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ABSTRACT
Pump and motor efficiency is a complex subject, to such an extent that most of the available
models describing efficiency today rely on experimental data. In spite of that, mathematical
models relating efficiency to pressure and angular speed have been proposed throughout the
years. In all these models, volumetric and mechanical efficiencies are separately built from
flow and torque losses relations. The overall efficiency model is then obtained by multiplying
the volumetric and the mechanical efficiency equations. In this paper, we show that the
overall efficiency equations must be developed from an energy balance and show that the
simple multiplication of mechanical and volumetric efficiencies can potentially lead to inac-
curate results. We then obtain a generalised equation relating the overall efficiency to
pressure and angular speed for both pumps and motors and show how the resulting
model can be fitted to actual experimental data.
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1. Introduction

Many attempts have been made to build an analytical
model that could describe as accurately as possible the
volumetric and torque losses in hydrostatic pumps and
motors (see Jung et al. 2005). In fact, modelling losses
using experimental data instead of efficiency has been
reported to be the preferred way to proceed
(KohmäScher et al. 2007). In what concerns to overall
efficiencymodelling, the typical procedure is to first write
the volumetric and mechanical efficiencies in terms of
the volumetric and torque losses, and multiply the
expressions for those efficiencies to obtain the overall
efficiency equation. This definition of overall efficiency
as being the product of mechanical and volumetric effi-
ciencies has long been assumed as correct (see Wilson
1949, Manring 2005a). In this paper, we show that multi-
plying mechanical and volumetric efficiencies will not
necessarily result in a correct overall efficiency model.
Moreover, we demonstrate that even simple loss models
can approximate overall efficiency curves when the right
definition of efficiency is used.

2. Literature review and problem description

2.1. Leakage and friction losses

It was back in 1946 when W.E. Wilson published
his pioneering paper on rotary pump and motor
efficiencies (Wilson 1946). In his theory, leakage
flows within pumps and motors were seen as the
sum of laminar viscous flows between infinite par-
allel plates. Turbulent loss equations were also

suggested without a formal proof. Wilson based
his analysis on an external gear unit, as shown in
Figure 1(a), and focused on the gear-case gaps,
where leakages are likely to take place. Further, he
assumed that the pump/motor leakages could be
thought as the flow between a moving and a sta-
tionary surface subject to a pressure differential,
p ¼ p1 � p2, as shown in Figure 1(b). Under certain
assumptions, it can be shown that the fluid speed
within the gear-case gap in the laminar regime,
u yð Þ, is given by:

u yð Þ ¼ Rω
C

� �
y� p

2μL
y2 � Cy
� �

(1)

where μ is the absolute viscosity. The other terms in
Equation (1) are represented in Figure 1. Note that
we can associate the first term in Equation (1) with a
Couette flow, caused by the dragging of fluid by the
moving plate when p ¼ 0. Similarly, the second term
can be associated to a Poiseuille flow, caused by the
pressure differential, p, when both plates are station-
ary (ω ¼ 0).

Remark. The pressure within the teeth spaces
changes continuously from p1 to p2, along the fluid
path between the input and output ports. Therefore,
Figure 1(b) cannot represent a tooth-case gap, as
indicated in the figure, because the pressures at both
extremities of the tooth are not known. However, we
may think of Figure 1(b) as representing the summa-
tion of all tooth-case gaps between the input and
output ports, which justifies the use of the limiting
pressures, p1 and p2, as indicated.
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To obtain the leaking flow, qL, for the unit shown
in Figure 1, Wilson multiplied u yð Þ by the gear thick-
ness, B, and integrated between y ¼ 0 and y ¼ C:

qL ¼ RBC
2

� �
ωþ BC3

12μL

� �
p (2)

The torque loss, TL, was obtained by considering
the viscous forces acting on the moving surface,
at y ¼ C:

TL ¼ BL μ
du
dy

� �
y¼C

" #
R ¼ R2BL

C

� �
μω� RBC

2

� �
p

(3)

From Equations (2) and (3), it is apparent that
both volumetric and torque losses depend on the
angular speed, ω, and the pressure differential, p.
Consider now the motoring operation of the gear
unit shown in Figure 1, where p1 > p2. We can write
the following equations for the input flow, qm, and
the shaft torque, Tm, based on Equations (2) and (3)
and the volumetric displacement, D, expressed in
units of volume per radian:
where

qm ¼ Dωþ qL ¼ Dþ Kuð Þωþ Ks
p
μ

Tm ¼ pD� TL ¼ Dþ Kuð Þp� Kωμω

�
(4)

Ku ¼ RBC
2

; Ks ¼ BC3

12L
and Kω ¼ R2BL

C
(5)

Wilson identified the term Dþ Ku in Equation (4),
as the ‘total displacement’, D�, resulting from the sum
of the geometrical displacement, D, and the ‘gear-case
clearance displacement’, Ku, where fluid is dragged
along, by the action of viscous forces. Note that if we
consider the gear unit in Figure 1 operating as a
pump, i.e. p1 < p2, the following equations for the
output flow, qp, and the input torque, Tp, are
obtained:

qp ¼ Dω� qL ¼ D� Kuð Þω� Ks
p
μ

Tp ¼ pDþ TL ¼ D� Kuð Þpþ Kωμω

�
(6)

Note that in Equation (6), the total displacement
D� should be redefined as D� ¼ D� Ku. Reethof

(Blackburn et al. 1960), followed another approach,
in which he disregarded the term Ku for being ‘very
small’ because of the small gear-housing clearance, C.
Although the idea seems to have prevailed in most of
the models proposed till recently (see for instance
Jung et al. 2005), we believe that the assumption
that Ku can be disregarded must be revisited. In
fact, from Equation (5), we see that the relative
value of Ku with respect to the other coefficients, Ks

and Kω, is given by

Ku
Ks
¼ 12LRBC

2BC3 ¼ 6LR
C2

Ku
Kω

¼ RBC2

2R2BL ¼ C2

2RB

(
(7)

In a typical gear pump, the gear-case clearance, C,
is of order 10�5m (Doddannavar and Barnard 2005);
while R and B are of order 10�2m. On the other hand,
the gear teeth thickness, L, is typically of order
10�3m. Thus, from Equation (7), we observe that Ku

is very small with respect to Kω, but not with respect
to Ks, which means that Ku should not be disregarded
in the volumetric loss Equations (4) and (6). With
these considerations, we may rewrite Equations (4)
and (6) as:

qp ¼ Dω� Kuω� Ks
p
μ

Tp ¼ Dpþ Kωμω
qm ¼ Dωþ Kuωþ Ks

p
μ

Tm ¼ Dp� Kωμω

8>><
>>: (8)

Interestingly, the term Kuω is not present in many
volumetric loss models (Jung et al. 2005). However,
Dorey (1988) quoted the work of Tessmann (1979),
in which a term proportional to the angular speed
appeared in the volumetric loss equations. Dorey also
quoted the work of Zarotti and Nervegna (1981) on
axial pump/motor units in which a nonlinear term
where the volumetric losses appear as a function of
ω1:5 was included. In any case, these additions appar-
ently came out of experimental observation rather
than theory. One exception can be found in the
recent work done by Jeong (2007), where a theoreti-
cal model for axial piston motors was developed.

Although the presence of a term proportional to
the angular speed, ω, in the volumetric loss equation

Figure 1. Leaking flow in a gear pump/motor.
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is not widely accepted, most researches have included
a term proportional to the pressure differential, Kpp,
in their torque loss equations. Such term, though
mathematically identical to Kup, which we disre-
garded when moving from Equations (4) and (6) to
Equation (8), carries a totally different meaning and,
again, has been justified by experiment rather than
theory. Here, the coefficient Kp is related to the dry
friction (Coulomb friction) between the moving parts
of the machine. The association of the term Kpp with
the Coulomb friction was also pointed out by Wilson
(1946), though it was never formally proved. Dorey
(1988) offered a simple explanation where he
assumed that the dry friction torque, Tf , could be
written as a fraction of the ideal torque, Dp, i.e.
Tf ¼ Cf Dpð Þ ¼ Kpp, where Cf is the Coulomb fric-
tion coefficient. Reethof (Blackburn et al. 1960), jus-
tified the use of Kpp based on experimental
observations.

The following pump loss equations were intro-
duced by Wilson (1949), which are a modified ver-
sion of Equation (8) where Ku is considered zero and
other terms are added to better fit the experimental
results:

qp ¼ Dω� CsD
p
μ � qr

Tp ¼ Dpþ CωDμωþ CpDpþ Tc

�
(9)

Although the coefficients Ks, Kω and Kp are not
explicitly show in Equation (9), similar coefficients
can be easily obtained by a simple association of
terms. The coefficients Cs, Cω and Cp must be experi-
mentally determined and the new terms qr and Tc

account for ‘cavitation losses’ and ‘pressure-indepen-
dent friction losses’, respectively. Interestingly, the
terms qr and Tc are not present in other models, as
summarised by Jung et al. (2005). In fact, as will be
shown later in this paper, the exact meaning of these
terms is not well defined as they may become negative
when experimental data are fitted into the mathema-
tical model (9). We thus see qr and Tc as having a
corrective role to compensate for errors in the deter-
mination of the pump and motor flow and torques,
due to imprecisions in pressure, displacement and
speed measurements (Manring 2005b). We then have
chosen to change the notation introduced by Wilson
and use q0 and T0 instead of qr and Tc hereafter.

Note the presence of the displacement, D, multi-
plying the loss terms in Equation (9). This was not
present in Wilson’s first paper and cannot be easily
justified from Equation (6). However, it has been
assumed as correct and naturally included in subse-
quent works, such as McCandlish and Dorey (1984),
Dorey (1988) and Jung et al. (2005). Observe that for
fixed-displacement units, D is constant and the terms
CsD, CωD and CpD become mathematically identical
to Ks, Kω and Kp. This is the rationale followed by

McCandlish and Dorey (1984) who proposed the
following equations for variable-displacement
pumps, in the absence of compressibility losses:

qp ¼ xDmω� CsDm
p
μ

Tp ¼ xDmpþ CωDmμωþ CpDmp

�
(10)

In Equation (10), Dm is the maximum displace-
ment of the pump and xDm is the actual pump dis-
placement (0 � x � 1). Observe that the loss terms
CsDm, CωDm and CpDm are not affected by the actual
displacement. Therefore, we can consider CsDm ¼ Ks,
CωDm ¼ Kω and CpDm ¼ Kp and write the following
modified version of Wilson’s model for variable-dis-
placement units:

qp ¼ xDmω� Ks
p
μ � q0

Tp ¼ xDmpþ Kωμωþ Kppþ T0

qm ¼ xDmωþ Ks
p
μ þ q0

Tm ¼ xDmp� Kωμω� Kpp� T0

8>><
>>: (11)

Remarks
(1) In Equation (11), only the coefficients Ks and

Kω can be traced back to the gear-case gap
analysis carried out with the help of Figure 1.
The Couette flow term, Ku, does not appear in
the volumetric loss equations, though it should
not be numerically insignificant in this case
(see comments on Equation (7));

(2) The term Kp has been assumed to be propor-
tional to the Coulomb friction between the
moving parts. This term has been pointed out
as being responsible for the metal-to-metal
wearing of the pump/motor parts (Blackburn
et al. 1960);

(3) Although the theory behind Equation (11) has
been based on an external gear unit, they have
been equally used for every type of hydrostatic
pumps and motors. In fact, Wilson, himself,
applied these equations to axial-piston pumps
in his second paper (Wilson 1949).

(4) For the reasons explained earlier, we advocate
the use of the term Kuω in the volumetric loss
models. Therefore, we propose that the follow-
ing modified version of Equation (11) provides
a more realistic approximation

qp ¼ xDmω� Kuω� Ks
p
μ � q0

Tp ¼ xDmpþ Kωμωþ Kppþ T0

qm ¼ xDmωþ Kuωþ Ks
p
μ þ q0

Tm ¼ xDmp� Kωμω� Kpp� T0

8>><
>>: (12)

2.2. Fluid compressibility

Some authors have considered the flow lost through
the compressibility of the fluid, qβ (‘compressibility
flowrate’, according to Stringer 1976) in their loss
equations:

108 G. K. COSTA AND N. SEPEHRI



qβ ¼ p
β

� �
Dω (13)

where β is the fluid bulk modulus.
Equation (13) describes the output flow reduction

in a pump operating at steady-state regime and has
been adopted by the ISO 4391–1983 Standards.

The use of the term ‘compressibility losses’ has been
discussed. For instance, it was argued that while the
volumetric flow is decreased, the mass flow remains
the same because of the proportional density increment
(Ivantysyn and Ivantysynova 2000). Also, for typical
pressure values, the quotient p=β in Equation (13) is
relatively small. Therefore, as has been done in other
models (e.g. Kluger et al., 1996), we have considered
qβ ¼ 0 in our equations.

2.3. Model adjustments

In order to adjust Wilson’s model to different situa-
tions, empirical terms have been added to Equation
(11). The idea has always been to adjust the loss
models to experimental data. The resulting models,
therefore, lack the physical meaning of the additional
terms. A representative list of available loss models
can be found in Jung et al. (2005) and Hall and
Steward (2014). In an attempt to create an unified
model to represent any hydrostatic pump or motor,
McCandlish and Dorey (1984) proposed a physical-
mathematical approach in which the constants in
Wilson’s model were substituted by products of con-
veniently chosen functions, whose unknown terms
could be obtained through data interpolation. For
example, instead of using the constant term, Ks, in
Equation (11), the following approximation was pro-
posed (Dorey 1988):

Ks ¼ Asf pð Þg ωð Þ (14)

where As is constant; f and g are arbitrary functions
of p and ω, usually polynomials.

Strictly speaking, attempting to generalise Wilson’s
model to fit every type of pump and motor proposed
by McCandlish and Dorey has an important draw-
back. It, actually, leads to a mathematical model that
is nonphysical. For example, suppose that we use
Ks ¼ aþ bωþ cω2 in the volumetric loss equation
for the pump, in Equation (11), where the constants
a and b, must be experimentally determined. The
resulting model becomes:

qp ¼ xDmω� a
p
μ
� b

ωp
μ

� c
ω2p
μ

� q0 (15)

Although Equation (15) may better suit the experi-
mental data, we end up with the term ω2p, for which
there is no immediate explanation.

It is always possible to resort to pure mathematical
interpolation to represent pump and motor losses, in

which case, the approach shifts completely from phy-
sical to mathematical, as in the model proposed by
Ivantysyn and Ivantysynova (2000), which, as
reported by Hall and Steward (2014) and has been
well recognised in industry.

2.4. Generalised first degree loss model

According to Hall and Steward (2014), loss models
can be divided into three categories: Physical,
Analytical and Numerical. Physical loss models are
those for which a physical explanation can be found
for every term in the mathematical model, such as
those introduced in Sections 1.1 and 1.2. Analytical
loss models make use of interpolation functions to
better approximate the coefficients obtained from a
physical approach, as discussed in Section 1.3.
Numerical loss models are purely built upon data
interpolation using suitable mathematical expressions
without necessarily having a physical meaning.

Note that all physical loss models presented in
Section 1.1 can be conveniently written as:

qL ¼ ϕ1ωþ kspþ ϕ3q0
TL ¼ kωωþ ϕ2pþ ϕ3T0

�
(16)

where kω ¼ Kωμ and ks ¼ Ks=μ. The coefficients ϕ1,
ϕ2 and ϕ3, on the other hand, depend on the model
being used. For instance, if Equation (11) is used, we
have ϕ1 ¼ 0, ϕ2 ¼ Kp and ϕ3 ¼ 1; if Equation (12) is
considered, we have that ϕ1 ¼ Ku, ϕ2 ¼ Kp

and ϕ3 ¼ 1.

2.5. Pump and motor efficiency

Pump and motor manufacturers usually provide effi-
ciency charts, which consist of a set of curves relating
volumetric and overall efficiency to pressure and
angular speed. Mechanical efficiency curves are
hardly ever supplied. The volumetric and mechanical
efficiencies for pumps and motors, hereby denoted by
ηvp, η

m
p (pump) and ηvm and ηmm (motor), are defined as

(Blackburn et al. 1960, Akers et al. 2006, Costa and
Sepehri 2015)

ηvp ¼ Dω�qL
Dω

ηmp ¼ Dp
DpþTL

ηvm ¼ Dω
DωþqL

ηmm ¼ Dp�TL

Dp

8>>>><
>>>>:

(17)

Typically, the overall efficiency η is written as the
product of volumetric and mechanical efficiencies
(Blackburn et al. 1960, Merritt 1967, Esposito 1980).
Thus, using Equations (16) and (17), we obtain the
following expressions for the pump and motor overall
efficiencies, ηp and ηm
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ηp ¼ p Dω�qLð Þ
ω DpþTLð Þ ¼ D�ϕ1ð Þωp�ksp2�ϕ3q0p

Dþϕ2ð Þωpþkωω2þϕ3T0ω

ηm ¼ ω Dp�TLð Þ
p DωþqLð Þ ¼ D�ϕ2ð Þωp�kωω2�ϕ3T0ω

Dþϕ1ð Þωpþksp2þϕ3q0p

8<
: (18)

Equation (18) can be rearranged as follows

apω2 þ bpωpþ cpp2 þ dpωþ epp ¼ 0
amω2 þ bmωpþ cmp2 þ dmωþ emp ¼ 0

�
(19)

where

ap ¼ kωηp; am ¼ kω

bp ¼ ηp � 1
� �

Dþ ϕ1 þ ϕ2ηp;

bm ¼ ηm � 1
� �

Dþ ηmϕ1 þ ϕ2
cp ¼ ks; cm ¼ ηmks
dp ¼ ηpϕ3T0; dm ¼ ϕ3T0

ep ¼ ϕ3q0; em ¼ ηmϕ3q0

8>>>>>>><
>>>>>>>:

(20)

Considering the simple case scenario where the coef-
ficients a through e are constants, each equation in
(19) represents a rotated conic in the ω� p plane for
every value of the overall efficiency, ηp or ηm. This is

certainly true for the models introduced in Section
1.1. Given the most general case where ϕ1, ϕ2, ks and
kω are functions of ωk and pk (k � 0), as in the
models listed by Jung et al. (2005), or when inter-
polation functions are used, as proposed by
McCandlish and Dorey (1984), the curves described
by Equations (19) cannot be easily defined.

Figure 2(a) is an illustration of the typical overall
efficiency curves provided by pump and motor man-
ufacturers (Watton 2009). Note that the curves can be
roughly modelled as rotated conics for a given range
of efficiency values. The problem with such approach
is that rotated conics are generally given by the fol-
lowing equation, where f�0

aω2 þ bωpþ cp2 þ dωþ epþ f ¼ 0 (21)

Comparing Equations (19) and (21), we see that
for f ¼ 0 every constant-efficiency curve must pass
through point ω ¼ 0; p ¼ 0ð Þ when constant values of
a through e are used. Consequently, Equations (19)
are not able to represent actual overall efficiency
curves when simpler volumetric and mechanical effi-
ciency models are employed, as illustrated by Figure 2
(b). This clearly shows the limitation imposed by
making f ¼ 0 in (21). Therefore, Wilson’s model,
given by Equations (11), would produce imprecise
results. That being said, it is pertinent to wonder
whether the overall efficiency model (18) is correct.
Indeed, in this paper, we conclude otherwise, as will
be explained in the following section.

3. Overall efficiency model based on energy
balances

Consider the pump and motor represented in
Figure 3. Pi and Po represent the power input and

output at the pump and motor shafts, respectively; Q
is the mechanical-hydraulic power loss; qL represents
the volumetric flow losses; qpi, qpo, qmi and qmo are
the input and output flows at the pump and the
motor, respectively.

Assuming that pump and motor are operating at
full displacement, we can write for the overall effi-
ciencies, ηp and ηm (Costa and Sepehri 2015. See also
Manring 2016, for a similar approach):

ηp ¼ qpoppo�qpippi
Pi

¼ qpoppo�qpippi
qpoppo�qpippið ÞþqLppoþQ

ηm ¼ Po
qmipmi�qmopmo

¼ qmipmi�qmopmoð Þ�qLpmi�Q
qmipmi�qmopmo

8<
: (22)

where ppi, ppo, pmi and pmo are the pressures at the
pump and motor input and output, respectively. If we
make the reasonable assumption that ppi ¼ pmo ¼ 0,
we can write that ppo ¼ pmi ¼ p, where p is the pres-
sure differential at the motor/pump ports. As a result,
Equation (22) become:

ηp ¼ qpop

qpoþqLð ÞpþQ

ηm ¼ qmi�qLð Þp�Q
qmip

8<
: (23)

We do not know with precision the values of qpo
and qmi in Equation (23). One possible way to
approach the problem is to make qpo ¼ Dω� qL
and qmi ¼ Dωþ qL, in which case we have:

ηp ¼ Dω�qLð Þp
DωpþQ

ηm ¼ Dωp�Q
DωþqLð Þp

(
(24)

A crucial step is to correctly define the term Q in
Equation (24). We propose the following expression

Q ¼ TLωþ H0 (25)

where H0 accounts for any loss that does not vary with
speed or pressure. Given that it makes no sense speak-
ing about losses when the pump or motor shaft is not
rotating, we implicitly assume that H0 ¼ H0u ωð Þ,
where u ωð Þ ¼ 0 for ωj j ¼ 0 and u ωð Þ ¼ 1 for ωj j> 0.

Substituting Q, given by Equation (25), into
Equation (24) and using Equation (16) for TL and
qL, we arrive at the following expressions for ηp
and ηm:

Figure 2. (a) Typical level curves for pump and motor overall
efficiencies and (b) curves obtained when f ¼ 0.

110 G. K. COSTA AND N. SEPEHRI



ηp ¼ D�ϕ1ð Þωp�ksp2�ϕ3q0p
Dþϕ2ð Þωpþkωω2þϕ3T0ωþH0

ηm ¼ D�ϕ2ð Þωp�kωω2�ϕ3T0ω�H0

Dþϕ1ð Þωpþksp2þϕ3q0p

8<
: (26)

Comparing Equation (26) with Equation (18), we
see that the denominators of the pump efficiency
equations and the numerators of the motor efficiency
equations differ by the term H0. In this sense, multi-
plying mechanical and volumetric efficiencies over-
estimates pump efficiency while underestimating
motor efficiency.

Remark. Consider the extreme situation where
the pump shaft moves very slowly due to an extre-
mely high opposite dry friction torque at the shaft
(e.g. caused by a defective roller bearing). In such
case, ω will be slightly higher than zero. Consider
also that the pressure at the pump output is higher
than zero but still relatively low to produce an
equally low hydraulic power at the pump output.
One would expect the overall efficiency to become
very low, given that much energy is being dissi-
pated by friction at the pump shaft (H0 � 0) while
little hydraulic power is being outputted
(qpoppo ! 0). However, note that the first equation
in (18) indicates that ηp ! 1 as ω ! 0 for a small

output pressure, p ¼ ppo > 0. Such issue is corrected
in Equation (26), where ηp ! 0 whenever ω ! 0,

p ¼ ppo > 0 and H0 � 0. Interestingly, the expres-
sions for ηm in Equations (18) and (26) are quali-
tatively similar and reasonable even at extreme
cases. However, due to the problem with pump
efficiency and the difficulty to produce coherent
efficiency results when using linear based efficiency
models, we favour the use of Equation (26) as the
correct efficiency definition.

Each equation in (22) can be developed into the
generalised conic Equation (21) with the coefficients
a . . . f given by (subscripts ‘p’ and ‘m’ refer to pump
and motor, respectively)

ap ¼ kωηp; am ¼ kω

bp ¼ ηp � 1
� �

Dþ ϕ1 þ ϕ2ηp;

bm ¼ ηm � 1
� �

Dþ ηmϕ1 þ ϕ2
cp ¼ ks; cm ¼ ηmks
dp ¼ ηpϕ3T0; dm ¼ ϕ3T0

ep ¼ ϕ3q0; em ¼ ηmϕ3q0
fp ¼ ηpH0; fm ¼ H0

8>>>>>>>>>><
>>>>>>>>>>:

(27)

Equations (21) and (27) define a rotated conic curve
for each constant value of ηp and ηm. The generated
curve, the rotation angle and the displacement in relation
to the origin of coordinates, depends on the values of the
coefficients a through f . It is important to point out that
each coefficient in Equation (21) has a geometrical mean-
ing. The sign of the discriminant b2 � 4ac defines the
type of conic curve we are dealing with

● b2 � 4ac > 0: the curve is a rotated ellipse;
● b2 � 4ac ¼ 0: the curve is a rotated parabola;
● b2 � 4ac< 0: the curve is a rotated hyperbole.

Likewise, the remaining coefficients, d, e and f are
also linked to the problem geometry. This can be
better understood when we perform a rotation of
axis from ω� p to the rotated system of coordinates
ω0 � p0, as shown in Figure 4. It can be demonstrated
that the general conic Equation (21) in this new
coordinate system where tan 2θð Þ ¼ b= 2 a� cð Þ½ � is

ω0 þ ωcð Þ2
c

þ p0 þ pcð Þ2
a

¼ r2 (28)

Where

ωc ¼ e
2a

pc ¼ d
2c

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4ac

e2
a þ d2

c � 4f
� �q

8><
>: (29)

With reference to Figure 4, the coordinates of point P
with respect to the centre of the ellipse, C, are

Figure 3. (a) Energy and volumetric flows in a hydrostatic pump and (b) motor.
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ω0 � ωcð Þ and p0 � pcð Þ, respectively. We can then
infer that ωc and pc in Equations (28) and (29) are
negative numbers. The immediate implication is that
the signs of a and e, as well as the signs of c and d,
must be opposite in Equation (21), as concluded from
Equation (29). Note, however, that a and c should be
positive, given that they are proportional to the coef-
ficients kω and ks, which, in turn, are functions of the
pump/motor geometry (see Equations (5), (16) and
(27)). Consequently, e and d should be negative. This
implies in T0 < 0 and q0 < 0 for models where ϕ3 ¼ 1
(Equation (27)), and whose efficiency level-curves are
elliptical. In this case, the interpretation of q0 and T0

as being flow and torque losses, suggested by Wilson
(1949) makes no sense (see comments on qr and Tc

after Equation (9)). On the other hand, if the level-
curve is a first quadrant hyperbole as in Figure 2(a),
c< 0 and d > 0 in Equation (28), which implies in
T0 > 0 and q0 < 0. In this case, T0 can be seen as
torque loss. Nevertheless, given the non-applicability
of such reasoning to every efficiency value, we still
suggest to view T0 as a correction to errors induced
by measurement uncertainties.

Choosing ϕ3 ¼ 0 in Equation (27) would produce a
model unable to represent the curves in Figure 2(a)
since this choice would imply that d ¼ e ¼ 0 in
Equation (21) and, consequently, ωc ¼ pc ¼ 0 in
Equation (27). As a result, the ellipse in Figure 4
would need to be centred at point p ¼ 0;ω ¼ 0ð Þ,
which does not correspond to any curve in Figure 2(a).

4. Experimental data fitting

Figure 5 shows the overall efficiency curves obtained
for a typical axial-piston pump (Sauer-Danfoss 2010).
Some randomly selected points in the inner and outer
curves are also shown in the figure. They will be used
later for data fitting. The curves are drawn relatively
to the normalised pressure and speed values, ω and p.
Normalised data are defined by the ratio between the
actual data and some pre-defined rated (maximum)
value. The curves in Figure 5 have been obtained for

the maximum pump displacement. The procedures to
be developed in this section equally apply to motors,
as well to other pump models whose efficiency charts
show a similar pattern.

From Figure 5 we see that the highest efficiency
curve resembles an ellipse rotated relatively to the
horizontal axis. The other curves appear to slowly
‘open up’ into hyperbolas as the overall efficiency is
reduced. We believe that the fact that experimental
plots, whenever provided by manufactures, show a
similar pattern is no mere coincidence and indicates
that the theoretical model given by Equations (21)
and (27) is, in its very essence, correct.

Several methods have been proposed to fit a conic
curve to a set of experimental points (see, for exam-
ple, Fitzgibbon et al. 1996, Szpak et al. 2012, the
references therein). In what follows, we describe the
least-squares method that will be used in this paper.
First, we note that Equation (21), can be written as

aTD ¼ 0 (30)

where:

DT ¼ ω2 ωp p2 ω p 1

 �

aT ¼ a b c d e f½ �
�

(31)

Considering each of the N selected points on the
experimental curves, ωi; pið Þ . . . ωN ; pNð Þ, Equation
(30) produces a point-wise error, Ri, given by the
following relation

Ri ¼ aTDi ¼ aω2
i þ bωipi þ cp2i þ dωi þ epi þ f

(32)

The least-squares approach seeks to minimise

R ¼ PN
i¼1

R2
i , which can be written as

R ¼
XN
i¼1

aTDi
� �2 ¼ XN

i¼1

aT Di D
T
i a

� �
 � ¼ aTSa (33)

where S ¼ PN
i¼1

DiDT
i

� �
Figure 4. Rotation of coordinates for the ellipse.

Figure 5. Typical efficiency curves for axial piston pumps
(numbered dots have been randomly chosen for data fitting).
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In order to minimise R, we follow Fitzgibbon et al.
(1996) and use a Lagrange multiplier procedure
(Halir and Flusser 1998). For example, consider the
experimental points ωi; pið Þ . . . ωN ; pNð Þ on the curve
η ¼ 88% in Figure 5. We infer that the best-fit curve
is an ellipse and place the constraint that b2 � 4ac > 0
to Equation (33). Such constraint can be written in
matrix form as aTCa> 0, where C is a 6� 6 matrix
filled with zeros except for the elements C13 ¼ C31 ¼
2 and C22 ¼ �1.

The inequality aTCa> 0 can be written as an equa-
tion if we define ϕ> 0 such that aTCa ¼ ϕ. We, thus,
seek to minimise aTSa subject to the condition
aTCa� ϕ ¼ 0. The problem is then formulated in
terms of the Lagrange multiplier, λ, as

� aTSa
� � ¼ λ� aTCa� ϕ

� �
(34)

Equation (34) can be developed as follows:

@ aTSað Þ
@A

..

.

@ aTSað Þ
@F

2
664

3
775 ¼ λ

@ aTCað Þ
@A

..

.

@ aTCað Þ
@F

2
664

3
775 (35)

It can be shown that Equation (35) simplifies to

Sa ¼ λCa (36)

Equation (36) can be combined with the constraint
aTCa ¼ ϕ, resulting in aTSa ¼ λϕ. Since ϕ is arbi-
trary, the smallest possible absolute value for the
Lagrange multiplier, λ, will also minimise R ¼ aTSa,
given by Equation (33). Note that the same could
have been said if we were approximating a hyperbole,
in which case, we would have ϕ< 0. In any case, the
smallest absolute value of λ would still minimise the
error, R. Now, in order to find the minimum value of
the constant λ, we rearrange Equation (36) and solve
the following eigenvalue problem

1
λ

� �
a ¼ S�1C


 �
a (37)

The eigenvector corresponding to the smallest
absolute value of λ, contains the coefficients of the
fitted ellipse we seek to obtain. As an example, con-
sider the coordinates ωi; pið Þ of the selected points in
Figure 5, obtained after a visual inspection of the
figure and given in Table 1.

After substitution of the values from Table 1 into
DT

i ¼ ω2
i ωipi p2i ωi pi 1


 �
and then into

S ¼ PN
i¼1

DiDT
i

� �
, the smallest absolute values of λ and

their corresponding eigenvectors in Equation (37)
can be calculated. Finally, the rotated conic equation
that minimises the error is obtained. Table 2 shows
the results.

Figure 6 compares the two extreme curves shown
in Figure 5 to the curves obtained through the equa-
tions given in Table 2. We observe that the two
limiting cases, corresponding to ηp ¼ 80% and
ηp ¼ 88%, are easy to fit. The curves for ηp ¼ 85%,

and ηp ¼ 87%, on the other hand, are difficult to be

characterised as conic curves. However, at this point,
we might ask the question of whether it is possible to
interpolate the curves and obtain a model that can
predict the pump’s behaviour over the whole range of
efficiency values and still remain accurate, within an
acceptable tolerance. We deal with this matter in the
following section.

5. Extension to other efficiency values

We have mentioned that the curves for ηp ¼ 85% and
ηp ¼ 87% are difficult to be fit by conics in Figure 6.

Therefore, if we are seeking a model that approximates
the efficiency level curves in a very precise manner, we
need to resort to more complex polynomial curves,
where terms in ωk and pk (k � 0) are added to
Equation (21). However, if a simpler model that is still
able to compute efficiency values within an acceptable
error margin is desired, we may want to consider inter-
polating the conic curves between extreme values.

Table 1. Coordinate values for the nodes shown in Figure 5.

ηp Point 1 2 3 4 5 6 7 8 9 10

80% ωi 0.015 0.100 0.025 0.030 0.060 1.000 0.950 0.700 0.450 0.250
pi 0.100 0.100 0.240 0.560 0.800 0.260 0.240 0.200 0.160 0.120

88% ωi 0.125 0.070 0.100 0.250 0.400 0.560 0.590 0.550 0.450 0.250
pi 0.241 0.400 0.480 0.660 0.720 0.640 0.560 0.440 0.380 0.280

Table 2. Best fit curve equations.
ηp ¼ 80% Minimum eigenvalue λj jmin ¼ � 1

12782

�� ��
Corresponding eigenvector aT ¼ � 0:176 0:976 �0:010 �0:071 0:033 �0:004½ �
Conic equation 0:176ω2 � 0:976ωpþ 0:010p2 þ 0:071ω� 0:033pþ 0:004 ¼ 0

ηp ¼ 88% Minimum eigenvalue λj jmin ¼ 1
7458

�� ��
Corresponding eigenvector aT ¼ � 0:467 0:499 � 0:591 0:062 0:415 �0:086½ �
Conic equation 0:467ω2 � 0:499ωpþ 0:591p2 � 0:062ω� 0:415pþ 0:086 ¼ 0
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If we assume a linear interpolation for the coeffi-
cients a through f in Equation (21) between the two
efficiency values, η0 ¼ 80% and η1 ¼ 88%

a ¼ a0 � a1�a0
η1�η0

� �
η0

h i
þ a1�a0

η1�η0

� �
ηp ¼ A0 þ kaηp

..

.

f ¼ f0 � f1�f0
η1�η0

� �
η0

h i
þ f1�f0

η1�η0

� �
η ¼ F0 þ kf ηp

8>>><
>>>:

(38)

If we substitute the coefficients a . . . f , obtained from
Equation (38) into Equation (21), we obtain

ηp ¼ �A0ω2 þ B0ωpþ C0p2 þ D0ωþ E0pþ F0
kaω2 þ kbωpþ kcp2 þ kdωþ kepþ kf

(39)

Figure 7 compares the curves for η ¼ 80% . . . 88%
in Equation (39), with the catalogue data. The curves
do not coincide for all values of ω and p but note the
error is always smaller than 2%.

Equation (39) can be used to plot the efficiency as a
function of pressure and flow (relative values). The three-

dimensional efficiency surface, as well as some represen-
tative constant pressure curves are shown in Figure 8.

Figure 9 shows a cross-cut of Figure 8 for p ¼
0:493 and p ¼ 1. For a rated pressure of 345bar,
these two relative pressure values correspond to 170
and 345bar, respectively. Dashed lines represent cat-
alogue data (Sauer-Danfoss 2010). Again, the differ-
ence between model and catalogue values remains
smaller than 2% for the whole speed range.

6. Conclusions

In this paper, we showed that three-dimensional
overall efficiency surfaces are naturally obtained if
we start from the correct efficiency definition, which
differs from the usual ‘volumetric times mechanical
efficiency’ formula. By using a slightly modified ver-
sion of the overall efficiency expression, we arrived at
a general rotated conic equation, which correctly
reproduces the trends found in usual efficiency dia-
grams provided by pump and motor manufacturers.
In fact, using the practical example of a commercial
pump, we obtained a set of level curves for the overall
efficiencies that differed by less than 2% from the
actual experimental data. No more than simple linear
equations based on classic volumetric and mechanical
loss models were needed in the process.

Figure 6. Comparison between best fitting curves (dashed
lines) and experimental data (solid lines).

Figure 7. Comparison between best fit curves (dashed lines)
and experimental data (solid lines).

Figure 8. Three-dimensional efficiency surface and (b) con-
stant pressure curves.

Figure 9. Efficiency curves for selected pressure values.
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7. Nomenclature

p: pressure differential between pump
and motor ports

ω: angular speed of the pump/motor
shaft

u: fluid velocity
μ: absolute viscosity
R; B; L; C: pump/motor geometric dimensions

(Figure 1)
D: pump/motor displacement
Dm: maximum pump/motor displacement
x: displacement ratio (x ¼ D=Dm)
qp; qm: pump/motor flow
Tp;Tm: pump/motor torque
qL: flow losses
qβ: compressibility flowrate
β: bulk modulus
TL: torque losses
Ku;Ks; ks;
Kω; kω;CsCω;

Cp;ϕ1; ϕ2;ϕ3: loss coefficients
qr; Tc: cavitation and ‘pressure independent

friction’ losses
q0;T0: flow and torque correction terms
ηvp; η

m
p : volumetric and mechanical efficien-

cies of the pump
ηvm; η

m
m: volumetric and mechanical efficien-

cies of the motor
ηp; ηm: overall efficiencies of the pump and

motor
ap; bp 	 	 	
fm; fm: level curves coefficients for the pump

and the motor
Pi, Po: power input and output at the pump/

motor
H0: pump/motor constant losses
qpi, qpo: pump input and output flows
qmi, qmo: motor input and output flows
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