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ABSTRACT
Effective power management is key to maximizing the performance and efficiency of hydraulic 
hybrid powertrains. However, the strong influence of future driving events on the optimal control 
policy limits the effectiveness of many approaches investigated to date. To address this issue the 
authors have proposed and investigated a novel power management controller that aims to 
predict online the accumulator’s near optimal state trajectory. It is demonstrated in this paper 
that if the optimal accumulator state trajectory is known, then an implementable control scheme 
can achieve near globally optimal fuel efficiency. Controller development began by optimally 
controlling a series hybrid over a representative drive cycle using Dynamic Programming (DP). 
A Neural Network (NN) was then trained to reproduce the DP optimal accumulator pressure 
trajectory based on the vehicle’s velocity over the previous thirty seconds. In this way the 
NN generalized the relationship between vehicle velocity and accumulator pressure. The NN 
power management controller’s performance was then evaluated on a hardware-in-the-loop 
transmission dynamometer using untrained drive cycles to demonstrate the generality of the 
proposed approach. During these untrained evaluation cycles the NN controller was able to 
decrease average fuel consumption by 25.8% when compared to a baseline constant pressure 
control strategy.

1.  Introduction

Vehicle hybridization through hydraulic hybrid trans-
missions is a proven and effective means for significantly 
reducing fuel consumption in on-road vehicles. Over 
the years numerous academic institutions, governmental 
agencies, and companies have demonstrated the poten-
tial of hydraulic hybrids.

Recent examples include work performed by the 
United States Environmental Protection Agency where a 
series hybrid was demonstrated to reduce fuel consump-
tion by 60–70% for a class 6 delivery vehicle when used 
in conjugation with a more efficient engine (Wendel 
et al. 2007). In 2012 the US Federal Transit Administration 
developed a modified series hybrid transmission for city 
busses in collaboration with industrial partners. They 
measured a 29% increase in fuel economy over the most 
efficient electric hybrids, a 47% increase over an identical 
non-hybrid bus, and a 109% increase in fuel economy 
over conventional city busses. Equally impressive was 
the 36% lower estimated lifecycle cost for the hydraulic 
hybrid when compared against an electric hybrid bus 
(Heskitt et al. 2012). More recently PSA-Peugeot-Citroen 
unveiled their hydraulic hybrid power split transmission 
based passenger car. Marketed as a ‘Hybrid Air’ vehicle, 
the car obtained fuel economy improvements of 45% in 
city driving (PSA 2015).

One aspect all of these transmissions have in com-
mon is the need to balance the energy generated by the 
engine, with the energy stored and released from the 
hybrid transmission. Effectively controlling how this 
energy is balanced, as well as how all of the powertrain 
components are controlled, is essential to maximizing 
the fuel efficiency of hydraulic hybrid transmissions. 
In this paper the authors present a novel power man-
agement strategy based on a Neural Network (NN) and 
Dynamic Programming (DP) with the goal of minimiz-
ing fuel consumption.

The authors began this research by developing a sim-
ulation model for a reference series hydraulic hybrid 
vehicle. Next a 750 km long representative urban driving 
cycle was generated based on existing industry stand-
ard cycles. The reference vehicle was then optimally 
controlled on this cycle using dynamic programming. 
DP provided both a target fuel consumption rate, and 
the optimal accumulator pressure profile. While DP is 
a powerful optimal control technique, its reliance on 
complete a priori cycle knowledge precludes its use as 
an implementable control scheme in most situations. 
Thus, a neural network was trained to predict the opti-
mal DP pressure profile based on a short history of the 
vehicle’s past velocity. Next, a controller was developed 
to control the accumulator pressure in order to track 
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the NN’s predicted pressure profile. The NN power 
management strategy was then evaluated in simulation 
using two untrained evaluation cycles and two baseline 
constant pressure control strategies. Finally, the novel 
NN power management strategy was evaluated on a 
Hardware-in-the-Loop (HIL) transmission dynamom-
eter using the same two evaluation cycles and baseline 
control strategies.

2.  Background

2.1.  Hydraulic hybrids

By definition hybrid powertrains contain at least two 
distinct forms of energy storage in conjunction with 
appropriate energy converters. Hydraulic hybrids typi-
cally utilize the energy stored within fossil fuels as their 
primary energy source, with an Internal Combustion 
Engine (ICE) converting this energy from the chemi-
cal to the mechanical (rotational) domain. Secondary 
energy storage occurs mechanically in a hydropneu-
matic accumulator where high pressure fluid further 
compresses an inert gas. This accumulator is coupled 
to positive displacement machines (i.e. hydraulic units) 
which convert energy between the mechanical and 
hydraulic domains.

There are three principle hydraulic hybrid architec-
tures: parallel, series, and power split transmissions. Out 
of these three the series hybrid is the most prevalent 
form of full hybrid transmission. In this research the 
authors focused on series hybrids, but a similar method 
could be applied to both parallel and power split con-
figurations. A schematic of a typical series hybrid trans-
mission in shown in Figure 1.

2.2.  Power management

2.2.1.  Introduction to power management
Effective power management is essential for maximizing 
the performance and fuel efficiency of hybrid vehicles. 
Power management involves balancing the energy gen-
erated by the engine, with the energy stored and released 
from the accumulator. Effective power management also 
involves a holistic view of the entire powertrain with 
regards to both component and system efficiencies. 

Thus to understand power management of hydraulic 
hybrids, an understanding of component efficiency is 
first necessary.

Three operating parameters affect the efficiency of a 
given hydraulic unit: angular velocity, differential pres-
sure, and relative unit displacement. While unit power 
losses have a highly nonlinear dependency on operation 
conditions (speed, pressure, and displacement), several 
generalizations can be made about these operating 
points. For example, the efficiency of hydraulic units 
generally improves as speed and pressure increase to 
moderately high values while simultaneously maximiz-
ing unit displacement. Similarly, when meeting a given 
torque requirement it is generally best to maximize 
displacement while minimizing pressure. However, 
controlling units in this manner (low pressure/high dis-
placement) also requires more flow to be supplied to the 
units. This may inadvertently force other units to operate 
in a less efficient mode. Such an example illustrates that 
even with full knowledge of the nonlinear losses of indi-
vidual components, the entire system must be viewed as 
a whole to determine the most efficient combination of 
parameters for a specific operating condition.

Engine operation also plays a significant role in over-
all fuel efficiency. For a given output power, an engine 
consumes varying quantities of fuel depending on the 
operating point. Engine efficiency, defined as the effi-
ciency of converting chemical to mechanical energy, can 
be visualized using a Brake Specific Fuel Consumption 
map (Figure 2). This map normalizes fuel consumption 
to output shaft (brake) energy with smaller numbers 
indicating more efficient engine operation.

Intelligent engine operation is often referred to as 
engine management. One insight into engine man-
agement comes from the knowledge that while engine 
efficiency generally improves slightly as engine speed 
drops, it improves significantly as engine torque rises. 
While driving, a certain speed and torque (i.e. power) 

1 hydraulic unit 1 2 hydraulic unit 2 3 hydraulic unit 3 

4 charge pump 5 engine 6 reservoir 

7 check valve 8 LP relief valve 9 HP accumulator 

10 LP accumulator 11 enabling valve 12 axle and wheels 

Figure 1. Series hydraulic hybrid transmission. Figure 2. Brake specific fuel consumption.
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is required at the wheels based on vehicle dynamics. 
However, due to the transmission’s continuously varia-
ble nature, any combination of engine speed and torque 
that yields this tractive power (plus losses) is sufficient. 
Thus, operating the engine at low speeds forces the 
engine to function efficiently at high torques. Another 
effective engine management technique applicable to 
series hybrids is storing excess energy in the accumula-
tor during periods of low engine power demand. This 
causes the engine to operate more efficiently at higher 
torques, reducing the fuel consumed for a specific quan-
tity of energy. Likewise, during periods of high demand, 
excess energy may be released from the accumulator to 
supplement the engine enabling more efficient engine 
operation.

Hydraulic accumulators are highly effective at storing 
energy. Typical round trip efficiencies are around 85% 
for basic bladder type accumulators (depending on the 
charging/discharging cycle) and up to 95–97% for more 
advanced foam filled accumulators (Pourmovahed et al. 
1988, Wu et al. 2004). As energy is stored within an accu-
mulator the accumulator’s pressure, and consequently 
the pressure at which the hydraulic units operate at, 
increases. As a result the accumulator’s state of charge has 
a large influence on the powertrain’s instantaneous effi-
ciency. The accumulator’s state of charge also has a large 
impact on system performance. Maximum transmission 
torque is directly proportional to system pressure with 
higher pressures yielding greater potential torques. It is 
important for any new transmission to maintain a sim-
ilar response and feel to current systems (Johansson 
and Ossyra 2010). Thus, it is important to maintain a 
sufficiently high accumulator pressure to anticipate and 
respond to the driver’s demands. Conversely, pressure 
should be minimized during periods of low demand 
to maximize system efficiency. Accumulator pressure 
also plays a key role during regenerative braking, that is 
recovering and storing brake energy normally dissipated 
through friction brakes. As maximum braking torque is 
proportional to system pressure, an appropriately high 
accumulator pressure is required to satisfy regenerative 
braking torque requirements. Simultaneously, an ade-
quately low initial pressure is also necessary to provide 
sufficient capacity in the accumulator to store the recov-
ered energy.

For series hybrids, engine speed and accumulator 
pressure and the two principle free states which can be 
optimized to maximize fuel efficiency. Analysis of prior 
optimal control results has shown that maximum fuel 
efficiency is generally obtained by operating the engine 
at the minimum speed required to meet the speed/power 
requirements of unit 1, regardless of the broader drive 
cycle. In contrast optimal accumulator pressure is sig-
nificantly influenced by past, present, and future driving 
events. For hydraulic hybrids power management is in 
effect pressure management. It will be shown later in this 

paper that if a series hybrid tracks its optimal pressure 
profile (for a specific cycle) in conjunction with a mini-
mum engine speed strategy, then the vehicle will achieve 
near optimal fuel efficiency.

2.2.2.  Previous hydraulic hybrid power 
management
All hydraulic hybrids require at least a rudimentary 
power management strategy to control engine speed 
and accumulator pressure. One of the simplest set of 
approaches are known as rule-based. That is when cer-
tain conditions are met, predefined actions are taken. 
Although as no real optimization takes place, the result-
ing actions are inherently suboptimal. Early examples 
of rule-based power management include work by 
Buchwald et al. (1979) where three strategies were evalu-
ated for a parallel hybrid. Their proposals included using 
accumulator power until depleted and then switching 
to ICE power, operating the ICE at a constant torque 
with the hydraulic unit adding or absorbing torque as 
needed, and using the power source with the most effi-
cient instantaneous conversation efficiency. This last 
approach bears an early resemblance to the modern 
Equivalent Consumption Minimization Strategy pro-
posed by Musardo et al. (2005) which has been heav-
ily investigated for electric hybrids. In 2004, Wu et al. 
proposed extracting rule-based control strategies for a 
parallel hybrid from optimally controlled DP results. The 
use of DP yielded improved fuel economy yet the rules 
remained suboptimal. Another simple suboptimal power 
management strategy used by Kim and Filipi (2007) for 
series hybrids is known as thermostatic or bang-bang 
control. In thermostatic control the accumulator begins 
to be charged by the engine once the accumulator pres-
sure hits a lower limit, and continues to be charge until 
the accumulator pressure reaches some upper bound.

More advance power management strategies include 
instantaneous optimization such as the work conducted 
by Kumar and Ivantysynova (2010) on a series hybrid 
power split transmission. Their locally optimal control 
strategy considered the entire powertrain efficiency in 
determining the optimal engine speed and power split 
between ICE and accumulator. Even more advanced are 
the Stochastic Dynamic Programming (SDP) approaches 
proposed by Kumar and Ivantysynova (2010) and Johri 
et al. (2011) for series hybrid power split and parallel 
hybrids, respectively. Both of these investigations used 
Markov chains to approximate the stochastic transition 
probability of the driver’s power demand for the next 
instance in time based solely on the vehicle’s current 
states. In both papers, the authors statistically sampled 
various drive cycles to obtain transitional probabili-
ties, which were included as a state variable within a 
power management controller. These control schemes 
were then optimized offline and used to generate imple-
mentable control maps. However, the SDP controller’s 
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the simulation. The powertrain model was further vali-
dated using measurements obtained from the hardware-
in-the-loop test rig described in Section 6.2.

Engine dynamics are modeled as a force balance 
between brake torque, inertia, and load torque.

 

where ωCE is the engine’s speed, uCE is the normalized 
throttle, MWOT(ωCE) is the engine’s wide open throttle 
curve, ICE is the engine’s inertia, and M1 eff is unit 1’s 
effective torque.

The hydraulic units are modeled using governing 
equations and empirically derived loss models. Effective 
unit flow is given by:

 

where Qeff is the effective flow, V is the unit’s displace-
ment, ω is the unit’s speed, β is the normalized unit dis-
placement, and Qs is the empirically derived volumetric 
losses.

Effective torque is given by:
 

where Meff is the effective torque, V is the unit’s displace-
ment, Δp is the unit’s differential pressure, β is the nor-
malized unit displacement, and Ms is the empirically 
derived torque losses.

Accumulator pressure is modeled using the Beattie–
Bridgeman Equation of State for nitrogen:

 

 

where p is the accumulator’s pressure (both fluid and 
gas), R is the universal gas constant, T is the gas’s tem-
perature, υ is the gas’s molar density, and A, B, and C 
are constants.

Accumulator pressure is linked to the net oil flow into 
and out of the accumulator through Equations 6 and 7.

 

where Vgas is the gas volume and mmol is the gas’s molar 
mass.
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transition probabilities were calculated based on the 
same cycles for which the controller was evaluated, 
thus it is unknown how well this approach can be gen-
eralized to unknown cycles. Many other power man-
agement strategies have also been proposed, yet none 
of them can approach the global optimality of dynamic 
programming.

3.  Reference application and system modeling

3.1.  Reference vehicle

A compact passenger car serves as a reference vehicle 
for this investigation. Select parameters can be found 
in Table 1.

3.2.  Transmission design and sizing

A series hybrid transmission with two units connected to 
the axle/wheels (Figure 1) was selected for this investiga-
tion. The series hybrid is sized to meeting the same perfor-
mance as the reference vehicle. Unit 1 is sized to fully load 
the engine at moderate pressure. Units 2 and 3 are sized to 
provide approximately the same maximum torque as the 
reference vehicle. The high pressure accumulator is sized 
to capture the maximum braking energy present within 
the drive cycles used in this work. Select parameters for 
the series hybrid transmission are located in Table 2.

3.3.  System modeling

Developing a power management controller requires 
first modeling the series hybrid vehicle. All mode-
ling was performed in MATLAB Simulink using gov-
erning equations and accepted modeling techniques. 
Empirically derived engine performance and efficiency 
maps (Figure 2) were obtained from PSAT (Argonne 
National Laboratory 2015) while hydraulic unit volu-
metric and torque efficiencies were measured in-house 
(Mikeska and Ivantysynova 2002). These empirical com-
ponent models further enhance the powertrain model’s 
fidelity by incorporating real world measurements into 

Table 1. Reference vehicle parameters.

Tire rolling radius 0.321 m Engine 1.8 l Gasoline
Frontal area 2.2 m2 Engine 103 kW @ 5600 rpm
Drag coefficient 0.31 Engine 185 Nm @ 4300 rpm
Rolling resistance 0.01 Mass 1400 kg
Transmission Manual Axle 3.94:1

Table 2. Series hybrid transmission parameters.

Units 1,2,3 42 cc/rev swashplate style
Max pressure 350 bar
Low pressure 25 bar
Accumulator High pressure Low pressure
Type Bladder Bladder
Effective volume 18.4 l 18.4 l
Precharge 130 bar 10 bar
Min pressure 140 bar
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4.1.  Drive cycle generation

A power management controller should be general and 
operate effectively in many situations, not just on a single 
drive cycle. However, many industry standard cycles are 
relatively short and therefore offer a rather small num-
ber of driving events. Two industry standard cycles, the 
Urban Dynamometer Drive Schedule (UDDS), and the 
Unified Dynamometer Driving Schedule (LA92) (EPA 
2015) are shown in Figure 3. Both of these cycles are 
relatively short with the UDDS traveling 12.0 km over 
22.8 min while the LA92 travels 15.8 km over 23.9 min.

To train the power management controller on a 
broader spectrum of driving events, a new composite 
drive cycle was created based on these two standard 
cycles. Drive cycle generation began by splitting each 
cycle into individual driving events containing the 
vehicle’s velocity from start to stop. In total, these two 
drive cycles contain 33 individual driving events. A 
24 h long drive cycle was arbitrarily chosen to provide 
a sufficient variety of driving events which helped to 
prevent over training. Generation of the 24 h composite 
cycle began with an algorithm randomly selecting one 
of the 33 ‘seed’ driving events. Next, this seed profile’s 
velocity was randomly compressed or expanded by −50 
to 50%. Simultaneously, another random number gen-
erator compressed or expanded the seed profile’s time 
by −50 to 50%. Finally, a stop between 2 and 5 s was 
randomly chosen and placed at the end of the segment 
before appending the modified driving segment to 
the end of composite cycle. This process was repeated 
until the desired 24 h cycle duration was reached. This 
random cycle generation resulted in a large variety of 
realistic driving events on which to train the power 
management controller. For reference the first 25 min 
of the 24 h/750.6 km long composite cycle can be seen 
in Figure 3. The composite cycle is unique throughout 
its duration, though only the first 25 min are show here 
for clarity.

It should be mentioned at this point that the pur-
pose of this work was to investigate the feasibility of a 

 

where V0 is the effective gas volume and Voil is the vol-
ume of oil in the accumulator.

The accumulator’s gas temperature is given by:
 

where Tamb is the ambient temperature, τ is the accumu-
lator’s thermal time constant, Cv is nitrogen gas’s molar 
heat capacity at a constant volume, and �ptherm

�T
 is derived 

from the Beattie–Bridgeman Equation of State: 
 

The axle is modeled using Equations 10 and 11.
 

where Mwheel is the wheel torque, M2(3) eff is unit 2 and 3’s 
effective torque respectively, iaxle is the axle’s ratio, and 
ηaxle is the axle’s efficiency.
 

where ωwheel is the wheel speed, ω2(3) is the speed of units 
2 and 3, and iaxle is the axle’s ratio.

Vehicle dynamics are modeled using a one dimen-
sional model involving a torque balance between propul-
sion torque provided by the driveline, and load torque 
generated by the vehicle’s inertia, rolling resistance, and 
aerodynamic drag.

 

where ωwheel is the wheel speed, Mwheel is the torque 
applied to the wheels by units 2 and 3, Fd is the vehicle’s 
aerodynamic drag, Frr is the vehicle’s rolling resistance, 
rdyn is the tire’s dynamic rolling radius, and mveh is the 
vehicle’s mass.

4.  Optimal control generation

Creating an effective power management controller 
began by first optimally controlling the series hybrid 
over a reference drive cycle. Optimally controlling the 
powertrain provided two functions. First, the optimally 
controlled vehicle defined the best case fuel consump-
tion rate. This served as a baseline for comparing power 
management strategies. Second, the optimally controlled 
vehicle produced an optimal state profile which the 
neural network could be trained on.
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Figure 3. Standard and composite drive cycles.
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values. These cycle defined states and control came from 
the assumption that the drive cycle was perfectly fol-
lowed. Thus, wheel speed and wheel torque were known 
for every point in time. It should also be noted that the 
purpose of this work was to evaluate a novel power 
management strategy, not to precisely predict the fuel 
consumption of a specific vehicle. It is the differences 
in fuel efficiency between various power management 
strategies, when evaluated in a given model, which are 
of the most interest. As such, the simplifications made 
are acceptable as they have been applied uniformly to 
each power management controller.

The series hybrid’s state space representation is given 
by:

 

where ωCE is the engine speed, ωwheel is the wheel speed, 
Vacm is the high pressure accumulator’s gas volume, Tacm 
is the high pressure accumulator’s gas temperature, pLP is 
the pressure in the low pressure system, uCE is the engine 
throttle command, β1, β2, and β3 are the normalized unit 
displacements for units 1, 2, and 3 respectively, and uenab 
is the enabling valve command.

The reduced state spaced representation used in the 
DP algorithm is given by:

 

where ωwheel has been removed as it is defined by the 
cycle, pLP has been removed as the low pressure system 
is assumed to maintain a fixed pressure, and desired 
engine speed ωCE des replaces engine throttle uCE. Using 
an internal speed controller for the engine throttle 
reduces computational expense by permitting a coarser 
control discretization while still ensuring accurate 
engine speed control. β2 and β3 were also removed as 
they were defined by the cycle (based on required torque 
and current system pressure). Finally the enabling valve 
command uenab was removed with the valve commanded 
to open any time a displacement other than zero was 
commanded for units 2 and 3.

High computational expense is one of DP’s primary 
disadvantages (Bertsekas and Bertsekas 1995), an issue 
mitigated through several techniques. First, the entire 
series hybrid vehicle model was placed in a repeating sub-
system block within Simulink. This enabled the Simulink 
model to be opened once, and then ran simultaneously 
for hundreds of thousands of different simulations (as 
proposed in Liu and Peng 2006). Significant time savings 
were also achieved through system parallelization. DP is 
highly parallelizable with every optimization occurring 
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neural network based power management strategy, not 
to optimize the approach’s training and implementation. 
A further investigation might likely show that a shorter 
duration training segment would be equally effective, as 
would a broader variety of driving events.

4.2.  Dynamic programming

Dynamic programming was used to optimally control 
the series hybrid over the composite cycle. DP is a pow-
erful tool that guarantees a globally optimal solution is 
reached (down to the level of discretization) without 
the computational expense of full cycle enumeration. It 
is based on Bellman’s principle of optimality (Bellman 
1956): ‘An optimal policy has the property that, whatever 
the initial state and optimal first decision may be, the 
remaining decisions constitute an optimal policy with 
regard to the state resulting from the first decision’.

Discrete time dynamic programming utilizes a state 
space modeling approach where key system states and 
controls are identified and discretized. The complete 
optimal control problem is then divided into a series of 
one stage sub problems containing only the current and 
subsequent time steps. Beginning at the final time step, 
the DP algorithm optimizes the controls for each state 
in the current stage before stepping backwards in time. 
This optimization occurs recursively until the initial time 
step is reached.

A key component of DP is the so called cost-to-finish 
matrix. This matrix contains the minimum cost to fin-
ish the cycle for each state in the subsequent time step. 
By updating this matrix after each stage is optimized, 
essential information from all previous optimizations 
is condensed and stored into a single set of values. It is 
this matrix that enables the complete optimal control 
problem to be subdivided into one stage sub problems.

The DP algorithm was formulated using Equation 13.
 

where J∗ is the optimal cost, U is the control space, X 
is the state space, g is the transitional cost function, J∗k+1 
is the optimal cost to finish, and k is the stage counter.

Because maximizing fuel efficiency was the primary 
goal of the power management controller, the DP cost 
function was configured to minimize fuel consumption. 
Due to space constraints a detailed explanation of the 
DP algorithm is not included herein, but can be found 
in Sprengel and Ivantysynova (2013).

A Simulink model of the series hybrid vehicle served 
as a plant for the DP algorithm. This Simulink model 
was configured in a modified state space representa-
tion where key states and controls served as inputs and 
outputs. Simplifications were made to the model which 
generally involved either neglecting dynamics faster 
than the DP time step, or imposing certain cycle defined 

(13)J∗k = min
uk∈Uk

[
g
(
Xk

||uk

)
+ J∗k+1

(
Xk+1

)]
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as the reference pressure. Suboptimally controlled, the 
series hybrid still yielded a fuel consumption rate of 
6.84 l/100 km, only 0.99% lower than the DP optimal 
value. These results provided motivation for this research 
by demonstrating that the more accurately the optimal 
pressure profile can be predicted, the closer a series 
hybrid can approach its globally optimal fuel efficiency.

5.  Neural networks

5.1.  Overview to neural networks

Neural networks contain three distinct but intercon-
nected layers: an input layer, one or more hidden layers, 
and an output layer. The input layer provides one input 
for each input variable and preprocesses all incoming 
data. The hidden layer(s) then act(s) on data from the 
input layer to perform the majority of the NN’s com-
putations. Finally, data from the hidden layer(s) is post 
processed and output in the output layer. A generalized 
schematic of a NN can be found in Figure 5.

Interconnected neurons are the fundamental compo-
nent of every NN. Each neuron is composed of several 
elements beginning with a summation function that 
adds together all of the inputs connected to the neu-
ron. Next, an activation function (generally a sigmoidal 
transfer function) constrains the cumulative inputs to 
some predefined range (typically −1:1 or 0:1) before 
passing along the resulting value. Neurons may also 
contain a static bias value connected to the summation 
element which shift the cumulative inputs by some pre-
defined amount. Finally, every connection outside of 
a neuron possesses an individual weight (i.e. gain). It 
is these weights that are adjusted to store information 
within the neural network.

NN’s come in a wide variety of configurations; for this 
research a NN architecture that specializes in regres-
sion analysis was employed. That is the network aims to 
reproduce a predefined response based on an associated 
set of input data. As such, these types of NN’s must first 
be trained on an existing data-set before they are of use. 
Prior to training, this existing input/output data-set is 
divided into three subsets: a training set, a validation 
set, and a testing set. A substantial advantage of NN’s, 

within a given stage (DP time step) completely inde-
pendent of one another. For each stage ~4.3 × 106 sim-
ulations were ran corresponding to the full factorial of 
all discretized states and controls. These simulations 
were split into ~2.9 × 105 simulation subsets and ran 
concurrently on 15 processor cores. After each stage, 
the simulation results were recombined for final analysis 
along with updating the cost to finish matrix. This pro-
cess repeated for 8.64 × 104 stages (resulting from a one 
second DP time step) until the cycle was finished. In total 
~3.7 × 1011 dynamic simulations were ran to optimally 
control the 24 h composite drive cycle.

Once completed the DP algorithm yielded two opti-
mal control matrices. Here engine speed, accumulator 
pressure, and cycle time were indices, with optimal unit 
1 displacement and commanded engine speed as the 
matrix data. The full series hybrid vehicle model was 
then simulated over the 24 h drive cycle using the opti-
mal control matrices to control unit 1’s displacement 
and the commanded engine speed. During this simula-
tion run, the optimal accumulator pressure profile was 
recorded for use in the neural network. Optimally con-
trolled, the series hybrid achieved a fuel consumption 
rate of 6.77 l/100 km over the composite drive cycle.

4.3.  Optimal pressure validation

A key assumption for the power management control-
ler presented in this work was that if a series hybrid 
followed its optimal pressure profile, then the vehicle 
would achieve near optimal fuel efficiency. Validating 
this assumption began by implementing a pressure 
controller for unit 1. This controller adjusted unit 1’s 
displacement in order to track the reference accumu-
lator pressure profile. An engine speed controller was 
then implemented in the model which maintained a 
minimum engine speed, unless unit 1 required more 
speed or torque to track the reference pressure profile. A 
simplified block diagram of the controller used in both 
simulation and HIL measurements for engine speed and 
unit 1 displacement is shown in Figure 4.

Units 2 and 3 were operated together in secondary 
control based on the current accumulator pressure to 
provide the tractive torque required by the drive cycle. 
This controller ensured the drive cycle was tracked but 
remained separate from the power management con-
troller. The series hybrid was then simulated on the 24 h 
composite cycle using the DP optimal pressure profile 

Figure 4. Engine speed and unit 1 controller.

Figure 5. Generalized neural network schematic.
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Bias values were included for every neuron in each of 
the layers. Finally, input and output variables were pre/
post processed to normalize their maximum values to 
one. A schematic of this neural network can be found 
in Figure 7.

For this research the NN was constructed, trained, 
and implemented using MATLAB’s Neural Network 
Toolbox. This toolbox provided a powerful interface 
for developing NNs. The authors needed only to define 
the network’s architecture, the input/output data sets, 
and which training algorithm to use, and the toolbox 
trained the network. In the network’s final configura-
tion the first 17 h of the 24 h DP optimal data-set was 
used as the training set. The two subsequent 3.5 h blocks 
were used as the validation and testing sets respectively. 
For training the Levenberg-Marquardt backpropagation 
algorithm (Moré 1978) was chosen due to its high per-
formance and relatively low computational expense.

Once training concluded, the resulting NN was com-
piled into a Simulink model by the toolbox. This model 
took in vehicle velocity and output the predicted optimal 
accumulator pressure. This Simulink model was then 
exported and used in both simulation and HIL eval-
uation of the proposed power management strategy. 
An example of the NN’s ability to predict near optimal 
accumulator pressure for the composite training cycle 
can be seen in Figure 8.

6.  Neural network performance assessment

Valuable insight was gained by assessing the NN’s per-
formance on both drive cycles for which it had, and had 
not, been trained on. It is the NN’s performance on these 
untrained cycles which is of the most interest, as it pro-
vides an indication of the network’s performance in real 

and one that makes NN’s well suited for this research, is 
their ability to generalize trends in the data rather than 
simply memorizing input/output sets. A well structured 
and trained NN will have the ability to interpolate and 
extrapolate an output response based on new input sets 
that bear a resemblance to previously trained data sets.

Training begins by first defining the configuration of 
neurons, and then randomly initializing each weight’s 
value. In a process known as supervised learning, inputs 
for the training set are applied to the network with their 
response compared to the desired output values. This out-
put response error is then back propagated through the 
network and used to update the NN’s weights. After the 
weights are updated, the validation data-set is run through 
the network. Training concludes once the maximum num-
ber of training iterations is reached, the NN yields an 
acceptably low error in response to the training data, the 
error gradient between successive training iterations drops 
below a predefined value, the training set’s error begins 
to rise, or the validation set’s error begins to rise. This last 
condition helps to prevent memorization of the training 
set by ending the training once the NN begins to perform 
worse on generalizing trends. Finally, the testing data-set 
is run through the network as an additional check of the 
NN’s performance on data sets that it was not exposed to.

5.2.  Neural networks for power management

Designing a neural network for power management 
began with determining the network’s inputs and out-
puts. There exists no methodical approach for designing 
an optimal NN. Therefore both the selection of inputs 
and outputs, and the network’s configuration, were deter-
mined through trial and error. It was found that a NN 
that predicted the optimal accumulator pressure profile 
based solely on a history of the vehicle’s velocity yielded 
satisfactory results. Many NNs use not only the instan-
taneous value of an input variable, but also the temporal 
history of the input variable. For this research the last 
thirty seconds of vehicle velocity, discretized to one sec-
ond intervals, served as inputs to the NN. It was found 
through experimentation that for this application a vehi-
cle velocity history longer than thirty seconds did not 
markedly increase the network’s predictive performance.

A cascading feedforward neural network architecture 
was created for the power management controller featur-
ing two hidden layers. The input layer contained thirty 
neurons (one for each input time). The first and sec-
ond hidden layers contained thirty and fifteen neurons, 
respectively, with a single neuron in the output layer. 
Each neuron in a given layer was connected to every 
other neuron in each of the subsequent layers. Hence, 
the outputs of the input layer neurons were inputs to 
every neuron in both of the hidden layers, as well as 
the output layer and so on. Both the input and hidden 
layer neurons featured log-sigmoid activation functions, 
while the output layer neuron used a saturating linear 
activation function (Figure 6).

Figure 6. Activation functions used in the neural network.

Figure 7. Neural network for power management.
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The neural network based power management con-
troller was further explored by comparing its perfor-
mance (again in both simulation and measurements) 
with a baseline constant pressure power management 
strategy. Here, two constant reference pressures of 200 
and 275 bar supplanted the variable reference pressure 
provided by the NN. Both the constant pressure and 
NN power management controllers used the same low-
er-level controller to adjust unit 1’s displacement and 
engine speed (described in Section 4.3). Thus, differ-
ences in fuel efficiency between the various control 
strategies can be attributed primarily to difference in 
the reference pressure. It is important to note that unit 1’s 
controller only commanded flow when the accumulator 
pressure dropped below the reference value. It did not 
attempt to remove fluid from the system if the accumu-
lator pressure exceeded the reference value, as occurs 
during regenerative braking.

6.1.  Simulation based evaluation

Simulation based evaluation of the NN controller began 
by baselining the reference vehicle over each of the three 
drive cycles using dynamic programming. Each drive 
cycle was then controlled to track the DP optimal pres-
sure profile (poptimal) as shown in Table 3.

This comparison evaluated the power management 
controller’s performance if the NN was able to perfectly 
predict the DP optimal pressure profile. Table 4 sum-
marizes the optimal pressure controller’s performance 
relative to the globally optimal dynamic programming 
results.

Each drive cycle was then individually controlled 
using both constant reference pressures, as well as the 
NN’s predicted pressure. Fuel consumption rates for all 
of these simulations can be found in Table 5.

In simulation, the NN was able to achieve an aver-
age fuel consumption rate within 7.2% of the globally 
optimal value for the two untrained evaluation cycles. 
Furthermore, for the same two evaluation cycles, the NN 
was able to improve the average fuel consumption rate by 

world conditions. In total, three cycles were evaluated 
in both simulation and experimental measurements, 
including the first 25 min of the 24 h composite cycle. 
This initial segment of the composite cycle demon-
strated the NN’s performance on a cycle for which it 
had been trained. Then both the Japanese JC08 and the 
EPA’s speed corrected SC03 cycles (EPA 2015) (Figure 
9) were ran to test the network’s performance on new 
and untrained conditions.

The neural network’s predictive performance on an 
untrained cycle can be seen graphically in Figure 10. 
Here, the NN attempts to predict the optimal accu-
mulator pressure for the SC03 evaluation cycle. While 
the prediction error was greater than the training cycle 
(Figure 8), it was still sufficiently close to provide mean-
ingful reductions in fuel consumption.

Figure 8. Predictive performance of the NN on a segment of the 
composite training cycle.

Figure 9. Evaluation cycles.

Figure 10. NN performance on the SC03 evaluation cycle.

Table 3. Simulated fuel consumption rates (l/100 km).

Drive cycle

Composite JC08 SC03
Control strategy DP 6.8 7.5 6.7

poptimal 7.0 7.6 6.8

Table 4. Percent change in fuel consumption rates when using 
optimal pressure controller compared to dynamic program-
ming results.

Drive cycle

Composite JC08 SC03
Control strategy poptimal −2.9 −1.3 −1.5
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comparison. Another benefit was the high precession 
measurements obtained through lab quality instrumen-
tation, which while suitable for stationary testing, may 
not be appropriate in mobile applications. More infor-
mation on the design, control, and operation of the HIL 
transmission dynamometer can be found in Sprengel 
and Ivantysynova (2014).

6.3.  Hardware-in-the-loop based evaluation

Evaluation of the NN controller on the HIL transmission 
dynamometer was conducted in a manner similar to the 
simulation based evaluations. Again, the NN controller, 
and both constant pressure control strategies, were used 
to control all three drive cycles. Additional considera-
tions such as operating the transmission at a constant 
control pressure inlet line viscosity (i.e. temperature) 
were also necessary to ensure valid comparisons between 
the various cycles and controllers. Fuel consumption for 
the HIL cycles was estimated using measured engine 
simulator speed and torque in conjunction with the same 
fuel consumption maps used in the simulation study. 
Table 7 summarizes the measurement results from the 
HIL transmission dynamometer.

Measurement results demonstrate the feasibility and 
energy saving potential of the proposed neural network 
power management controller in near real world condi-
tions. For the two untrained evaluation cycles, the NN 
controller was able to improve average fuel consumption 
rates by 5.9 and 25.8% for the 200 and 275 bar cases, 
respectively (Table 8).

One point which must be addressed in the disparity 
between simulation and HIL fuel consumption rates. 
Several factors likely influenced these differences includ-
ing a less aggressive engine speed controller on the HIL 
dynamometer that failed to optimize engine speed. A 
greater contributing factor was that the hydraulic units 
chosen for the HIL dynamometer exhibit excessively high 
leakage through the slippers at very low displacements 
and high pressures (a characteristic not fully captured 
by the empirical loss models used in simulation). This 

3.2 and 22.4% for the 200 and 275 bar cases, respectively. 
These results are summarized in Table 6.

It should be noted here that the moderate improve-
ments over the 200 bar case may be somewhat mislead-
ing as 200 bar is somewhat low of a pressure for more 
aggressive driving events. Thus improvements over the 
275  bar case are likely to more accurately reflect an 
implemented control scheme.

6.2.  Hardware-in-the-loop transmission 
dynamometer

A hardware-in-the-loop transmission dynamometer 
provided means to evaluate the proposed NN power 
management controller in a near real world, though 
highly controlled, environment. HIL refers to testing 
configurations where components of interest are physi-
cally present while ancillary components are simulated. 
In this case, a complete series hydraulic hybrid trans-
mission was present, while electric motor/generators 
replicated the engine and vehicle dynamics. During 
operation, real time simulations of both the engine and 
vehicle dynamics were ran in response to measured 
speeds and torques with their resulting outputs used 
to control the two electric units. In this way the series 
hybrid transmission operated in manner quite similar to 
the way in which it would function when implemented in 
an on-road vehicle. To ensure a fair comparison between 
simulation and measurements, the same parameters and 
components used in the NN simulations (Tables 1 and 2) 
were included on the HIL transmission dynamometer. A 
picture and schematic of the HIL dynamometer used in 
this study can be found in Figures 11 and 12 respectively.

One of the principle benefits offered by the HIL 
dynamometer, as opposed to testing the NN controller 
in an on-road vehicle, was the high degree of repeata-
bility obtained. This enabled the same dynamic drive 
cycle to be repeated over and over again using different 
power management strategies, thereby ensuring a fair 

Table 5. Simulated fuel consumption rates (l/100 km).

Drive cycle

Composite JC08 SC03
Control strategy DP 6.8 7.5 6.7

poptimal 7.0 7.6 6.8
200 bar 7.6 8.2 7.5
275 bar 9.6 10.2 9.4
NN 7.3 7.9 7.3

Table 6. Percent change in fuel consumption rates when using 
the neural network based controller over competing control 
strategies.

Drive cycle

Composite JC08 SC03
Control strategy DP −7.4 −5.3 −9.0

200 bar 3.9 3.7 2.7
275 bar 24.0 22.5 22.3

Figure 11. HIL transmission dynamometer.
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minimum engine speed strategy. A such a primary goal 
of this work was to accurately predict the optimal accu-
mulator pressure (through a NN) thereby maximizing 
fuel efficiency.

Research began by generating a 24  h/750  km long 
composite drive cycle based on the randomized modifi-
cation of two standard drive cycles. This composite cycle 
was then optimally controlled using dynamic program-
ming on a high fidelity simulation model. A cascading 
feed forward neural network was next constructed with 
the aim of reproducing the globally optimal accumu-
lator state trajectory generated by DP based on a 30 s 
history of the vehicle’s velocity. Once trained, the NN 
was evaluated in simulation, and on a HIL transmission 
dynamometer. Measurement results using untrained 
evaluation cycles showed the NN based power manage-
ment strategy was able to reduce fuel consumption rates 
by an average of 5.9 and 25.8% when compared to 200 
and 275  bar constant pressure strategies, respectively. 
The NN power management controller’s performance on 
these untrained cycles is especially interesting, as it pro-
vides a good idea of the performance that could be antic-
ipated from the controller in real world environments.

The novel neural network based power manage-
ment strategy proposed in this paper offers a unique 
and effective alternative to exiting power management 
controllers. One of the proposed approach’s key demon-
strated advantages is its ability to generalize optimal 
power management strategies from a training cycle and 
apply it effectively in original environments. This is an 
essential aspect of any implementable power manage-
ment controller which various control strategies have 
struggled with in the past. This advantage could further 

issue could be addressed by either formulating a com-
ponent level controller which avoids low displacement 
operation, or exchanging the hydraulic units for units 
with better characteristics in this regime. Regardless of 
this discrepancy, the relative change in fuel consumption 
between the baseline and NN control strategies is similar 
for both the simulation and HIL based evaluations.

7.  Conclusions

In this paper a novel power management strategy was 
proposed whereby a neural network, trained on globally 
optimal data, attempted to predict the near optimal state 
trajectory of a hydraulic hybrid’s energy storage device. It 
was shown that hydraulic hybrids are capable of achiev-
ing near optimal fuel efficiency when their optimal accu-
mulator pressure profile is tracked in conjunction with a 

Figure 12. HIL transmission dynamometer circuit.

Table 7. Hardware-in-the-loop transmission dynamometer 
estimated fuel consumption rates (l/100 km).

Drive cycle

Composite JC08 SC03
Control strategy 200 bar 10.6 11.7 10.1

275 bar 13.5 14.8 12.8
NN 10.4 11.0 9.5

Table 8. Percent change in fuel consumption rates when using 
the neural network based controller over competing control 
strategies.

Drive cycle

Composite JC08 SC03
Control strategy 200 bar 1.9 5.9 5.9

275 bar 23.0 25.7 25.8
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be improved with online training of the NN. A control 
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