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ABSTRACT
Nowadays the routing of pipes inside or outside of structural components is usually done with 
CAD tools like CATIA. Up to now it is the task of design-engineers to manually find a connection 
between two points in ℝ3 which on one hand respects all design directives and on the other hand 
minimises the weight of the pipe. As in general the number of feasible routings is very high, if not 
infinite, it is almost impossible to find an optimal solution without a powerful algorithm and an 
immense amount of development time. This paper presents a mathematical framework which 
allows the designer to automatically generate the optimal routing. To do so, the aforementioned 
problem is treated as an optimisation problem. With the mass of the pipe as the cost function 
to be minimised and the design directives handled as equality and inequality constraints, this 
leads to a nonlinear problem (NLP) which is solved by WORHP – a large-scale sparse NLP solver. 
A series of practically relevant scenarios like routings close to structural components, routings 
with standard bending angles as well as network routings for metallic and non-metallic pipes 
are investigated. First tests with real assemblies reveal that a significant reduction of the total 
mass is achieved by optimising the existing routing.
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navigation of vehicles, etc. Usually the well-known 
A*-algorithm was used which is based on a series of 
heuristics (Norvig and Russell 2009). For the abovemen-
tioned problem, however, this kind of solver approved 
to be too slow since the problem dimension becomes 
too large.

Within the scope of this article the approach to solve 
the problem is to use nonlinear programming. In this 
context a detailed derivation of the optimisation prob-
lem is given, followed by the investigation of a series of 
practically relevant routing scenarios (Kohlmai 2014). To 
additionally reduce the weight of pipes also the usage of 
non-metallic materials is considered. Those need to be 
treated differently than metallic ones, since non-metallic 
pipes are difficult to bend nowadays. As a consequence, 
a random shape of a pipe can only be created by split-
ting the geometry into straight and bended parts. Since 
these parts have to be connected with fittings or similar, 
additional masses have to be taken into account.

2. Nonlinear optimisation

As the theory of nonlinear optimisation is too exten-
sive to be discussed here in detail, only the basic idea 
and the standard notation will be introduced. The inter-
ested readers may refer to (Avriel 2012) and (Geiger and 
Kanzow 2002).
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1. Introduction

The development of modern aircrafts, ships and cars but 
also products from other disciplines, is very comprehen-
sive and thus impossible without the support of proper 
software like Computer Aided Three-Dimensional 
Interactive Application (CATIA) or similar. The oppor-
tunity to model a product in a virtual environment with 
the help of useful tools, leads to numerous advantages. 
Nevertheless, the designing remains challenging when 
the degrees of freedom get large. While, for instance, 
the location of components like pumps, manifolds or 
actuators may be predefined by the system, the routing of 
pipes has to be adapted to structural components. In this 
context a routing has to be found by the designer that

•  complies to the design directives,
•  doesn’t collide with any obstacles or other pipes,
•  minimises the weight of the pipe.

These requirements form a typical optimisation prob-
lem which can be solved with numerical mathematics. 
Hence, the idea described in this paper is to translate the 
original problem into mathematics, i.e. into equations, 
to solve them with numerical algorithms and to transfer 
the results back to the original formulation.

In the past related problems have been observed 
in computer sciences, e.g. artificial intelligence, in 
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of the Lagrangian. In addition to Equations (4a)–(4e) it 
should be noted that the solution x also has to comply 
with some regularisations like the Linear Independence 
Constraints Qualification (LICQ) and the triple x, �, � 
has to comply with sufficient conditions (Geiger and 
Kanzow 2002).

Solving Equations (4a)–(4e) is challenging since 
inequations appear which prohibit the direct applica-
tion of Newton’s method. To circumvent this problem 
and to achieve a good convergence behaviour a lot of 
numerical effort has to be made. In the scope of this 
paper the NLP solver WORHP (Büskens and Wassel 
2012) was used which was mainly developed at the 
department ‘Optimization and Optimal Control’ at 
the University of Bremen. WORHP is a Sequential 
Quadratic Programming (SQP) method that solves a 
series of quadratic sub-problems which converge to the 
solution of the original problem. The gradient based 
algorithm is accelerated by using an Armijo step size 
control. Amongst other techniques WORHP offers the 
usage of finite differences or BFGS to compute deriva-
tives and a globalisation strategy in case the given initial 
values are far from the optimum.

3. Pipe optimisation

The challenge besides the numerical problems men-
tioned above is to model the original problem with all 
its restrictions and to guarantee that the involved func-
tions are continuously differentiable as this is necessary 
in Equation (4a).

3.1. Modelling of the cost function

As mentioned in the introduction the weight of the rout-
ing has to be minimised. Thus the mass m represents the 
cost function.

3.1.1. Metallic pipes
To begin with, the cost function for metallic pipes is 
modelled. In this regard the fluid that flows through the 
pipe is considered although this is not absolutely neces-
sary in this case.
 

In Equation (5) the subscripts p and fl stand for pipe 
and fluid, whereas the variables V , �, do, di, l represent 
the volume, density, outer diameter, inner diameter and 
length respectively. It becomes clear that the mass m is 
a function of the length l since all the other expressions 
are constant.
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Minimising an unrestricted (nonlinear) function 
f : ℝn

→ ℝ is a typical task in many scientific fields. The 
standard approach is to find a solution x ∈ ℝ

n that fulfils 
the necessary condition

 

and the sufficient condition
 

In Equation (1) the expression ∇f represents the gradient 
of f and respectively in Equation (2) the statement ∇2f 
is the Hessian matrix of f. Since Equation (1) normally 
cannot be solved analytically, numerical algorithms like 
Newton’s method are applied.

In general, the main idea in minimising restricted 
functions is similar to the unrestricted case, except that 
additional constraint functions must be considered. The 
standard formulation for a nonlinear problem (NLP) is 
stated below:

subject to: gi(x) ≤ 0 with i ∊ {1, …, m}      (NLP)
hj(x) = 0 with j ∊ {1, …, p}

Since the (nonlinear) constraints gi and hj affect the 
search for a point x which minimises the cost function 
f, it is natural to observe a function that combines f with 
gi and hj.

 

Equation (3) defines the Lagrangian function where 
� ∈ ℝ

m and � ∈ ℝ
p are known as Lagrangian multipli-

ers. Hence, a triple x, �, � has to be found that min-
imises Equation (3). Analogously to the unrestricted 
case the triple has to fulfil necessary conditions like the 
Karush–Kuhn–Tucker (KKT) conditions:
 

 

 

 

 

These guarantee that both sums in Equation (3) vanish 
and thus do not change the cost function whereas at the 
same time the derivatives of gi and hj affect the derivative 

(1)∇f (x) = 0

(2)zT ∇2f (x) z > 0 ∀z ∈ ℝ
n
, z ≠ 0.

minimise
x∈ℝn

f (x)

(3)(x, �, �): = f (x) +

m
∑

i=1

�igi(x) +

p
∑

j=1

�jhj(x)

(4a)∇(x, �, �) = 0

(4b)hj(x) = 0

(4c)gi(x) ≤ 0

(4d)�i ≤ 0

(4e)�igi(x) = 0
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In Figure 1 the centre line of a pipe with k ∈ ℕ bends 
and a constant bending Radius R is sketched. The deter-
mination of its length l can either be done with the tan-
gent points t ∈ ℝ

3 or with the nodes x ∈ ℝ
3. Due to 

the fact that the number of nodes is half the number 
of tangent points, the aim is to describe the length as a 
function of x.

 

Equation (6) defines the length as the sum of straight 
parts ‖t i, 2 − t i+1, 1‖, where ‖ ⋅ ‖ denotes the Euclidian 
norm, and the sum of arc lengths bj. In order to obtain 
l = l(x) the terms have to be rewritten.

3.1.1.1. Arc length. The definition of the scalar 
product of two vectors a, b ∈ ℝ

n that enclose an angle 
γ is given by a ⋅ b = ‖a‖‖b‖cos (�). From Figure 1, a can 
be identified as (xj − xj−1), b as (xj − xj+1) and γ as 2�j. 
Thus the bending angle is given by:

 

Moreover Figure 1 reveals the dependency between the 
angles αj and �j. By the angular sum in a quadrilateral, 
it follows:
 

With Equations (7) and (8) finally the arc length is 
computed:
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Figure 1. Centre line of a random pipe with nodes x
0
,… , xk+1, tangent points t

0, 2
,… , tk+1, 1 and constant bending radius R.

3.1.1.2. Length of the straight parts. As shown in 
Figure 1, on one hand it is
 

and on the other hand
 

 

Thus it follows from Equations (10)–(12):
 

3.1.1.3. Summary. The length l can be described as a 
function of nodes x:

 

 

As it can be seen from Equations (14) and (15) the length 
is a nonlinear function. For the fact that the optimal 
number of bends is discrete and unknown, the overall 
optimisation problem gets also discrete and therefore 
even more complicated.

3.1.2. Non-metallic pipes
In the case of non-metallic pipes, it is assumed that 
the pipes are not bendable. As a consequence of this, 
a non-metallic pipe has to be composed by bends and 
straights which have to be connected somehow in order 
to get the desired shape, see Figure 2.
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In fabrication it is common to form long straight 
pipes which get cut into the desired lengths and then 
get shaped by bending machines. Usually these machines 
use one bending radius only to accelerate the bending 
process. This fact was already considered within the deri-
vation of the length l since R was assumed to be constant. 
Another constraint that has an impact on the geometry 
of a pipe is the fact that between the ends of a pipe and 
the neighboured bends a minimum distance δ must be 
given. This is illustrated at the top row of Figure 3 which 
indicates that the value of δ depends on the way the pipe 
endings looks like. In mathematical expression this can 
be written as:

 

 

Equation (16) describes the minimum distance for 
the left end of the pipe (see Figure 1) which at least has 
the value of �

1
. The same goes for the right end which is 

described by Equation (17). For the sake of completeness 
Equations (16) and (17) must be reformulated into:

 

 

It has to be noted that these constraints must also be 
rewritten in dependency to the nodes x which in this 
case is easily done by applying Equation (13) with i = 0 
and i = k.

A similar constraint is valid between two neighboured 
bends which can be seen in the middle row of Figure 3. 
Equation (20) describes the inequality constraints that 
must be considered within the NLP.

 

The next constraint deals with the bending angles of the 
pipe. It is assumed that the range of bending angles is 
limited due to manufactural reasons. Therefore a lower 
and upper bound δ4 and δ5 are defined:
 

Equation (21) represents two inequalities which can be 
separated in order to comply with the standard NLP 
notation.

As some pipes may be routed along areas where the 
temperature is very high or where the pipe bends due 
to external forces, it might be useful to demand higher 
bending angles since these can better compensate expan-
sions and deflections (this is indicated in Figure 3 at the 
bottom). In this case a suitable constraint can be of the 
form:
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Since connection parts like fittings or sleeves add 
further masses to the pipe, the cost function m has to 
be extended by mCon which represents the weight of the 
connectors.

 

The term 2k arises from the fact that for each bending 
two connectors are needed. As it can be seen this time, 
the consideration of the fluids mass is obligatory to pre-
serve the right ratio between the weight of the pipe and 
the weight of the connectors.

3.2. Modelling of design constraints

In the following a few selected design restrictions shall 
be considered. While some of them result due to man-
ufacturing limitations, others are needed for technical 
reasons.
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Figure 2.  a non-metallic pipe has to be composed by bends 
and straight parts which are manufactured separately. fittings 
or similar are needed to hold these parts together.

Figure 3. In the top row the minimum distance between an end 
of a pipe and the following bending is illustrated. In the middle 
row a minimum distance between two bends is shown. the 
bottom row indicates that straight connections between two 
points shall be avoided since thermal expansion or deflections 
might be hindered.
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like CATIA, AutoCAD or similar. These offer export 
options such as Surface Tessellation Language (STL) 
which saves any geometrical structure as a set of trian-
gles, see also Figure 5.

Hence, the definition of the distance functions can be 
reduced to compute the distance between line segments 
and triangles.

3.3.1. Distance between line segments and points
To begin with, the distance between a line segment gx 
that starts at the node xi and ends at xi+1 and a point P is 
observed, as it is indicated in Figure 6 on the left.

The line segment is given below in parametrical form 
where the parameter r is limited to [0, 1]. 

If the projection point FP of P on the line through gx is 
part of gx then the distance is easily computed since it 
is the distance between P and FP. Otherwise it is either 
the distance between P and xi or between P and xi+1. 
To decide which one is the case, it is useful to observe 
the location of Fp or more precise the parameter r ofFP. 
Thus the plane E through P, which is normal to gx, must 
be computed.
 

The constant c is obtained by evaluating Equation 
(27) for the point P. Bringing Equations (26) and (27) 
together then leads to the parameter r:
 

This finally leads to the first distance function d(gx , P):
 

3.3.2. Distance between two line segments
Determining the distance between two line segments gx 
and hy in ℝ3 gets more complicated as more points are 
involved. The right illustration in Figure 6 indicates that 
two parameters r and s must be observed this time in 
order to be able to compute the minimal distance. The 
line segment hy is defined below.
 

This time the plane E contains hy and is spanned by the 
vectors v and w: = u × v where × denotes the cross prod-
uct of two vectors.
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:=v

= yj + sv

(31)E(x): x = yj + sv + tw

Equation (22) states that the sum of all bending angles 
must not deceed a predefined value �

6
. An alterna-

tive possibility would be to set the lower bound δ4 in 
Equation (21) to a higher value.

Another typical constraint for the bending angles is 
the limitation to a discrete set of standard angles like the 
ones in Equation (23) or any other set.

 

This limitation is of particular interest when non-me-
tallic pipes are used. A discrete set of standard bends 
is cheaper in production and reduces the quantity of 
different bends.

3.3. Collision avoidance

This section sets the focal point to the definition of dis-
tance functions which guarantee that collisions between 
pipes and other objects are avoided. In this context it is 
necessary to distinguish between the distance of two 
pipes and between the distance of a pipe and another 
object, see Figure 4.

Therefore the aim is to obtain further constraints like
 

 

where the distance functions  and � ensure that a min-
imal distance of δ7 and δ8 are kept.

In order to choose a meaningful definition for the 
distance functions, the following assumptions are made:

•  pipes are treated like polygonal lines,
•  obstacles are treated like a composition of triangles.

While the first assumption is made to simplify the 
problem, the second one is motivated by software tools 
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Figure 4. the collision between two pipes (left) and between a 
pipe and an obstacle (right) must be avoided.

Figure 5.  a sample surface (left) was created in CatIa and 
exported via Stl to MatlaB® where it was reconstructed (right).
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The idea in determining the distance is to project the 
ending points of the line segments onto the plane that 
contains Etr, since this helps to decide which further 
action has to be taken. As an example the right illustra-
tion in Figure 7 can be observed. The projections lay in 
the areas 2 and 3 which means that the minimal distance 
is either 

(

gx , hy2

)

 or 
(

gx , hy3

)

. Thus the areas must 
be defined first.

 

(34)

A
1
: s ∈ [0, 1] , t ∈ [0, 1] , s + t ≤ 1

A
2
: s ≥ 0 , t ≥ 0] , s + t < 1

A
3
: s > 0 , t ∈ [0, 1]

A
4
: s ∈ [0, 1] , t < 0

A
5
: s < 0 , t ≥ 1

A
6
: s < 0 , t < 0

A
7
: s > 1 , t < 0

Intersecting E with gx and solving the resulting linear 
system of equations in Equation (32) then leads to the 
intersection point Fg and automatically to the parame-
ters r, s, t.
 

With r and s the second distance function is defined:
 
In case the line segments gx and hy are parallel, the plane 

E cannot be spanned. Then the distance function  
reduces to the first four entries.

3.3.3. Distance between line segments and triangles
It is reasonable that deriving the distance between a line 
segment and a triangle is even more complicated since 
a triangle consists of three points yj, yj+1, yj+2 as well as 
of three line segments hy1, hy2, hy3 and a plane Etr which 
is bounded by them, see Figure 7.
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Figure 6. the left illustration shows that the shortest distance between a point P and a line segment gx is given by d. on the right 
picture the parameters r and s of the two points Fg and Fh have to be computed first to get the minimal distance between two line 
segments gx and hy.
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number of triangles becomes large, the computational 
time increases significantly.

As a final note to this section it has to be mentioned 
that Equations (29), (33) and (35) are differentiable and 
therefore comply with the KKT conditions. This can be 
shown with analytical geometry but shall be skipped 
here due to its extent.

4. Numerical results

In this chapter some capabilities of the solving algorithm 
will be shown by different problem scenarios. Most of 
the tests are performed on the surface of an elliptic hull 
which was designed in CATIA, transferred to MATLAB® 
and solved by WORHP (see Figures 8–12).

In order to perform the tests the settings from Table 1 
are chosen. ρSky represents the density of the oil Skydrol 
LD-4, ρTi the density of Ti-3Al-2.5V and ρCFRP the den-
sity of CFRP (Carbon Fibre Reinforced Plastic). All val-
ues in Table 1 are typical in aircraft engineering with 
the only exception mCon. Its value might vary and thus 
was set arbitrarily.

In the second step the projections Fxi
 and Fxi+1

 of the 
nodes xi and xi+1 on the plane must be computed which 
can be done with analytical geometry. Then finally the 
distance function �(gx , Etr) can be defined by consider-
ing every possible combination of the projection points 
Fxi

 and Fxi+1
. As 49 different cases exist, only an excerpt 

of the distance function � is shown in Equation (35).

 

For the sake of completeness it has to be pointed out that 
prior to evaluating Equation (35), it has to be investi-
gated whether a line segment gx crosses the triangle Etr. 
This is done by setting Equations (26) and (36) equal. If 
the parameters s and t comply with the setting of A1 then 
the distance �(gx , Etr) is zero.
 

One should be reminded that in order to stick to a 
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and every triangles have to be computed. Thus, if the 
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(36)Etr(x): x = yj + s(yj+1 − yj) + t(yj+2 − yj)

Figure 7. a triangle Etr is defined by limiting the parameters s and t of hy1 and hy3 to [0, 1] and by restricting the sum of them to 
s + t ≤ 1. this also defines the area 1 in the right illustration. Changing the values of r, s, t define the areas 2–7.
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Since pipes have to be fixed to the hull to avoid oscil-
lations, it is necessary to push the routing to a surface. A 

4.1. Metallic vs. non-metallic pipes

Using non-metallic materials to save weight is standing 
to reason as its density is lower than the one of metallic 
materials. Comparing ρCFRP with ρTi brings a reduction of 
around 64%. However, since additional components are 
needed to connect straight parts with bends, the advan-
tage can get lost due to the fact that every bending adds 
2mCon to the total weight of the pipe.

Regardless the choice of material, the optimal amount 
of bends needs to be found in order to optimise the rout-
ing. To do so the optimisation has to be repeated for 
increasing k, starting with k = 1. Once the total weight 
stops to decrease the optimal number is determined. 
However, for this simple method many iterations might 
be needed.

Figure 8 shows the optimal routings for both metallic 
(bottom) and non-metallic pipes (top). As expected, the 
routing of the metallic pipe adopts the shape of the hull 
and thus has the minimal length. Choosing more bends 
worsens the result as the nodes start to affect each other 
(minimal distance and bending angle must be kept!). 
For non-metallic pipes one bending minimises its mass 
although it extends its length. Table 2 reveals that around 
27.5% can be saved in this test by using a non-metallic 
pipe.

4.2. Variation of the bending angles

As non-metallic pipes are assumed to be a composition 
of straight parts and bends, it is preferable to restrict the 
bending angles to a set of standard angles, as stated in 
Equation (23). Thus the bending angle of 39.7° in Figure 
8 is not acceptable. However, rounding it up to the next 
value of the given set of angles, setting this angle as an 
equality constraint and then repeating the optimisation 
process, leads to the desired result which can be seen in 
Figure 9 at the top.

If a pipe is routed along hot areas or structures that 
tend to deflect, metallic materials are preferred due to 
their elastic behaviour. To improve their flexibility the 
total bending angle 

∑

j 2�j can be increased. This can be 
seen in Figure 9 at the bottom where the value was set to 
120°. While the routing becomes more cornered, the total 
mass barely increases, see Table 3. As only one additional 
constraint has to be defined, this way of reducing the 
stiffness is remarkable.

4.3. Routing close to an obstacle

So far routings have been considered that pass along a 
convex hull causing the shape of the pipe to adopt the 
appearance of the hull. As it is illustrated in Figure 10 at 
the top, the routing behaves differently for the case of a 
concave hull. The optimal routing connects the starting 
and ending point with the shortest path possible causing 
the routing to depart from the hull.

Figure 8. top: optimal routing for a non-metallic pipe. Bottom: 
optimal routing for a metallic pipe.

Figure 9.  top: optimal routing for a non-metallic pipe with a 
standard bending angle of 40°. Bottom: a total bending angle 
of 120° increases the flexibility of the pipe.
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4.4. Multiple routing

Sometimes a few pipes have to be routed simultaneously. 
In this case the cost functions Equations (5) and (16) 
have to be generalised such that they cover multiple 
pipes. This is described by Equation (37) for metallic 
pipes and by Equation (38) for non-metallic pipes.
 

 

In both equations the subscript n indicates that for each 
of np pipes the densities, the diameters, etc. might be 
different. However, in the frame of the following tests 
all parameters are set accordingly to Table 1.

In Figure 11 at the top a routing of seven pipes with 
two bends each is shown. As it can be seen the pipes 
are routed parallel as the starting and ending points are 
shifted equidistantly. At the bottom of Figure 11 the sit-
uation is changed. The starting and ending points are 
swapped such that a cross routing is created. The purpose 
of this is to illustrate that the collision avoidance between 
pipes is working.

Since the number of involved variables and constraints 
has been increased, this has a significant influence on the 
computational time. Both the system of equations and 
inequations in Equations (4a)–(4e) and the differentia-
tion of the Lagrangian function in Equation (4a) become 
more extensive.

4.5. Network routing

Another import scenario is the optimal routing of net-
works which leads to a further reduction of the weight 
of pipes. From a mathematical point of view, networks 
represent a special case of multiple routings. The only 
difference to be considered is the fact that two line seg-
ments must touch each other which can be described 
with Equation (39). Here the distance between two cho-
sen line segments gx1 and hy1 is zero.
 

The top illustration in Figure 12 shows a network rout-
ing with one branch (left pipe). Since the ending points 
are distributed equally the appearance of the routing is 
almost symmetric. In the bottom illustration of Figure 12 
two branches are considered. As the touching points of 
the branches with the main route (the one in the centre) 
are at different line segments, the shape of the routing is 
not symmetric anymore. A further reason for this is the 
fact that additional constraints have been considered.
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∢
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)

= 135°

possibility is to create additional obstacles. In the figure 
above a second elliptic hull was placed inside the original 
one. This obstacle prevents the direct connection which 
is the reason why the routing surrounds it and therefore 
comes closer to the original hull.

It should be mentioned that copying the original 
hull almost doubles the amount of constraints which 
increases the computational time. It should be ques-
tioned whether a few additional plates or other simple 
obstacles are sufficient to solve the problem.

Figure 10. top: routing inside the hull leads to an almost direct 
connection. Bottom: an extra obstacle forces the routing to get 
closer to the outer hull.

Figure 11. top: Multiple routing of seven pipes that do not cross 
each other. Bottom: Multiple routing of seven pipes that cross 
each other.
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motivated by the fact that in practical standard connec-
tions like T-junctions (90°) or Y-junctions (135°) are 
preferred.

4.6. Routing along real structures

This section deals with the improvement of an existing 
routing by applying the abovementioned methods. As a 
testing assembly a metal sheet with eight ribs was cho-
sen. In order to get rid of unneeded information like 
drill holes, screws, etc. only the silhouettes of the main 
structures were used which lowered the number of tri-
angles significantly. The latter one is shown in Figure 13 
at the top where also three metallic pipes (Ti-3Al-2.5V) 
with different diameters and bending radii are routed 
from left to right.

For the optimisation process the starting and end-
ing points were adopted, however, the material was 
changed to CFRP. To keep the pipes close to the metal 
sheet two additional plates were created which can be 
seen in Figure 13 at the bottom. All in all the optimised 
route looks similar to the original one but saves around 
126 cm of length, see Table 4. In combination with CFRP 
a weight reduction of 25% is achieved.

The optimisation was also performed for other assem-
blies where up to 14% of the total length and up to 30% 
of the weight was saved.

4.7. Computational time

Within this section the range of computational time var-
ied along with the complexity of the problems. While 
for the simpler cases (up to six variables and 500 con-
straints) the computation took up to one minute, the 
time increased considerably for more complicated sce-
narios (30 variables and 3000 constraints, 20 min). The 
main reason for this are the computation and evaluation 
of Equations (4a)–(4e).

In order to accelerate the process some improve-
ments may be developed. One of the most promising is 
to develop a strategy that distinguishes between neces-
sary and unnecessary triangles (e.g. triangles that cannot 
collide with the pipe due to the distance or obstacles in 
between may be disregarded). This way the amount of 
triangles and constraints can be decreased significantly 
which will allow the routing along structures with sev-
eral millions of triangles (and many more constraints). 
Another promising outlook is to transfer the computa-
tion of the structures to a GPU instead of a CPU.

5. Conclusions

This paper followed the aim to optimise the route of 
metallic and non-metallic pipes in order to minimise 
their weight. To do so the mathematical theory of non-
linear optimisation was introduced and the NLP solver 
WORHP was used to solve the problem.

 

The equations above describe the angle between the 
touching line segments which is set to 135°. This is 

(41)∢

(

gx2, hy2

)

= 135°

Figure 12.  top: network routing with one branch. Bottom: 
network routing with two branches and Y-junctions.

Table 1. General settings.

Parameter Unit Constraint Bound
di 1.14 cm δ1 7.0 cm
do 1.27 cm δ2 7.0 cm
R 3.81 cm δ3 4.4 cm
ρSky 0.99 g/cm3 δ4 5°
ρTi 4.48 g/cm3 δ5 160°
ρCfrP 1.6 g/cm3 δ6 5°
mcon 5 g δ7 2.5 cm

δ8 1.7 cm

Table 2. weight savings for non-metallic pipes.

Scenario Bends Weight (g) Length (cm)
non-metallic pipe 1 159.38 106.21
Metallic pipe 7 219.81 103.40

Table 3. Influence of the bending angles.

Scenario Bends Weight (g) Length (cm)
non-metallic pipe with 

standard bend
1 159.51 106.30

Metallic pipe with 
∑

j

2�j = 120°

7 221.28 104.09
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Nomenclature

a, b  Random vectors in ℝn

bj  Length of an arc (cm)

c  Constant

�(gx , Etr)   Function that describes the dis-
tance between gx and Etr

(gx , hy)   Function that describes the dis-
tance between gx and hy

d(gx , P)   Function that describes the dis-
tance between gx and P

di, do  Inner and outer diameter (cm)

E(x)  Plane

Etr  Triangle through yj, yj+1, yj+2

f (x)  Cost function

gi(x)  Inequality constraint

gx, gx0, gx1  Line segments through xi and xi+1

hj(x)  Equality constraint

hy, hy0, hy1  Line segments through yj and yj+1

k  Number of bends

(x, �, �)  Lagrangian function

l(x)  Length of the pipe (cm)

m  Mass of the pipe (g)

Modelling the cost functions as well as the equal-
ity and inequality constraints were in the focus of this 
paper since they represent the problem formulation in 
nonlinear optimisation. Of special importance was the 
development of distance functions which were needed 
to avoid collisions between pipes and obstacles.

In a series of practically motivated tests the func-
tionality of the mathematical framework was proven. 
Routings

•  for metallic and non-metallic pipes,
•  with different bending angles,
•  close to obstacles,
•  with multiple pipes and
•  with networks

revealed the capability of nonlinear optimisation and 
WORHP. Tests with real structure files demonstrated 
the advantages of the described method since existing 
routings where significantly improved.

The suggested method to minimise the weight of 
pipes allows a fully automated routing and is also usa-
ble for wiring or any other path finding problems in 
ℝ

n with n  ≥  2. In the future the acceleration of the 
computation will become of more interest. A promising 
approach is to bypass the usage of MATLAB® and to 
transfer the computation of the 3D structures to a GPU 
instead of a CPU.

Figure 13. top: original routing of three pipes along simplified ribs. Bottom: optimised routing which is kept close to the surface 
with the help of two additional plates.

Table 4. original vs. optimised routing.

Scenario Weight (g) Length (cm)
optimised – non-metallic 9174 1714.9
original – metallic 12,097 1841.1
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mCon  Mass of the connector (g)

np  Number of pipes

P  Random point in ℝ3

R  Bending radius (cm)

r, s, t  Parameters

t
0, 2
, … , tk+1, 2  Tangent points in ℝ3

u, v, w  Direction vectors in ℝ3

X  Set of feasible solutions

x  Optimisation variable in ℝn

xi, xi+1, yj, yj+1, yj+2   Points of the line segments and 
triangles in ℝ3

α, β, γ  Angles (°)

δ  Constraint value

�  Lagrangian multiplier in ℝm

�  Lagrangian multiplier in ℝp

ρp   Density of the pipe’s material  
(g/cm3)

ρCFRP  Density of CFRP (g/cm3)

ρSky  Density of Skydrol LD-4 (g/cm3)

ρTi  Density of Ti-3Al-2.5V (g/cm3)
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