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ABSTRACT
This paper presents a model-based control solution for large inertia systems controlled by a 
fast digital hydraulic valve. The solution is based on model-based force control and it is shown 
that the cylinder chamber pressures have first order dynamics with the proper parameter 
selection. The robust stability is analyzed under unknown load mass, bulk modulus, and delay, 
and it is shown that a simple cascaded P + PID controller results in good control performance 
and robustness. The simulated results show smooth and stable response with good tracking 
performance despite large variations in the load mass and bulk modulus.

1.  Introduction

Electrohydraulic servo systems are used in many appli-
cations, such as aircraft actuators and paper mills, 
because of their high power-to-weight ratio. Position, 
velocity and force control are the basic functions of 
modern hydraulic actuators (Jelali and Kroll 2004). 
The compressibility of the fluid and the non-linear flow 
characteristics of the control valves make these systems 
difficult to control, and several different approaches have 
been suggested for controlling force, velocity, and posi-
tion tracking. Kim et al. (2015) studied flatness based 
non-linear control and demonstrated an approximate 
0.3 mm position tracking error with a peak velocity of 
63 mm/s. Thus, the commonly used performance index 
– the maximum error divided by the peak velocity (Zhu 
and Vukovich 2011) – was about 0.005 s. Koivumäki and 
Mattila (2015) used virtual decomposition control in a 
construction crane and achieved a performance index 
of 0.0030 s. Won et al. (2015) used the high-gain distur-
bance observer in the control of 1-DOF hydraulic arm 
and experimental results demonstrated performance 
index of about 0.005  s. Eryilmaz and Wilson (2001) 
designed a controller using the singular perturbation 
theory and Lyapunov-type nonlinear feedback. The most 
interesting benefits of their solution are its robustness 
against variations in the bulk modulus and the absence 
of the need to differentiate velocity or pressures. The sim-
ulated results showed a performance index of 0.0008 s, 
but the load mass was only 12 kg.

Digital hydraulic valve control is a potential alterna-
tive for traditional hydraulic servo systems (Linjama and 
Vilenius 2005, Linjama et al. 2008). The basic layout of 
a digital hydraulic four-way valve is shown in Figure 1. 
It consists of four valve series, which are also known as 
a digital flow control unit (DFCU), to control each flow 
path independently. Each DFCU has 2N opening com-
binations where N is the number of parallel connected 
valves; thus, the four-way valve has 24N opening com-
binations. The typical value for N is five, so the number 
of opening combinations is over one million. Another 
approach is to use mutually similar valves, which results 
in N  +  1 opening combinations with N parallel con-
nected valves (Linjama and Vilenius 2008). Model-based 
control has been used to determine the optimal opening 
combination (Linjama and Vilenius 2005). The steady 
state model has been used and the intrinsic assump-
tion is that the system dynamics is fast in comparison 
to the sampling period of the controller. However, that 
assumption is not valid in systems with large inertia.

This paper presents a model-based control solution 
for large inertia systems controlled by a fast digital 
hydraulic valve. The solution is based on a model-based 
force control and the outcome shows that the cylinder 
chamber pressures have first order dynamics with the 
proper parameter selection. The robust stability was 
analyzed under unknown load mass, bulk modulus, 
and delay, and it was shown that a simple cascaded 
P + PID controller results in good control performance 
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The flow rates of DFCUs are modelled using the gen-
eralised turbulent flow model with cavitation choking 
(Linjama et al. 2012):
 

where XY is either PA, AT, PB, or BT and •(i) refers to 
the i:th element of the vector. Combining Equations 1 
and 2 gives three non-linear differential equations:

 

The control inputs of the system are the control vectors 
of the DFCUs (uPA, uAT, uPB, uBT) and the disturbances 
are supply pressure pP, tank pressure pT, and load force 
Fload. The state variables are chamber pressures pA and 
pB as well as piston position x and velocity ẋ.

2.2.  One-step ahead estimator

The assumption made in this paper is that the inertia m 
is so large that the velocity does not change significantly 
during one controller sampling period. This decouples 
the differential equations and makes it possible to esti-
mate pressures using scalar integration methods with-
out knowledge of the inertia. Heun’s method is used for 
estimating the pressure changes (Goode 2000, p. 86):
 

The equations for the B-side pressure are similar.

2.3.  Inner-loop force controller

The chamber pressures can be controlled by selecting 
the control signals so that the differences between the 
target pressures and the estimated pressures are min-
imised. The output of the hydraulic cylinder is piston 
force, which is given by:
 

Thus, there are two control variables and one output. 
One possible option is that the pressure differentials over 
the DFCUs are the same:
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and robustness. The simulated results show smooth and 
stable response with good tracking performance despite 
large variations in the load mass. A performance index of 
0.0032 s was achieved, which is the same level that was 

obtained using more complicated controllers as shown 
in the work of Kim et al. (2015), Koivumäki and Mattila 
(2015) and Won et al. (2015).

2.  Model-based control of an asymmetric 
cylinder

2.1.  System model

The dynamics of a hydraulic cylinder with inertia m and 
external force Fload can be expressed as:
 

(1)

ṗA =
BA

AAx+V0A

(
QPA − QAT − AAẋ

)

ṗB =
BB

AB(xmax−x)+V0B

(
QPB − QBT + ABẋ

)

mẍ = pAAA − pBAB − F
𝜇(ẋ) − Fload

Figure 1.  Digital valve system with five parallel connected 
valves. Orifices are used to adjust the flow capacity of the valves 
according to binary series.
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Equation 6 does not include friction force. If friction 
compensation is used, it can be added to Fref. The pri-
mary objective of the force controller is to minimise the 
force error while the secondary objective is to keep the 
pressures near the target values. This is solved by first 
selecting the Ncand control candidates for the A-side and 
the B-side, so that the estimated error in the chamber 
pressures is small, and then calculating the force error 
for each combination of the control candidates. The con-
trol candidates are selected according to the weighted 
sum of the estimated pressure error and the magnitude 
of the openings of the DFCUs:
 

where Wu,p is the weight for the openings of the DFCUs 
and the vector b determines the relative sizes of the 
valves; for example, b = [1, 2, 4, 8]T for the binary coded 
DFCU with four valves. The values of JA and JB are cal-
culated for all possible control combinations and the 
Ncand candidates that give the smallest value for JA and JB 
are selected for further analysis. Thus, the total number 
of candidates is Ncand

2. The final selection is made by 
minimising the following penalty function:

 

2.4.  Pressure and force dynamics under an 
unknown bulk modulus

The inner-loop controller is a non-linear selection 
scheme that tries to minimise the error between the tar-
get pressure and the estimated pressure. In the ideal case, 
the controller finds the valve openings where the pres-
sure error is small after one sampling period. In practice, 
error occurs due to the parameter uncertainty of the 
model and the finite resolution of the DFCUs. The flow 
rate of the on/off valve (Equation 2) can be calculated 
reliably for the given pressures (Linjama et al. 2012). 
Much larger uncertainty comes from the uncertainty of 
the bulk modulus, because it depends on the pressure 
and the amount of entrapped air. Additional error for 
the pressure estimate comes from the inaccuracy of the 
estimator (Equation 4) because simple fixed step inte-
gration is used. This error can be reduced by decreas-
ing the sampling period of the controller or by using a 
multi-step approach. For simplicity, it is assumed that all 
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uncertainty can be lumped into the bulk modulus. It is 
assumed that the controller works perfectly but the bulk 
modulus estimate is incorrect. Thus, the estimated pres-
sure equals the target value after one sampling period:
 

Now, the real pressure dynamics can be expressed as:
 

Combining Equations 9 and 10 gives the following dif-
ference equation for the pressure dynamics:
 

which is stable for B̂A > BA∕2. The optimal response is 
achieved with B̂A = BA, and for B̂A > BAthe response has 
the first order dynamics with the time constant:
 

The analysis shows it is safer to use too big value for the 
estimate of the bulk modulus. Too big value makes the 
pressure estimation only slower while too small value may 
yield instability. The tuning is made in such a way that the 
estimate of the bulk modulus is selected to be the highest 
possible value, i.e. the bulk modulus of the fluid at the 
maximum system pressure without any entrapped air. This 
guarantees that the pressure has the first order dynamics.

The B-side pressure dynamics can be derived in a sim-
ilar way. The A-side and B-side pressure dynamics can 
have different time constants because the real bulk mod-
uli can be different. The force dynamics in s-domain is:

 

The second term vanishes if the supply and tank pres-
sures are constant.
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Both GT(s) and GN(s) have one pole at the origin and the 
other poles are stable. Therefore, the stability criterion 
of Equation 17 can be used.

Example 1. Figure 3 shows the multiplicative modelling 
error when mmin is 250 kg, m is 250–500 kg, time constants 
τA and τB are 1–6.4 ms, and delay d is 1.5–7 ms. The piston 
diameter is 40 mm and the piston rod diameter is 20 mm.

Based on Example 1, it can be stated that the multi-
plicative modelling error is below curve:

 

where the time constant τ is larger than the largest 
possible value of time constants τA and τB, and K is a 
constant smaller than 1. A good property of ΔM is that 
it increases with frequency; thus, it takes into account 
unknown high frequency modelling errors such as pipe-
line dynamics. The robust controller tuning is such that:
 

One possible controller is the P-controller:
 

Example 2. Figure 4 shows both sides of Equation 19 
for the system presented in Example 1 when KP,vel is 
19000 Ns/m. The parameters of ΔM are selected to be 
K = 0.9 and τ = 13 ms. It is seen that the P-controller 
yields almost an exact fit on ΔM. Figure 5 shows 
the velocity step responses of the system with the  
parameter variations of Example 1. The maximum over-
shoot is 35% and the worst case settling time is about 
0.13 s.
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2.5.  The outer-loop velocity controller

The analysis presented in Section 2.4 shows that, with 
proper selection of the estimate of the bulk modulus, 
the inner-loop controller has the dynamics GF(s) with 
unknown time constants τA and τB. The upper limit of 
the time constants can be determined by estimating 
the lowest possible bulk modulus. For example, if it is 
assumed that the real bulk modulus is at least half of the 
estimated value and the sampling period is 10 ms, the 
time constant is 14.4 ms. The lower limit for the time 
constants is zero. In addition to the time constants, the 
system also has delay d caused by the valves, the sam-
pling, the computation, and the pipeline dynamics. The 
resonances caused by the pipeline dynamics are assumed 
to be in high frequency range and the controller is tuned 
to be robust against high frequency modelling errors. 
This assumption is valid if pipeline lengths are 2 m at 
maximum. The lowest natural frequency of a 2 m pipe-
line is about 1800 rad/s, and it will be shown later that 
the system is robust against such modelling error. The 
block diagram of the system is shown in Figure 2 in 
which GV(s) is the transfer function of the velocity con-
troller. The transfer function of the nominal model is 
selected to be:
 

where mmin is the smallest possible load mass of the sys-
tem and dmin is the minimum delay of the valves. The 
true transfer function is:

 

where m is the actual mass, GF(s), as given by Equation 
13, and d is the actual system delay caused by the sam-
pling, the computation, the valve dynamics, and the 
pipeline dynamics. The multiplicative error caused by 
the parameter variations is:

 

Now, the system remains stable if GT(s) and GN(s) have 
the same number of unstable poles and the following 
holds (Green and Limebeer 1995):

(14)GN (s) =
1

mmins
e−dmins

(15)GT (s) =
1

ms
GF(s)e

−ds

(16)Δ(s) =
GT (s) − GN (s)

GN (s)

Figure 2. Block diagram of the velocity control system.

Figure 3. Multiplicative modelling error of the velocity controlled 
system with m = 250–500 kg, τA = 1–6.4 ms, τB = 1–6.4 ms, and 
delay d = 1.5–7 ms.
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and the true transfer function is:
 

The multiplicative modelling error is:
 

(22)GT ,pos =
GT (s)GV (s)

s
(
1 + GT (s)GV (s)

)

(23)Δpos(s) =
GT ,pos(s) − GN ,pos(s)

GN ,pos(s)

2.6.  Position tracking controller

The block diagram of the position controlled system is 
shown in Figure 6. The position loop design is similar to 
the velocity controller. The nominal open-loop transfer 
function is:
 

(21)GN ,pos =
GN (s)GV (s)

s
(
1 + GN (s)GV (s)

)

Figure 4.  Both sides of Equation (19) with the multiplicative 
modelling error of Example 1.

Figure 5. Velocity step responses with the parameter variations 
of Example 1.

Figure 6. Block diagram of the position control system.

Figure 7. Multiplicative modelling error of Example 3.

Figure 8. Position step responses with the parameter variations 
of Example 1.
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3.2.  Implementation of position and velocity 
measurement

Real velocity is normally not measured but it is obtained 
from the measured position by differentiation. It is 
assumed that the position is measured by a pulse 
encoder with 0.01 mm resolution. The effect of quan-
tization noise on velocity is reduced by using a filter 
suggested by Harrison and Stoten (1995):
 

The filter runs with 1 ms sampling period.

3.3.  Force control results

The outer-loop controller of Equations 20 and 24 is dis-
abled when the force tracking results are simulated. The 
sampling period of the controller is selected to be 4 ms, 
i.e. slightly more than the maximum response time of 
the valves. The weight factors Wu,p and Wu,F are selected 
such that the simultaneous opening of DFCUs PA and 
AT and DFCUs PB and BT is minimised, but the force 
tracking performance is still good. The values used are 
Wu,p = 0.01 MPa and Wu,F = 2 N. The estimate of the bulk 
modulus is selected to be 1500 MPa, which is considered 
to be the largest possible value. The parameter Ncand is 
selected to be six.

Figure 9 shows the simulated Bode diagram of the 
force controlled system when the load mass is 500 kg. 
The initial piston position is 0.2  m. The input signal 
is a sinusoidal force reference with 2  kN amplitude. 
The sinusoidal signal is fitted to the simulated force by 
using the least squares method and the magnitude ratio 
and phase shift are determined from the fitted curve. 
The −90° bandwidth is 180 rad/s for B = 700 MPa and 
228 rad/s for B = 1200 MPa.

(27)
̂̇x(k) =

5x(k) + 3x(k − 1) + x(k − 2) − x(k − 3) − 3x(k − 4) − 5x(k − 5)

35TS

Analysis similar to Example 2 shows that the modified 
PID-controller is a good candidate for the position loop:
 

Example 3. Figure 7 shows the multiplicative model-
ling error of Equation 23 for the system presented in 

Examples 1 and 2. The parameter variations are the same 
as those in Example 1 and the velocity controller is tuned 
according to Example 2. Figure 7 also shows the term:
 

when the controller parameters are KP,pos = 32  s−1, 
τp = 15 ms, KI,pos = 120 s−2, KD,pos = 0.4, and τD = 2 ms. 
Figure 8 shows the position step responses with different 
parameter values.

Example 3 shows that the integrator causes over-
shoot, but is essential in order to compensate for the 
force disturbances. The target is tracking control, and 
fast rise time and overall stability are more important 
than overshoot.

3.  Simulation results

3.1.  System model

The simulated system is a horizontal cylinder with a load 
mass ranging between 250 and 500 kg. The piston diam-
eter is 40 mm, the piston rod diameter is 20 mm, and the 
stroke is 500 mm. The supply pressure is 10 MPa and the 
tank pressure is zero. The digital valve system consists of 
4 × 16 miniaturized valves (Linjama et al. 2014). All the 
valves have the same flow capacity of 1.3 l/min at a 3.5 MPa 
pressure differential. The exponents are selected to be 0.53 
and the cavitation choking parameters bPA(i), bAT(i), bPB(i) 
and bBT(i) are 0.3 for all of the valves. The valve delay is 
assumed to be 2.5 ms and the opening and closing happens 
with a linear motion profile within 1 ms. The friction force 
is modelled using the following equation:
 

which is simplified version of the friction model pre-
sented by Makkar et al. (2005). The dead volumes V0A 
and V0B are 0.001 m3, and the nominal value of the bulk 
modulus is 1200 MPa.
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)
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−2
s
2
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)
+ 100Nm

−1
s ⋅ ẋ

Figure 9. Simulated Bode diagrams of the force controller with 
a 500 kg load mass.
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The estimate of the friction force is added to the force 
reference and is calculated as follows:
 

The estimate is smaller than real friction in order to 
guarantee stability at zero velocity. Figure 10 presents the 
simulated response with a 250 kg load mass. The posi-
tion trajectory is the fifth order polynomial with 120 mm 
amplitude and 1 s movement time. The peak velocity is 
225 mm/s and the maximum position tracking error is 
0.52 mm. Thus, the performance index is 0.0023 s. The 
plots also show that the pressure and force tracking are 
reasonable.

Figure 11 depicts the simulated response when the 
load mass is increased to 500  kg. The tracking error 
increases to 0.73  mm and the performance index 
increases to 0.0032 s.

(29)F̂
𝜇
= 250 N ⋅ tanh

(
20000 m−1s ⋅ ẋ

)

3.4.  Position tracking results

The minimum load mass is assumed to be 250 kg. It is 
assumed that the true bulk modulus is at least 700 MPa, 
which results in a maximum time constant of 6.4 ms. 
The maximum system delay is assumed to be the 3 ms 
valve delay plus the sampling period, i.e. 7  ms. Thus, 
the parameters are the same as those found in Examples 
1–3 and the resulting tuning is KP,vel  =  19000  Ns/m, 
KP,pos = 32 s−1, τp = 15 ms, KI,pos = 120 s−2, and KD,pos = 0.4. 
The derivative of the error signal is formed by equation 
27. The integrator term has a ±0.3  mm dead zone in 
order to avoid the limit cycles. The error signal of the 
integrator term is calculated as follows:
 

(28)eI =

{
e , |e| ≥ deadzone

0 , |e| < deadzone

Figure 10. Position tracking results with a 250 kg load mass.
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the solution presented in this paper does not require 
exact knowledge of inertia, delay, or bulk modulus.

Nomenclature

AA  	 Piston area, piston side [m2]
AB 	  Piston area, rod side [m2]
b 	  Vector of relative sizes of valves of DFCUs
bXY 	�  Vector of critical pressure ratios of valve model 

of DFCU XY, where XY is either PA, AT, PB or 
BT [–]

BA, BB 	  Bulk moduli of A- and B-side chambers [Pa]
d 	  System delay [s]
dmin 	  Minimum system delay [s]
e 	  Position error [m]
eI 	  Position error used by integrator term [m]
Fload 	  External force [N]
Fref 	  Target force [N]
Fµ 	  Friction force [N]

4.  Conclusions

This paper has presented a new digital hydraulic track-
ing control solution for systems with big inertia. The 
parameter uncertainty is expressed as the unstructured 
multiplicative error and the low-order controllers are 
tuned in order to achieve robust stability. The core com-
ponent of the controller is the model-based force con-
troller, which allows force tracking under unknown bulk 
modulus. The suggested outer loop P + modified PID 
cascade controller results in good position tracking per-
formance under unknown load mass, bulk modulus, and 
system delay. The simulated maximum position tracking 
error is 0.73 mm while the maximum piston velocity is 
225 mm/s. The relative accuracy (tracking error divided 
by peak velocity) is comparable to more advanced con-
trol solutions. The suggested controller needs pressure, 
position, and velocity measurements but not derivatives 
of those. Moreover, when comparing the performance 
against other controller solutions it must be noted that 

Figure 11. Position tracking results with a 500 kg load mass.
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τB 	  Time constant of B-side pressure dynamics [s]
τD 	  Time constant of derivative term
∙̂ 	  Estimate of •
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