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Abstract

This paper employs the quantitative feedback theory (QFT) to design a robust
fixed-gain linear velocity controller for a newly developed single-rod pump-
controlled actuator. The actuator operates in four quadrants, with a load
force becoming resistive or assistive alternatively. The controller also satisfies
tracking, stability and sensitivity specifications in the presence of a wide
range of system parametric uncertainties. Its performance is examined on
an instrumented John Deere JD-48 backhoe. The experimental results show
that the controller can maintain the actuator velocity within an acceptable
response envelope, despite variation in load mass as high as 163 kg and the
hydraulic circuit switching between operating quadrants.
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Introduction

Generally, hydraulic linear actuators can be classified as valve-controlled or
pump-controlled. Traditional valve-controlled actuators are characterized by
a low-energy efficiency because of the inevitable throttling losses at control
valves. On the other hand, in pump-controlled actuators there are no valves
controlling the cylinder flow and, therefore, throttling losses from control
valves are eliminated.

Pump-controlled linear actuators generally use single-rod (differential)
cylinders in order to provide high output forces and reduce the installation
space (Quan et al., 2014). Since the flows entering and leaving a differential
cylinder are different, a flow compensation circuit has to be designed (Wang
et al., 2012). According to the working principle of such systems, there are
four possible operation modes, corresponding to four operational quadrants
(Costa and Sepehri, 2019). Figure 1 shows the four most relevant hydraulic
circuits developed in the literature. With reference to Figure 1(a), the circuit
proposed by Hewett (1994) employed a two-position three-way valve to bal-
ance the differential flow. However, it has never been experimentally tested.
Figure 1(b) shows a circuit using two pilot operated check valves, developed
by Rahmfeld and Ivantysynova (2000). The proposed circuit experienced
switching between pumping and motoring modes when light loads were
moved at high speeds, and was unstable in some conditions (Wang et al.,
2012). Caliskan et al. (2015) employed an underlapped valve in the circuit,
as shown in Figure 1(c). The obvious downside was that the oscillations
could not be removed at certain velocity conditions. Figure 1(d) shows the
circuit designed by Wang et al. (2012). It used a three-position, three-way
valve as well as two flow-control valves. However, compensation algorithms
had to be implemented for an acceptable performance. Recently, Costa and
Sepehri (2019) designed a circuit using a three-position, four-way directional
valve and a one-directional flow control valve. This circuit produced a stable
response in all operation quadrants, and additional algorithms are not needed.

With respect to the control schemes developed for pump-controlled
actuators with single-rod cylinders, PID controllers (Daher et al., 2013;
Zhang and Chen, 2014), ‘skyhook damper’ based controllers (Williamson and
Ivantysynova 2009), stability controllers (Daher and Ivantysynova, 2015),
and modern control techniques based controllers (Daher and Ivantysynova,
2013) have been developed. However, the robustness of all these control
schemes has not been assessed. Wei et al. (2009) designed a self-tuning dead-
zone compensation fuzzy logic controller for a pump-controlled single-rod
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(a)                                           (b) 

                   

(c)                                           (d) 

Figure 1 Circuits developed for single-rod pump-controlled actuators designed by (a)
Hewett (1994), (b) Rahmfeld and Ivantysynova (2000), (c) Caliskan et al. (2015) and (d)
Wang et al. (2012).

hydraulic press. Ahn et al. (2014) proposed a robust position controller
using the modified backstepping technique. Daher and Ivantysynova (2014)
designed an indirect adaptive velocity controller to adapt to a varying load
mass. However, the performance of these controllers was examined in at most
two quadrants only.
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Quantitative feedback theory (QFT) is an effective way of designing a
robust linear controller. It can limit the controller bandwidth by balancing
specifications, plant uncertainties, and controller complexity (Yaniv, 1999,
Houpis and Rasmussen, 1999). QFT has been successfully applied to design
controllers for pump-controlled systems. To name a few, Ren et al. (2016,
2017) proposed QFT controllers that are tolerant to actuator internal leakage.
They further designed a low-bandwidth position controller using a system
identification technique (Ren et al., 2018). All these controllers are developed
for double-rod cylinders. Ahn and Dinh (2009) designed a QFT-based force
controller. Truong and Ahn (2009) developed a parallel control strategy using
QFT. These force/position controllers were proposed for the circuit developed
by Rahmfeld and Ivantysynova (2000) and the actuators worked only in two
operating quadrants. Ren et al. (2020) proposed a QFT position controller
capable of operating in all quadrants.

This paper presents, for the first time, the design and experimental eval-
uation of a QFT velocity controller for a single-rod pump-controlled linear
actuator, operating in four quadrants. The new circuit described in Costa and
Sepehri (2019) is employed. The goal is to design a QFT controller that
maintains the actuator velocity within acceptable response envelopes under
different loads, and in the presence of system uncertainties. Its performance
is examined on a joystick-controlled John Deere JD-48 backhoe, where the
displacement of the joystick corresponds to the desired actuator velocity. The
novelties of this research are: (i) the design of a robust velocity controller for
a single-rod pump-controlled actuator that operates in all four quadrants and
(ii), the testing of the controller using a novel circuit applied to a real-world
machine.

Modelling and Experimental Setup

Mathematical Model

The schematic drawing of the pump-controlled system investigated in this
paper is shown in Figure 2. The system is composed of a bidirectional
pump driven by a servomotor, a charge pump connected to a relief valve,
a three-position four-way directional valve V1 used to compensate for the
unequal flows, a one-directional fixed orifice valve V2 and a single-rod
cylinder that acts against a load force, FL. Check valves, 3 and 4, ensure
the actuator chambers do not cavitate while the maximum pressure is set by
relief valves 5 and 6. The output pressure of the charge pump is set to 80
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Figure 2 Schematic drawing of the proposed pump-controlled actuator. 1: Actuator. 2:
Piston-rod mass. 3: Check valve. 4: Check valve. 5: Relief valve. 6: Relief valve. 7: Bidirec-
tional pump. 8: Servomotor. 9: Charge pump. 10: Relief valve. 11: Tank. V1: Three-position,
four-way directional valve. V2: One-directional fixed orifice valve.

psi by the relief valve 10. The working principle of this system is described
in Costa and Sepehri (2019). Its four-quadrant working domain is shown in
Figure 3. When pL > 0 (Quadrants I and IV), the solenoid y of the directional
valve is activated and the solenoid z is deactivated (V1 shifts to left). When
pL<0 (Quadrants II and III), the solenoid z is activated, and the solenoid y
is deactivated (V1 shifts to right). In order to reduce the effect of noise in
the switching of the directional valve (V1 in Figure 2), pressure signals are
processed with a low-pass filter.

The flow equation for the bidirectional hydraulic pump is

Q1 = Q2 = ωmVd (1)

where Q1 and Q2 are the flows into and out of the pump, respectively; ωm

represents the motor speed and Vd is the pump displacement. The motor speed
equation is

ω̇m = τm(−ωm +Kmu) (2)



240 G. Ren et al.

Actuator 
velocity

Load pressure 
pL 

xP 
.

III
III IV

Pumping

MotoringPumping

Motoring

Figure 3 Four-quadrant working domain (Actuator velocity ẋpversus load pressure
pL(pL = pa −Abpb/Aa)).

In (2), Km and τm are the servomotor gain and the time constant, respec-
tively; u represents the input voltage to the servomotor. The area ratio of
actuator is

α = Ab/Aa (3)

where Aa is piston area (cap side) and Ab is the annulus area (rod side). The
load pressure is defined as

pL = pa − αpb (4)

where pa and pb are the hydraulic pressures in chambers a and b, respectively.
Conservation of mass can then be applied to sides a and b of the actuator,
resulting in

Q1 +Qac = Qa = Aaẋp +
Voa +Aaxp

βe
ṗa (5)

Qbc −Q2 = −Qb = −Abẋp +
Vob −Abxp

βe
ṗb (6)

where Qac and Qbc are the compensation flows coming from the charge
pump through the directional and flow-control valves to the actuator sides,
a and b, respectively; Qa and Qb are the flows into and out of the actuator,
respectively; xp and ẋp are the displacement and the velocity of the piston,
respectively; βe is the effective bulk modulus; Voa and Vob represent the inner
pipe and cylinder chamber volumes at the two sides of actuator. Assuming
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that the piston is moving within the vicinity of actuator midstroke, the
following approximation can be made (Niksefat and Sepehri, 2001, Niksefat
and Sepehri, 2002)

Voa +Aaxp
βe

≈ Vob −Abxp
βe

≈ Voa + Vob
2βe

= C (7)

where C is the hydraulic compliance. The equation describing the dynamics
of the piston is

mrodẍp = AapL − fẋp − FL (8)

In (8), ẍp is actuator acceleration; mrod represents the piston rod mass;
f is the viscous damping coefficient and FL is the load force, which can be
resistive or assistive, depending on the cylinder motion.

When the actuator is extending (Quadrants I and II in Figure 3), the
charge pump alternately supplies an oil flow to the cap and rod sides of the
actuator through V2. The following equation can then be written (Daher and
Ivantysynova, 2014)

Qb = αQa (9)

Combining (3), (4), (5), (6), (7) and (9), the following equation can be
obtained

(1 + α2)Qa = (1 + α2)Aaẋp + CṗL (10)

In Quadrant I, pL > 0 andQac = 0. Performing a Laplace transformation
on (1), (2), (5), (8) and (10), the following plant transfer function, P1(s),
which relates the piston velocity sXp(s) to the control signal U(s), can be
obtained:

P1(s) =
sXp(s)

U(s)
=

(1 + α2)AaVdτmKm

(s+ τm)[mrodCs2 + Cfs+ (1 + α2)A2
a]

(11)

In Quadrant II, pL < 0 and Qbc = 0. From (1), (2), (6), (8), (9) and (10),
we obtain the following plant transfer function P2(s):

P2(s) =
sXp(s)

U(s)
=

(1 + α2)AaVdτmKm/α

(s+ τm)[mrodCs2 + Cfs+ (1 + α2)A2
a]

(12)

When the actuator is retracting (Quadrants III and IV in Figure 3), the oil
flows from either sides of the actuator to the tank through valves V1, V2 and
the relief valve.
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In Quadrant IV, pL > 0 and Qac = 0. The flow through the orifice at
V2 is

Qbc = −CV

√
(pb − p0)/sg (13)

where CV is valve flow coefficient; Sg is the specific gravity of the fluid and
p0 is the cracking pressure of the relief valve. Linearizing (13), Qbc can be
expressed as

Qbc = −Kbpb (14)

where Kb is the pressure sensitivity gain at the flow-control valve, given by

Kb =
CV

2
√
sg(pb0 − p0)

(15)

In (15), pbo is the value of pb at operating points. Using (1) to (8) and (14),
the plant transfer function P3(s) can be expressed as

P3(s) =
sXp(s)

U(s)
=

(1 + α)AaCVdτmKms+AaKbVdτmKm

(s+ τm){mrodC
2s3 + (mrodCKb + fC2)s2

+ [fCKb + (1 + α2)A2
aC]s+KbA

2
a}

(16)

In Quadrant III, pL < 0 and Qbc = 0, and Qac can also be linearized as

Qac = −Kapa (17)

where the pressure sensitivity gain at the flow-control valve, Ka, is given by

Ka =
CV

2
√
sg(pa0 − p0)

(18)

In (18), pao is the value of pa at operating points. Using (1) to (8) and
(17), the plant transfer function, P4(s), can be obtained as

P4(s) =
sXp(s)

U(s)
=

(1 + α)AaCVdτmKms+ αAaKaVdτmKm

(s+ τm){mrodC
2s3 + (mrodCKa + fC2)s2

+ [fCKa + (1 + α2)A2
aC]s+ α2KaA

2
a}

(19)

With reference to transfer functions (11), (12), (16) and (19), the
hydraulic operation mode model switches due to changes in the direc-
tion of load pressure, pL, or actuator velocity, ẋp. In order to include
all four operation modes, the system model can be defined as P (s) ∈
{P1(s), P2(s), P3(s), P4(s)}.
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Experimental Setup

The experimental setup is an instrumented John Deere JD-48 backhoe, as
shown in Figure 4. Different load masses are used to generate a wide range of
load forces (resistive or assistive) during the actuator movement. The actuator
position is measured by an incremental encoder, and its velocity is calculated
from data with 100-point regression.

The linkage schematic is shown in Figure 4(b). The load force, FL, was
generated by the pendular motion of the backhoe arm, described by the
following equation.

FL = mLgl2sinθ/(l1cosθ) (20)

In (20), θ is rotational angle; l1 and l2 are lengths of effort arm and load
arm, respectively; g is gravitational acceleration; xp and θ are geometrically
related.

Values of Vd, Aa, α and Sg were obtained from the manufacturer. Values
of τm, Km, f, CV , Ka and Kb were obtained from experiments. The variation in
C reflects the changes in βe and the fluid volume at each side of the actuator.
An uncertainty in mrod is also considered. In order to create a wide range of
forces FL, the load mass mL is allowed to change from zero to a maximum
value. The parameters of the system and the selected range of operational
values are shown in Table 1. Note that system responses are significantly
affected by motor dynamics, because the sensitivities of P to the variations
in Km and τm are high. Other parameters have less dominant effect on the
magnitude of P.

Load mass

Pump 
assembly

     

Actuator

a b

xp

l1

l2

mLg

FL

θ

Load mass

Linkage

R

(a)                                 (b) 

Figure 4 Experimental setup. (a) Photograph of the experimental test bench. (b) Schematic
of linkage attached to actuator.
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Table 1 Parameters of the electro-hydrostatic actuator system
Value

Parameter Symbol Nominal Range
Displacement of bidirectional
pump (m3/rev)

Vd 8× 10−6 –

Time constant of the servo
motor (1/s)

τm 3 2.3 − 4.0

Servomotor gain (rev/(s·V)) Km 5.8 5.6 − 6.0

Piston area (m2) Aa 3167× 10−6 −
Area ratio of actuator α 0.75 −
Effective bulk modulus (Pa) βe 689× 106 356× 106 − 1030× 106

Hydraulic compliance (m3/Pa) C 3.46× 10−12 2.20× 10−12 − 7.03× 10−12

Piston rod mass (kg) mrod 10 9 − 11

Viscous damping
coefficient(N·s/m)

f 900 600 − 1200

Valve flow
coefficient(m3/(√Pa·s))

CV 1.6× 10−7 −

Specific gravity of fluid Sg 0.86 −
Pressure sensitivity gains of
the orifice valve

Ka, Kb − 1.88× 10−10 − 37.60× 10−10

Load mass (kg) mL − 0–163

Length of backhoe arm (m) l 1.5 −
Length of effort arm (m) l1 0.3 −
Length of load arm (m) l2 1.2 −

Controller Design

The two degree of freedom (DOF) feedback system structure is shown in Fig-
ure 5 (Yaniv 1999, Houpis and Rasmussen, 1999). The single QFT velocity
controller G is synthesized by including the plants of all four quadrants (P1,
P2, P3 and P4) into a single plant P. The procedure is implemented as detailed
below.

Plant Templates

QFT employs templates to capture uncertainties. Templates are frequency
responses of plant P presented on the Nichols chart, considering the paramet-
ric uncertainties shown in Table 1. Figure 6 shows templates of the uncertain
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Figure 5 2-DOF feedback system structure.
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plant P at selected frequencies. A larger template indicates a wider range of
uncertainties including modelling errors.

Tracking, Stability and Disturbance Rejection Specifications

(1) Tracking specification requires the definition of vector
β = [τm,Km, C,mrod, f,Ka,Kb]

T to express the uncertain parame-
ters arising from changes in the system dynamics or modelling error.
Therefore, the uncertain plant P(s) can be represented as P (s,β). With
reference to Figure 5, the closed-loop transfer function T (s,β) is

T (s,β) = F (s)
G(s)P (s,β)

1 +G(s)P (s,β)H(s)
(21)
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In (21),G(s) and F (s) are the QFT controller and prefilter, respectively.
H(s) is a low-pass filter with a settling time of 0.1 s. It is employed in the
design to take into account the delayed velocity measurement, caused by
the regression method. T (s,β) should satisfy the following inequality:

|TL(s)| ≤ |T (s,β)| ≤ |TU (s)| (22)

In (22), the upper bound TU (s) has a maximum overshoot of 2% and a
2% settling time of 0.7 s; the lower bound TL(s) has no overshoot and a
2% settling time of 2.8 s. Their transfer functions are given by (23) and
(24), respectively.

TU (s) =
(1/2.3s+ 1)(1/40s+ 1)

(1/3s+ 1)(1/4s+ 1)(1/8s+ 1)
(23)

TL(s) =
1

(1/2s+ 1)(1/3s+ 1)(1/4s+ 1)(1/200s+ 1)2
(24)

(2) Stability specification requires the following inequality to be satisfied
(Yaniv, 1999):∣∣∣∣ G(s)P (s,β)H(s)

1 +G(s)P (s,β)H(s)

∣∣∣∣ ≤ 1.6(4.1 dB) ∀ω ∈ [0∞) (25)

In (25), a gain margin of 4.22 dB and a phase margin of 36.42◦ are
guaranteed (Yaniv, 1999).

(3) Sensitivity specification rejects disturbance. The following relation
needs to be satisfied:∣∣∣∣ 1

1 +G(s)P (s,β)H(s)

∣∣∣∣ ≤ 1.8(5.1 dB) ∀ω ∈ [0∞) (26)

The sensitivity constraint value 1.8 (5.1 dB) is determined experimentally
to avoid unexpected behaviour due to the disturbance in the system, such as
transitions between working quadrants or variation of the load. For higher
loads, the sensitivity specification needs to change in order to maintain the
robustness. This results in an increased controller complexity to prevent
degraded tracking performance.

Loop Shaping and Prefilter Design

A nominal plant P (jω,β0) is selected to move plant templates at each
frequency on Nichols chart. QFT bounds are then formed when the prescribed
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closed-loop specifications are satisfied (i.e., at least one specification is just
satisfied and the others are over-satisfied) for the entire template. Therefore,
these bounds describe the acceptable region of the nominal loop transmis-
sion L(jω,β0) = G(jω)P (jω,β0) at corresponding frequencies, where
these closed-loop specifications are satisfied despite parametric uncertainties
(Yaniv, 1999; Houpis and Rasmussen, 1999). At each frequency on the
Nichols chart, an open bound is satisfied if L(jω, β0) is above or laid on
it; the closed bound is satisfied if L(jω, β0) is outside it. The bounds can be
calculated using the QFT Toolbox (Borghesani et al., 2015; Ren et al., 2020).
The QFT controller is then designed by shifting L(jω,β0) until it satisfies all
the bounds. The QFT bounds B(ω) and various loop transmissions L(jω,β0),
corresponding to various controllers, are shown in Figure 7. Figure 7(a)
shows the L(jω, β0) given a proportional controller having a gain 1. None
of the open bounds are satisfied. In order to design a controller with a small
open-loop gain and a simple structure, an integrator (with DC gain 1) is
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applied. The plot of L(jω, β0), given the integral controller, is shown in
Figure 7(b). Next, the integral controller gain is increased to 200 for L(jω,
β0) to satisfy the open bounds. The results are shown in Figure 7(c). As is
seen, open bounds are satisfied at all selected frequencies. Adding a zero to
the controller further prevents the closed bounds to be violated. Finally, two
poles are added to decrease the controller bandwidth. The resulting L(jω, β0)
is shown in Figure 7(d). The resulting controller is given in (27). Note that
the shape and size of templates can affect QFT bounds and the design of the
controller.

G(s) =
200(1/8s+ 1)

s(1/20s+ 1)2
(27)

Note that the loop shaping described above ensures that (25), (26) are
satisfied; however, (22) is only partially satisfied, as shown in (28)

20log
|T (jω,β)|max
10 − 20log

|T (jω,β)|min
10 ≤ 20log

|TU (jω)|
10 − 20log

|TL(jω)|
10

(28)

A prefilter has to be synthesized to completely satisfy (22) (Yaniv, 1999;
Houpis and Rasmussen, 1999). The closed-loop responses are shown in
Figure 8. With reference to Figure 8(a), in the absence of the prefilter (i.e.,
F (s) = 1), the frequency responses are above tracking bounds at some
frequencies. In order to reduce the magnitudes, two poles are added. The
results are shown in Figure 8(b). Finally, a complex zero is also added to shift
the closed-loop frequency responses within the tracking bounds, as shown in
Figure 8(c). The transfer function of the designed prefilter is given by (29).

F (s) =
1/16s2 + 1.6/4s+ 1

(1/2s+ 1)(1/3s+ 1)
(29)

Simulation Studies

The effectiveness of the designed QFT controller, described by G(s) and F(s),
is tested in simulations first. The ±70 mm/s actuator step input test was
conducted with a load mass of mL = 163 kg attached to the linkage for
system shown in Figure 4, and with nominal values of parameters given in
Table 1. The normalized response is shown in Figure 9. It is seen that the step
velocity response is within tracking bounds. In addition, the position response
is smooth even though the actuator velocity exhibits a slight oscillation when
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the directional valve switches position. The quadrants are detected from the
sign of pL and velocity (described in Figure 3). Next, parametric uncertainties
as in Table 1 were considered. Figure 10 shows the normalized velocity
responses to variable actuator step inputs ranging from±20 to±70 mm/s and
for the system carrying a load mass ranging from 0 kg to 163 kg. As can be
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Figure 9 Simulation response to ±70 mm/s step inputs with a load mass of 163 kg (mL =
163 kg) attached to the linkage: (a) velocity (normalized); (b) velocity error; (c) control signal;
(d) solenoids’ conditions of valve V1 in Figure 2; (e) actuator position.
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Figure 10 Simulation responses to variable step inputs ranging from ±20 to ±70 mm/s
with a load mass ranging from 0 kg to 163 kg attached to the linkage and including parametric
uncertainties in Table 1: (a) velocity (normalized); (b) velocity error; (c) control signal; (d)
solenoids’ conditions of valve V1 in Figure 2; (e) actuator position.
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Figure 11 Experimental response to ±20 mm/s step inputs for actuator moving a 0 kg load
mass: (a) velocity (normalized); (b) velocity error; (c) control signal; (d) solenoids’ conditions
of valve V1 in Figure 2; (e) actuator position.
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Figure 12 Experimental response to ±70 mm/s step inputs for actuator moving a 0 kg load
mass: (a) velocity (normalized); (b) velocity error; (c) control signal; (d) solenoids’ conditions
of valve V1 in Figure 2; (e) actuator position.
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Figure 13 Experimental response to ±20 mm/s step inputs for actuator moving a 163 kg
load mass: (a) velocity (normalized); (b) velocity error; (c) control signal; (d) solenoids’
conditions of valve V1 in Figure 2; (e) actuator position.
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Figure 14 Experimental response to ±70 mm/s step inputs for actuator moving a 163 kg
load mass: (a) velocity (normalized); (b) velocity error; (c) control signal; (d) solenoids’
conditions of valve V1 in Figure 2; (e) actuator position.
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Figure 15 Experimental response to ±70 mm/s step inputs for actuator moving a 326 kg
load mass: (a) velocity (normalized); (b) velocity error; (c) control signal; (d) solenoids’
conditions of valve V1 in Figure 2; (e) actuator position.
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seen, good performances were obtained and the robustness of the controller
is verified.

Experimental Validations

The controller was tested for ±20mm/s and ±70mm/s actuator velocity step
inputs with a load mass of 0 kg and 163 kg attached to the linkage shown
in Figure 4. The corresponding normalized velocity responses are shown in
Figures 11 to 14. The velocity responses are within upper and lower bounds.
However, when the solenoids’ status changes, slight velocity oscillation
appears. Higher load masses aggravate this phenomenon. Such undesired
behaviour did not show visible effect on position responses. Figure 15 shows
the results of the system carrying load of 326 kg. The velocity response
exhibited slightly increased oscillations; yet, the position response shows
acceptable behaviour. Note the controller was designed for load ranging from
0 kg to 163 kg. Increasing the uncertainty range at the QFT controller design
stage can improve the response but may lead to a new controller structure.

Conclusions

A QFT velocity controller was designed, for the first time, for a newly devel-
oped single-rod pump-controlled actuator that operates in four quadrants. The
controller guarantees tracking, stability and sensitivity specifications for a
wide range of parametric uncertainties including ±4% and ±34% changes
in servomotor gain and time constant, respectively, ±50% uncertainty in
effective bulk modulus of hydraulic fluid, and ±34% variations in viscous
damping.

Various step velocity responses were carried out using various loads.
The experimental results showed that the actuator responses were maintained
within tracking bounds for loads as high as 163 kg. When the directional
valve switched position, the actuator velocity oscillated slightly. This oscil-
lation was more notable with increased load mass. Nevertheless, position
smoothness was not affected. Additionally, the system still performed well
for loads higher than 163 kg. The results of this paper could be used for
many applications where velocity control of a single-rod hydraulic actuator
is required. One relevant application is teleoperation of excavators feller
bunchers, where the operator controls the speed (direction and magnitude)
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of the implement via a joystick (commonly known as resolved-mode control)
to perform a task.
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