special features of the used technology are as 
follows:

•  composing multi-pole mathematical models with 
graphical representation;

•  using visual programming and automatic program 
synthesis for composing and solving simulation 
tasks;

•  using multi-level distributed calculations.

2. Mathematical model of radial deformation 
of hose wall

Equation of mean radial deformation of hose wall static 
and steady state model considering hysteresis
 

where arithmetic mean pressure
 

inner area of hose

(1)x = (p_m ⋅ A) ∕ k − b ⋅ signv(v, v_lim ),

(2)p_m = (p1 + p2)∕2,

 

Radial stiffness of the hose wall is non-linear, depending 
on hose wall material, construction of braid and pres-
sure. At lower pressures the stiffness is lesser.

The stiffness is characterised by reference deforma-
tion x_ref at reference pressure p_ref and ratios of stiff-
nesses k at p_m = p_ref and k at p_m = 0.

The graphical dependence of hose wall stiffness k on 
pressure p_m (Murrenhoff 2005, Figure 2.4–5) is esti-
mated to match the best way as logarithmic

 

where reference radial stiffness of the hose wall
 

reference hose inner area
 

In (4) numeric constants are chosen to satisfy following 
conditions: at pressure p_m = 0

at pressure p_m = p_ref

For hoses with relatively lower radial stiffness at lower 
pressures, another logarithmic dependence can be used:
 

where
k = k_ref/2· (1 + log 1) = k_ref /2, if p_m = 0.
Hysteresis is described by
 

where
hose wall radial deformation velocity
 

signv = v/v_lim, when abs (v) < v_lim,
signv = 1, when v ≥ v_lim,
signv = −1, when v ≤ −v_lim.
Estimated value of b is chosen 2e–5  m based on 

(Sänger 1985, Figure 19). Value of v_lim is chosen 
1e–4 m/s to ensure the function sign v to be continuous.

Equation for dynamics of hose wall (Ohashi and 
Hayashi 2014, Speicher et al. 2014) is presented as

 

where damping force is expressed as h·v.
After substitution of v and A the equation is as
 

Now the mean radial deformation x of hose wall con-
sidering hysteresis is expressed as

(3)A = � ⋅ (d + 2 ⋅ x) ⋅ l.

(4)k = k_ref ∕3 ⋅ (1 + log (90 ⋅ p_m∕p_ref + 10)),

(5)k_ref = (p_ref ⋅ A_ref ) ∕ x_ref ,

(6)A_ref = � ⋅ (d + 2 ⋅ x_ref ) ⋅ l.

k = k_ref ∕3 ⋅ (1 + log 10) = 2∕3 ⋅ k_ref ,

k = k_ref ∕3 ⋅ (1 + log (90 + 10)) = k_ref .

(7)k = k_ref ∕2 ⋅ (1 + log (9 ⋅ p_m ∕p_ref + 1)),

(8)b ⋅ signv(v, v_lim),

(9)v = (x− xold)∕ dt,

(10)h ⋅ v + k ⋅ x = p_m ⋅ A,

(11)

h ⋅ (x−xold)∕dt + k ⋅ x = p_m ⋅ � ⋅ (d + 2 ⋅ x) ⋅ l.

Figure 1. design of a hydraulic hose.
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where
 

3. Mathematical models of fluid physical 
properties

For used fluids HLP, density ρ15 at T = 15 °C, kinematic 
viscosity ν0 at different temperatures T in the interval 
from −60 to +60 °C and coefficients of fluid compress-
ibility Af, Bf at T = 20 °C are taken from table. Physical 
properties of the fluid (kinematic viscosity ν, density ρ, 
and compressibility factors of fluid Af and Bf) depending 
on the temperature T and the arithmetic mean pressure 
p_m are calculated. Formulae below considering fluid 
physical properties are based on (Murrenhoff 2005, 
Grossschmidt and Harf 2010).

Fluid kinematic viscosity ν depending on relative 
content vol0 of air in the fluid and mean pressure pm is 
expressed as

 

Density ρ of fluid depending on fluid type, temperature 
T °C, mean pressure p_m and relative content vol0 of air 
is expressed as

 

where
 

for fluids HLP10 and HLP15:
 

 

for fluids HLP of higher kinematic viscosity:
 

 

Volume of air vol, relative to the entire volume VF + VA, 
at mean pressure p_m is expressed as
 

where volume of air in fluid at mean pressure p_m 

volume of air in fluid at mean pressure p_m = 0
 

hose volume

(12)

x = (p_m ⋅ A0 + h ⋅ xold∕dt)∕(k + h∕dt−2 ⋅ � ⋅ l ⋅ p_m)

−b ⋅ signv(v, v_lim),

(13)A0 = � ⋅ d ⋅ l.

(14)� = �0 ⋅ (1 + 1.5 ⋅ vol0) ⋅ (1 + 3 ⋅ 10−8 ⋅ p_m).

(15)� = (�
15
∕(1 + � ⋅ (T−15)))⋅

(1 + (p_m∕(Af ⋅ p_m + Bf )) ⋅ (1−vol
0
)),

(16)� = (4 + 0.1 ⋅ T) ⋅ 10−4,

(17)Af = 12.5− 0.05 ⋅ (T−20),

(18)Bf = (16.5−0.08 ⋅ (T−20)) ⋅ 108,

(19)Af = 14−0.05 ⋅ (T− 20),

(20)Bf = (18.4−0.10 ⋅ (T−20)) ⋅ 108.

(21)

vol = V
A
∕(V

F
+ V

A
)

= V
A0

⋅ (p
0
∕(p_m + p

0
))1∕ka∕

(V
H
⋅ (1−p_m∕(Af ⋅ p_m + Bf ))),

(22)V
A
= V

A0
⋅ (p

0
∕(p_m + p

0
))1∕ka,

(23)V
A0

= vol
0
⋅ � ⋅ d

2
⋅ l∕4,

 

hose volume at mean pressure p_m = 0
 

volume of air, relative to the entire volume
VF0 + VA0, at mean pressure p_m = 0
 

fluid volume in hose at mean pressure p_m
 

fluid volume in hose at mean pressure p_m = 0
 

Volume elasticity of the fluid
 

derivation of hose wall radial deformation x (12) from 
pressure p_m
 

Volume elasticity of the air in the fluid
 

Sum of fluid and air volume elasticities
 

4. Four-pole mathematical models with 
lumped parameters of the hose

Multi-pole mathematical models with lumped param-
eters of the hose as four-pole models of forms H, G, Y 
or Z (analogously to the electrical engineering) having 
various causalities (Grossschmidt 1971, Grossschmidt 
and Vanaveski 1971, Grossschmidt and Harf 2009) are 
shown in Figure 2. Models describing four causalities 

(24)VH = � ⋅ (d + 2 ⋅ x)2 ⋅ l∕ 4,

(25)VH0 = � ⋅ d2
⋅ l∕ 4,

(26)vol0 = VA0∕(VF0 + VA0) = VA0∕VH0,

(27)VF = (VH−VA) ⋅ (1−p_m∕(Af ⋅ p_m + Bf )),

(28)VF0 = VH0−VA0 = VH0 ⋅ (1−vol0).

(29)

C
F
= dV

F
∕dp_m

= A ⋅ dx∕dp_m ⋅ (1−p_m∕(Af ⋅ p_m + Bf ))

−(V
H
−V

A
) ⋅ Bf ∕(Af ⋅ p_m + Bf )2

+ V
A0

⋅ (1−p_m∕(Af ⋅ pm + Bf ))∕(ka ⋅ (p_m + p
0
))⋅

(p
0
∕(p_m + p

0
))1∕ka,

(30)
dx∕dp_m = A

0
∕(k + h∕dt−2 ⋅ � ⋅ l ⋅ p_m)

+ (p_m ⋅ A
0
+ h ⋅ xold∕dt)⋅

2 ⋅ � ⋅ l∕(k + h∕dt−2 ⋅ � ⋅ l ⋅ p_m)2.

(31)
C
A
= −dV

A
∕dp_m

= V
A0
∕(ka ⋅ (p_m + p

0
)) ⋅ (p

0
∕(p_m + p

0
))1∕ka.

(32)C = CF + CA.

Figure 2. four-pole models of forms H, G, Y and Z having various 
causalities.
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In order to achieve correspondence of natural fre-
quency of the tube model with lumped parameters to the 
first natural frequency of the tube model with distributed 
parameters, the values of L and C have been corrected 
by coefficients

 

For hoses the almost similar dependencies take place. 
If the hose model is considered consisting of n (n = 1, 
3, 5, 7) models with lumped parameters, the correction 
coefficients are expressed as follows:
 

where kn = 0.010…0.012.
Values of coefficient kn have been found as a result of 

calculation experiments with hose models consisting of 
n = 1…7 lumped models.

Correction coefficient kr is used to characterise dif-
ference of flow resistances under steady state conditions 
(kr = 1) and dynamics. Coefficient kr depends on fluid 
kinematic viscosity, inner diameter of hose, volumetric 
flow, type and amplitude of disturbance. Identification 
of all those dependencies is complicated. The correction 
coefficient kr for flow resistances RL and RT depending 
on n is obtained empirically as a result of calculation 
experiments and is expressed as

 

where kr1 = 1.4, kr2 = 0.09…0.11.

5. Four-pole models of hydraulic hoses

5.1. Four-pole model of HoseH

Inputs: volumetric flow Q1, pressure p2.
Outputs: pressure p1, volumetric flow Q2.

For steady state conditions:
 

 

The four-pole model HoseH for dynamics composed 
from four-pole models of separate lumped components 

(38)kL = kC = (2∕�)(1∕n).

(39)kL = kC = (2∕�)(1∕n) + kn ⋅ (n −1),

(40)kr = kr1−kr2 ⋅ (n−1),

(41)Q2 = Q1,

(42)p1 = p2 + (RL + RT ⋅ abs(Q1)) ⋅ Q1.

enable to cover all the situations of using hoses when 
composing models of dynamic of complex fluid power 
systems.

All the models contain lumped resistance R (linear 
resistance RL and square resistance RT), inertial resist-
ance of the flow L and volume elasticity C.

Formulas for calculating hydraulic flow resistances 
RL, RT and L (based on (Grossschmidt and Harf 2010) 
are as follows.

Hydraulic linear resistance
 

Hydraulic square resistance
 

Hydraulic inertial resistance
 

Formula for calculation of volume elasticity C is 
described in Chapter 3.

The fluid flow is characterised by the Reynolds 
number

 

Critical volumetric flow
 

For example, if d  =  0.016  m, ν  =  46 e–6  m2/s, and 
ReCr = 2300, then QCr = 1.33e–3 m3/s.

In general hydraulic tubes and hoses are chosen to 
ensure laminar flow. In practice fluid flow velocity is 
taken for pressure tubes and hoses in range 3…6 m/s.

The lumped resistance R takes into account linear 
and square dependence of the pressure drop on the vol-
umetric flow. Square resistance RT takes into account 
hose bends, roughness of the inner surface, resistance 
of fittings, etc.

For the example above (parameters ζ = 2, λ = 0.04) 
pressure drops caused by proportional and square resist-
ances RL and RT are shown in Figure 3.

The flow is laminar as volumetric flow values are 
lower than critical (1.33e–3  m3/s). The proportion of 
pressure drop caused by square resistance is small.

As a result of analysis of various distributions of ele-
ments R, L, C in tube models the simplest structures 
of the four-pole models for tube dynamics, taking into 
account only the first natural frequency, are chosen as 
follows (Grossschmidt and Vanaveski 1971):

for form H in sequence C – R – L,
for form G in sequence L – R – C,
for form Y in sequence L/2 – R/2 – C – R/2 – L/2,
for form Z in sequence C/2 – R/2 – L – R/2 - C/2.

(33)RL =
2 ⋅ Al ⋅ l ⋅ � ⋅ �

� ⋅ (d + 2 ⋅ x)4

(34)RT =
8 ⋅ �

�2
⋅ (d + 2 ⋅ x)4

⋅

(

� + � ⋅

l

(d + 2 ⋅ x)

)

(35)L = 4 ⋅ � ⋅ l∕
(

�(d + 2 ⋅ x)2
)

.

(36)Re = v ⋅ d∕� = 4 ⋅ Q∕(� ⋅ d ⋅ �).

(37)QCr = � ⋅ d ⋅ � ⋅ ReCr ∕4.

Figure 3. Pressure drops caused by RL and RT.
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is represented in Figure 7. The corresponding oriented 
graph is shown in Figure 8.

For dynamics the mathematical expressions are as 
follows. To calculate Runge–Kutta coefficients for inte-
gration the differences dQ1, dp3 and dQ2 of output var-
iables are to be found.

Difference of output volumetric flow dQ1
 

where
 

 

Difference of mean pressure dp3
 

Difference of output volumetric flow dQ2
 

where
 

 

Equations for calculating values Q1, p3 and Q2 using 
Runge–Kutta method are:
 

 

 

(51)dQ1 = (dt ∕(kL ⋅ L∕2)) ⋅ (p1−p4) ,

(52)p4 = p3 + R1∕2 ⋅ Q1,

(53)R1 = kr ⋅ (RL + RT ⋅ abs (Q1)) .

(54)dp3 = (dt∕(kC ⋅ C )) ⋅ (Q1 −Q2) .

(55)dQ2 = (dt ∕(kL ⋅ L∕2)) ⋅ (p5 −p2),

(56)p5 = p3 −R2∕2 ⋅ Q2,

(57)R2 = kr ⋅ (RL + RT ⋅ abs (Q2)) .

(58)
Q1 = Q1old + (kq11 + 2 ⋅ kq12 + 2 ⋅ kq13 + kq14)∕6,

(59)
p3 = p3old + (kp31 + 2 ⋅ kp32 + 2 ⋅ kp33 + kp34)∕6,

(60)
Q2 = Q2old + (kq21 + 2 ⋅ kq22 + 2 ⋅ kq23 + kq24)∕6.

is represented in Figure 4. The corresponding oriented 
graph is shown in Figure 5.

For dynamics the mathematical expressions are as 
follows. To calculate Runge–Kutta coefficients for inte-
gration the differences dQ2 and dp1 of output variables 
are to be found.

Difference of output volumetric flow Q2
 

where
 

 

Difference of output pressure p1
 

The fourth-order classical Runge–Kutta method is used 
for calculating the values Q2 and p1:
 

 

Analogously, the four-pole model HoseG for dynamics 
composed from four-pole models of separate lumped 
components is represented in Figure 6.

5.2. Four-pole model of HoseY

Inputs: pressures p1, p2.
Outputs: volumetric flows Q1, Q2.

For steady state conditions:
 

 

The four-pole model HoseY for dynamics composed 
from four-pole models of separate lumped components 

(43)dQ2 = (dt∕(kL ⋅ L )) ⋅ (p3−p2),

(44)p3 = p1 −R ⋅ Q2,

(45)R = kr ⋅ (RL + RT ⋅ abs(Q2)).

(46)dp1 = (dt ∕(kC ⋅ C)) ⋅ (Q1 −Q2) .

(47)Q2 = Q2old +
(

kq1 + 2 ⋅ kq2 + 2 ⋅ kq3 + kq4
)

∕6,

(48)p1 = p1old + (kp1 + 2 ⋅ kp2 + 2 ⋅ kp3 + kp4)∕6.

(49)
Q1 = (−RL + (RL2 + 4 ⋅ RT ⋅ abs(p1−p2))1∕2)∕(2 ⋅ RT),

(50)Q2 = Q1.

Figure 4. four-pole structure of model HoseH for dynamics.

Figure 5.  oriented graph of the four-pole model HoseH for 
dynamics.

Figure 6. four-pole structure of model HoseG for dynamics.

Figure 7. four-pole structure of model HoseY for dynamics.

Figure 8.  oriented graph of the four-pole model HoseY for 
dynamics.
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Using multi-pole models allows using inner and outer 
variables of components in different roles. All the varia-
bles described in a multi-pole model of the component 
are inner variables. Poles of a multi-pole model are both, 
inner and outer variables of the component.

Using multi-pole models allows to perform calcula-
tions at two separate levels:

•  at the lower level are those which take place in each 
component model between inner variables of the 
component;

•  at the higher level are those which take place in the 
model of the entire fluid power system and include 
only outer variables (poles) of components.

Model of the fluid power system is built up from mul-
ti-pole models of components by connecting necessary 
poles.

When analysing the fluid power system models one 
can see that loop dependences can appear between outer 
variables of components. The special iteration procedure 
is used for solving these loop dependencies. Usually we 
split one variable in each loop, provide it with approx-
imate initial value and try to refine it by re-computing. 
The re-computing algorithm for each split variable is 
automatically synthesised by the CoCoViLa system.

In more detail the computing process organisation is 
considered in (Grossschmidt and Harf 2016).

8. Simulation of transient responses of 
hydraulic hoses

In this chapter, simulation of transient responses 
of hydraulic hoses caused by a step disturbance is 
considered.

Four-pole mathematical models with lumped param-
eters of forms H, G, Y or Z described in Chapter 4 are 
used.

In the example below, simulation task (Figure 10) and 
resulting graphs (Figure 11) of transient responses of a 
hose consisting of n = 7 sequentially connected four-pole 
models of form H are considered.

Simulations are performed under following 
conditions.

Hose models: HoseH_Q – model of form H. All the 
output volumetric flows Q2e of models HoseH_Q are 
calculated using iterations for solving loop dependencies 
(see Chapter 7).

Inputs: constant volumetric flow Q1 = 5e–4 m3/s, step 
input pressure p2: mean = 1e7 Pa, step = 1e6 Pa.

Simulation parameters: time step dt = 1e–6 s, calcu-
lation steps 1e5.

In all the following examples (except in Chapter 9.2) 
the hose with following parameters is used: l = 2/n m, 
d = 0.016 m, p_ref = 1e7 Pa, x_ref = 0.0004 m, b = 2e–5 m, 
h = 200 Ns/m, kn = 0.011, kr1 = 1.4, kr2 = 0.10.

Physical properties of working fluid (density 
ρ, kinematic viscosity ν and coefficients of fluid 

Analogously, the four-pole model HoseZ for dynamics 
composed from four-pole models of separate lumped 
components is represented in Figure 9.

6. Programming environment

CoCoViLa (Grigorenko et al. 2005, Kotkas et al. 2011) 
is a programming environment, which supports declar-
ative programming in a high-level language, automatic 
program synthesis and visual programming.

The CoCoViLa system supports a user in the defini-
tion of visual languages, including the specification of 
graphical objects, syntax and semantics of the language. 
CoCoViLa provides the user with a visual programming 
environment, which is automatically generated from the 
visual language definition.

Automatic synthesis of programs is a technique for 
the automatic construction of programs from the knowl-
edge available in specifications.

When a visual scheme is composed by the user, the 
following steps – parsing, planning and code generation 
– are fully automatic. The compiled program then pro-
vides a solution for the problem specified in the scheme.

7. Simulation process organisation

Simulation of dynamics of hydraulic hoses includes:

•  calculation of transient responses;
•  calculation of frequency characteristics based on 

transient responses of sinusoidal input.

For each particular simulation, a task description 
must be composed using visual tools provided by 
CoCoViLa. Simulation task contains visual multi-pole 
models of hydraulic hoses, inputs, graphical outputs, 
clock, simulation manager, etc.

It is easy to solve various computing problems on each 
simulation task due to automatic program synthesis.

To follow the system behaviour in time, the concept 
of state is introduced as a couple of variables, character-
ising the system at certain moment of time (at certain 
time step).

Dynamic calculations proceed from the initial state to 
the final state. The key procedure here is the procedure 
of computing the next state values from the (known) 
current state (or several previous states) values.

Calculation of transient responses is organised by 
simulation manager dynamic_Process. When calculating 
frequency characteristics, simulation manager dynamic_
Process is used as a multi-level organiser.

Figure 9. four-pole structure of model HoseZ for dynamics.
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~106 Hz) of output pressure p1 (graph 2) and output 
volumetric flow Q2 (graph 3) with different phase shift. 
The shape of oscillations is influenced by higher natural 
frequencies.

When simulating larger fluid power systems it is rea-
sonable to use hose model as simple as possible. In the 
following example, the model consisting of one hose 
model of form H (taking into account only the first 
natural frequency of the hose) is used. The simulation 
results are shown in Figure 12.

compressibility Af and Bf) are calculated at each simu-
lation step depending on average of input and output 
pressure in the component and fluid temperature. In 
all the simulations hydraulic fluid HLP46 at tempera-
ture 40 °C is used. Kinematic viscosity at temperature 
40  °C ν  =  46e–6  m2/s, density at temperature 15  °C 
ρ15  =  875  kg/m3, volume of air, relative to the entire 
volume at p_m = 0, vol0 = 0.08.

Step change 1e6 Pa of input pressure p2 = 10e6 Pa 
(graph 1) causes damped oscillations (frequency 

Figure 10. Simulation task of the hydraulic hose, represented by n = 7 models of form H.

Figure 11. Graphs of transient responses of HoseH (n = 7).

Figure 12. Graphs of transient responses of HoseH (n = 1).
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In Figure 13, step change 1e6  Pa of input pressure 
p1 = 10e6 Pa (graph 1) causes damped oscillations with 
frequency ~106 Hz of output pressure p2 (graph 2) and out-
put volumetric flow Q1 (graph 3) with different phase shift.

In Figure 14, impulse disturbance of input pressure 
p2 (mean 9.915e6 Pa, height of the impulse 1e5 Pa, dura-
tion of the impulse, disturbance rise and drop durations 
0.01 s) (graph 1) causes output volumetric flows Q1 and 
Q2 (graph 2 and 3) to drop down with some delay and 
return to initial level with damped oscillations (fre-
quency ~195 Hz).

In Figure 15, impulse disturbance of input volumet-
ric flow Q1 (mean 5e–4  m3/s, height of the impulse 

The oscillations in Figure 12 are of the same natural 
frequency (~106 Hz), amplitudes and damping time as 
the oscillations in the example for n  =  7. It is due to 
coefficient kn for correction of natural frequency and 
coefficient kr for correction of flow resistances (influ-
encing process duration) (see Chapter 4).

Based on the results for hoses with parameters from 
the example above it is reasonable to use one four-pole 
model with lumped parameters representing a hose 
model.

In Figures 13–15 results of simulation of dynamic 
responses caused by step change of input pressure for 
models of forms HoseG, HoseY and HoseZ are shown.

Figure 13. Graphs of transient responses of HoseG (n = 1).

Figure 14. Graphs of transient responses of HoseY (n = 1).

Figure 15. Graphs of transient responses of HoseZ (n = 1).
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Two-level simulation process for organising calcula-
tions of amplitude-frequency responses is described in 
the model dynamic_Process. Calculations of logarithmic 
amplitude ratios are described in the model Maxlog.

Simulations are performed under following 
conditions.
Model: HoseH_Q – hose type H.
Hose parameters: see Chapter 8.
Inputs: constant volumetric flow Q1 = 5e–4 m3/s, sinu-
soidal pressure p2: mean 1e7 Pa, amplitude Ap2 = 3e5 Pa, 
frequency 2…150 Hz.

Simulation parameters: calculation steps 2e5 for each 
particular transient response, calculation steps 300 for 
frequencies, simulation time step 1e–6 s.

Results of calculations of logarithmic amplitude-fre-
quency responses 20log(max_AQ2e/Ap2) (graph 1) 
and 20log(max_Ap1/Ap2) (graph 2) are presented in 
Figure 17.

Simulated resonance frequency is 106.0  Hz for 
pressure p1 and 106.7  Hz for volumetric flow Q2e. 
Logarithmic amplitude ratios at resonance are:  
20log(max_AQ2e/Ap2)=– 168.75  dB and 20log(max_
Ap1/Ap2) = 17.43 dB.

In Figure 18, calculated graphs of logarithmic ampli-
tude-frequency responses of a hose of length 2 m con-
sisting of n = 7 sequentially connected four-pole models 
of form H are presented.

Here seven resonances and seven anti-resonances 
take place. Calculation of these graphs is very time con-
suming, it takes 799 s (120 s when calculating graphs in 
Figure 17) on high performance laptop.

Amplitude ratios of higher resonance frequencies are 
dropping down.

Results of calculations of logarithmic amplitude-fre-
quency responses 20log(max_AQ1/Ap2) (graph 1) and 

3e–6  m3/s, duration of the impulse, disturbance rise 
and drop durations 0.01 s) (graph 1) causes output pres-
sures p1e and p2e (graph 2 and 3) in opposite phases 
to increase and take a new higher level with damped 
oscillations (frequency ~210 Hz).

For the hose models of forms G and H, if quarter 
length of the wave fits with the length of the hose the 
resonance takes place. For models of forms Y and Z, if 
half length of the wave fits with the length of the hose the 
resonance takes place. For the models without damping 
(flow resistances are not considered) the first resonance 
frequency of models of forms Y and Z is twice higher 
than the first resonance frequency of models of forms 
G and H.

9. Simulation of frequency responses of 
hydraulic hoses

9.1. Simulation task

In Figure 16 two-level simulation task for calculating 
logarithmic amplitude-frequency responses of hose 
(model HoseH_Q) is shown.

At the lower level, transient responses of outputs (p1 
and Q2e of model HoseH_Q) in case of input sinusoidal 
pressure p2 of given frequency freq and amplitude Ap2 
(ampl in Figure 16) are calculated.

At the higher level, maximums of amplitudes max_
Ap1 and max_AQ2e (maxl in Figure 16) of all calculated 
p1 and Q2e are found. Transient responses caused by 
sinusoidal input require some time to stabilise. To get 
reliable results the initial phases of transient responses are 
not considered when finding maxAp1 and max_AQ2e. 
Logarithmic amplitude ratios 20log(max_Ap1/Ap2) and 
20log(max_AQ2e/Ap2) in dB are calculated for input 
disturbances in all the diapason of frequencies.

Figure 16. Simulation task for calculating logarithmic amplitude-frequency responses of hose (n = 1).



36   G. GROSSSCHMIDT AND M. HARF

9.2. Comparison with experiments

The results of measured frequency responses of a hose 
are taken from (Sänger 1985). The experimental device 
contains hydraulic pump, pressure relief valve, accumu-
lator and impulse generator. All the components of the 
experimental device influence to the dynamic behaviour 
of the hose. Steel wire reinforced high pressure hose DN 
10 (inner diameter 0.01 m) of length 1 m was used in tests. 
The end of the hose was closed (input volumetric flow 
Q1 = 0). Dependencies of resonance frequency (Sänger 
1985, Figure 50) and logarithmic amplitude ratio at res-
onance (Sänger 1985, Figure 49) on input mean pressure 

20log(max_AQ2/Ap2) (graph 2) using model HoseY are 
presented in Figure 19.

Simulated resonance frequency for Q1 is 192.6 Hz 
and for Q2 is 195.0 Hz. Logarithmic amplitude ratios at 
resonance are: 20log (max_AQ1/Ap2) = −166.0 dB and 
20log (max_AQ2/Ap2) = −169.7 dB.

Based on the results of simulations concerning 
examples above one can say that using in simulations 
of complex fluid power systems one multi-pole model 
for representing hoses of given parameters is reasonable 
if frequencies in the system do not exceed ~150 Hz when 
using models of forms H or G and ~300 Hz when using 
models of forms Y or Z.

Figure 18. Simulated logarithmic amplitude-frequency responses of HoseH (n = 7).

Figure 19. Simulated logarithmic amplitude-frequency responses of HoseY (n = 1).

Figure 17. Simulated logarithmic amplitude-frequency responses of HoseH (n = 1).
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graphs of simulations. Resonance frequencies are found 
for various hose lengths l (Figure 22), hose inner diam-
eters d (Figure 23) and means of input pressures p2 
(Figure 24).

Resonance frequency is lower on bigger hose length 
l. On higher hose wall stiffness (lower reference radial 
deformation of hose wall x_ref) the resonance frequency 
is higher.

Resonance frequency is higher at bigger hose inner 
diameters d. On bigger hose wall stiffnesses the reso-
nance frequency is higher.

In Figure 24, the influence of p2 to resonance fre-
quency is more evident at lower pressures (p2 < 4e6 Pa). 

were presented. The type, kinematic viscosity and tem-
perature of fluid, relative volume of air in fluid, stiffness of 
hose wall, damping coefficient of hose wall deformation 
and amplitude of disturbances were not specified.

To compare measured results of experiments and 
calculated results a simulation task similar to Figure 16 
(model HoseH_Q) was composed where input volumet-
ric flow Q1 = 0 and pressure p2 of sinusoidal form for 
different mean values was used as input.

Hose parameters were taken from experiment: length 
l = 1 m and inner diameter d = 0.01 m. Parameters used 
in simulations are: fluid HLP46, T = 40 °C, vol0 = 0.10, 
x_ref = 0.00034 m, kr = 0.8, amplitude of disturbances 
Ap2 = 5e5 Pa.

Experimental and simulated dependencies are shown 
in Figures 20 and 21.

Both calculated resonance frequencies and logarith-
mic amplitude ratios at resonance slightly differ from 
experimental results. The differences might be caused 
by lack of information about the experimental device 
and values of fluid and hose parameters.

9.3. Simulation of resonance frequencies

The simulations below are performed using the sim-
ulation task and parameters described in Section 9.1. 
Resonance frequencies are obtained from the resulting 

Figure 20. experimental and calculated resonance frequencies 
depending on input pressure p2.

Figure 21. experimental and calculated logarithmic amplitude 
ratios at resonance depending on input pressure p2.

Figure 22. resonance frequency depending on hose length l.

Figure 23.  resonance frequency depending on hose inner 
diameter d.

Figure 24. resonance frequency depending on mean of input 
pressure p2.
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In Figure 27, at smaller input volumetric flows 
(Q1 < 3e–4 m3/s) logarithmic amplitude ratios at res-
onance are almost constant, thereafter the ratios drop 
linearly.

In Figure 28, at smaller amplitudes of input pressure 
(Ap2 < 1.5e5 Pa) logarithmic amplitude ratios at reso-
nance are constant, thereafter the ratios drop.

A number of simulations were performed which 
results are not presented. Logarithmic amplitude ratios 
20log(max_Ap1/Ap2) at resonance are almost linearly 
depending (decreasing from ~21 to ~15 dB) on correc-
tion coefficient kr = 0.8…1.8, hose length l = 1…3 m and 
kinematic viscosity of fluid ν = 10…100 mm2/s. They are 
higher at smaller reference radial deformation of hose 
wall x_ref. Influence of relative volume of air vol0 and 
damping coefficient of hose wall h to amplitude ratios 
turned out to be not remarkable.

10. Conclusions

Multi-pole models with lumped parameters for hydrau-
lic hoses, having various causalities, have been proposed. 
Four-pole models for dynamics consisting of separate 
elementary components were described. Corresponding 
oriented graphs were composed and calculation formu-
las were presented. Non-linear mathematical model of 
radial deformation of hose wall was presented.

Resonance frequency drops as volume elasticity of air in 
working fluid is growing and stiffness of the hose wall 
is dropping.

As a result of performed simulations influence of kin-
ematic viscosity of fluid ν, fluid temperature T, relative 
volume of air vol0, damping coefficient of hose wall h, 
correction coefficient kr, input volumetric flow Q1 and 
amplitude of input pressure Ap2 to resonance frequency 
turned out to be not remarkable and are not presented.

9.4. Simulation of logarithmic amplitude ratios at 
resonance

The simulations below are performed using the sim-
ulation task and parameters described in Section 9.1. 
Logarithmic amplitude ratios at resonance are obtained 
from the resulting graphs of simulations.

In Figures 25 and 26 logarithmic amplitude ratios 
20log (max_Ap1/Ap2) at resonance are higher at bigger 
hose inner diameters d and at higher values of mean 
input pressure p2. At smaller reference radial deforma-
tion of hose wall x_ref the logarihtmic amplitude ratios 
are higher. In Figure 26, lower values of amplitude ratios 
at lower mean input pressures are caused by greater vol-
ume elasticity of air in working fluid and lower stiffness 
of the hose wall.

Figure 25.  logarithmic amplitude ratios at resonance 
depending on hose inner diameter d.

Figure 26.  logarithmic amplitude ratios at resonance 
depending on mean of input pressure p2.

Figure 27.  logarithmic amplitude ratios at resonance 
depending on mean of input volumetric flow Q1.

Figure 28.  logarithmic amplitude ratios at resonance 
depending on amplitude of input pressure p2.
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kn   correction coefficient for fluid volume elas-
ticity and inertial resistance in dynamic if 
n > 1

kp, kq   Runge–Kutta coefficients
kr   correction coefficient for flow resistances 

in dynamic
kr1, kr2   coefficients in expression of kr
l   hose length
L   inertia resistance of flow
max_Ap1   maximum amplitude of pressure p1
n   number of joint similar four-pole models 

in sequence
p1, p2   relative pressures at left and right port of 

hose at current time step
p3, p4, p5   intermediate relative pressures
p1old, p2old   relative pressures at left and right port of 

hose at previous time step
p0   atmospheric (absolute) pressure
p_m   mean relative pressure
p_ref   reference relative pressure
Re   Reynolds number
ReCr   critical Reynolds number
RL, RT   hydraulic linear and square flow resistance
Q1, Q2   volumetric flows at current time step at left 

and right port of hose
Q3   intermediate volumetric flow
Q1old, Q2old   volumetric flows at left and right port of 

hose at previous time step
Qcr   critical volumetric flow
S   differentiation operator
T   fluid temperature, °C
VA0   volume of air in fluid at p_m = 0
VA   volume of air in fluid depending on pres-

sure p_m
VF0   fluid volume in hose at p_m = 0
VF   fluid volume in hose depending on pres-

sure p_m
VH0   hose inner volume at p_m = 0
VH   hose inner volume depending on pressure 

p_m
v   fluid flow velocity
v   hose wall deformation velocity
v_lim   hose wall deformation velocity limit for 

function signv
vol   volume of air, relative to the entire volume, 

depending on pressure p_m
vol0   volume of air, relative to the entire volume, 

at p_m = 0
x   inner mean radial deformation of hose at 

current time step
x0   initial mean radial deformation of hose 

wall
xold   inner mean radial deformation of hose wall 

at previous time step
x_ref   reference inner mean radial deformation 

of hose wall

CoCoViLa programming environment, which sup-
ports visual programming and automatic program 
synthesis is used as a tool for describing mathematical 
multi-pole models and performing simulations.

Calculations of transient responses of hoses described 
by four-pole models with various causalities were 
considered.

Multi-level simulation process has been proposed 
for calculating resonance frequencies and logarithmic 
amplitude ratios at resonance. Automatic calculations 
of transient responses in case of sinusoidal disturbances 
in the whole range of input frequencies are used in the 
simulations.

Frequency characteristics were presented for depend-
encies on various parameters such as hose length, hose 
inner diameter, mean pressure, mean volumetric flow, 
amplitude of input pressure, kinematic viscosity of fluid, 
reference radial deformation of hose wall, content of air 
in fluid and fluid temperature.

Comparison with experimental results (taken from 
literature) was presented.

Using hose four-pole models with lumped parameters 
for dynamics was analysed and justified in the paper. 
Using such models enables to simplify model-based sim-
ulation in development of various fluid power systems.

Nomenclature

A0   hose inner area at mean relative pressure 
p_m = 0

A   hose inner area depending from mean rel-
ative pressure p_m

Af   coefficient of fluid compressibility, depend-
ing on fluid and temperature

Bf   coefficient of fluid compressibility, depend-
ing on fluid and temperature, 1/Pa

Al   hydraulic friction coefficient of laminar 
flow (in ideal case Al  =  64, in practice 
Al = 75)

Ap2   amplitude of input pressure p2
A_ref   reference hose inner area
B   half of hysteresis of hose wall deformation
C   volume elasticity of fluid with air in hose
CA   volume elasticity of air in hose
CF   volume elasticity of fluid in hose
d   inner diameter of the hose at pm = 0
dt   simulation time step
f   frequency
h   viscous damping coefficient of hose wall
k   radial stiffness of hose wall
k_ref   reference radial stiffness of hose wall
ka   polytrope exponent
kC   correction coefficient for fluid volume elas-

ticity in dynamic at n = 1
kL   correction coefficient for fluid inertial 

resistance in dynamic at n = 1
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