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Abstract

The focus of this paper is to show the process of developing a condition
monitoring system for an axial piston pump mounted on a mini excavator.
This work outlines some previous condition monitoring work on axial piston
pumps but addresses the lack of research conducted on mobile hydraulics.
The valve plate of the pump is chosen as a case study to demonstrate varying
degrees of wear and damage to represent healthy and faulty pump conditions.
The wear and damage of these valve plates is measured using an optical
profilometer, and efficiency measurements were conducted to characterize
the fault levels. Once the faults were characterized, the mini excavator was
introduced and instrumented to demonstrate what parameters were being
considered. Next, three duty cycles were introduced: controlled, digging,
and different operator cycles. The controlled cycles are a very repeatable
condition that eliminated the need of an operator. The digging cycle was
more of a realistic cycle where an operator dug into a loose pile of soil.
The different operator cycle is the same as the digging cycle, but a different
operator was employed. The sensors that proved to be the most useful in
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detecting valve plate faults were the drain pressure, pump port pressures,
engine speed, and pump displacement. Fault detectability accuracies of 100%
were achievable under the controlled cycle utilizing the Fine KNN classifi-
cation machine learning algorithm. The digging cycle could achieve a fault
detection accuracy of 93.6% using the same algorithm and sensors. Finally,
the cross-compatibility between a model trained under once cycle and using
data from another cycle as an input was investigated. This study showed that
a model trained under the controlled duty cycle does not give reliable and
accurate fault detectability for data run in a digging cycle, below 60% accura-
cies. However, cross-compatibility may be achievable if more extreme faults
are present. This work concluded by recommending a diagnostic function
for mobile machines to perform a preprogrammed operation to reliably and
accurately detect pump faults.

Keywords: Axial piston pump, machine learning, condition monitoring,
mobile hydraulics, fault detection.

Nomenclature
Symbol Description Units
Accel Case accelerations [m/s2]
AI Artificial intelligence
ANN Artificial neutral network
Beta Swashplate angle [−]
DC Displacement control
ED Extreme damage
KNN K-nearest neighbor
M Pump shaft torque [Nm]
MinW SD Minor wear, severe damage
ModW MinD Moderate wear, minor damage
N Rotational speed [rpm]
pA Pump inlet Pressure [bar]
pB Pump outlet Pressure [bar]
pD Pump drain pressure
QA Pump outlet flow rate [L/min]
QD Pump drain flow rate [L/min]
Qth Theoretical flow rate [L/min]
SW ND Severe wear, no damage
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1 Introduction

Fluid power systems are essential for the proper operation of many mobile
applications, such as agriculture, mining, aerospace, forestry, marine, and
many other applications. There is currently high motivation to enhance
these hydraulic systems to make them more efficient and smarter. This is
often accomplished by the pairing of electric technologies for sensing and
control. Hydraulic systems become capable of achieving things with finer
precision and accuracy than has ever come before. However, at the heart of
these hydraulic systems is the hydraulic pump. The pump is responsible for
providing flow to the system, and without it the system would not function.
Therefore, with this increase of electronics paired with the hydraulic system,
it then becomes easier to monitor the health of the hydraulic pump to prevent
failure. This practice is generally known as condition monitoring.

Pump failure is often attributed to wear, which can be defined as the
removal of material by mechanical and/or chemical interactions [1]. A com-
mon type of wear in hydraulic systems is abrasion, which is the asperity
contact between two materials of different hardness. Abrasion can occur
when two parts of the pump come into contact with one another. It can also
occur when particle contaminants in the fluid enter the lubricating interfaces
of the hydraulic system can cause asperity contact between the particle
contaminant and the surface of the component. An early study of hydraulic
system failures found that up to 70% of hydraulic failures are caused by fluid
contamination and, in turn, wear [2].

Hydraulic systems are incredibly sensitive to wear because of the tight
tolerances of the lubricating interfaces in each of the components. There-
fore, maintenance strategies have been implemented to reduce the impacts
of machine failures. These strategies are breakdown maintenance, pre-
ventive maintenance, and condition monitoring. Preventive maintenance is
the primary maintenance strategy employed by most industries. However,
breakdown maintenance is still utilized but is not recommended.

The final and most complex maintenance strategy is condition monitor-
ing, which is quickly becoming the preferred and best maintenance strategy.
This strategy continuously monitors the condition of the system using a
data acquisition system and a decision maker to determine the state of the
system being monitored. This method improves the understanding of how
the machine operates, in addition to increasing the machine availability and
reducing the inventory of required spare parts. However, condition monitor-
ing requires sensors, some sort of signal processing, and maintenance staff
must be trained in instrumentation and calibration [3].
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Condition monitoring of hydraulic systems in mobile equipment has been
an area of increasing interest for Original Equipment Manufacturers (OEMs),
operators, and researchers. Condition monitoring is more readily available
and easier to implement on industrial or stationary machinery. However, the
implementation of a condition monitoring method on mobile machines is
more difficult because of the various operating conditions of the machines and
the limited space on the machine. The amount of readily available computing
software with machine learning packages makes condition monitoring a
more affordable and realistic maintenance strategy to implement on mobile
machinery than in previous years. Therefore, the motivation of this work
is to show a process to develop an affordable machine learning condition
monitoring system for mobile machinery, specifically to axial piston pumps
on a mini excavator.

This work provides novel contributions to the field of fluid power and
condition monitoring research. Firstly, it involves the implementation of
valve plates with quantifiable wear and damage for the use of condition
monitoring on axial piston pumps. Next, an investigation is made of existing
condition monitoring methods for the implementation on axial piston pumps
on a mobile mini excavator using physically damaged valve plates running
under dynamic operating conditions. Lastly, a determination of the minimum
number of sensors required to detect the valve plate damage is performed on
the mini excavator.

The approach to this work started with a literature review, which can be
viewed in Section 2. Then, Section 3 discusses the reference pump and which
axial piston pump component is used for the condition monitoring study in
this work. Next, a Bobcat 435 mini excavator is instrumented, and duty cycles
are developed, see Section 4. Section 5 shows measurement observations to
determine if repeatability is achieved and if fault detectability can be observed
with the human eye. A feature selection and machine learning algorithm
selection are then discussed in Sections 6 and 7, respectively. Section 8
discusses the results of model cross-compatibility, and the paper concludes
with Section 9.

2 Brief Axial Piston Pump Condition Monitoring Literature
Review

The past 25 years have produced some useful work on condition monitoring
for axial piston pumps using Artificial Intelligence (AI). In 1994 and 1995,
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Lu, Burton, and Schonenau trained an artificial neural network (ANN) to
detect piston/cylinder faults on an axial piston pump using purely experimen-
tal data. The pistons had varying degrees of wear and were each tested. The
inlet and outlet pressures were measured and fed into an ANN to be trained
with the known faults [4, 5].

Ramdén in 1995 trained an ANN, Self-Organizing Map (SOM) type of
ANN, to detect faulty valves in a hydraulic system using data obtained from
simulation results [6]. It was determined that ANNs trained on experimental
data were more accurate than those trained using simulation data by compar-
ing the fault detection of cylinder actuators trained using either simulation
or experimental data [7]. This is likely because the simulations contain
assumptions and inherently do not capture the complete understanding of the
system [8].

Again in 1995, Ramdén showed the detection of a worn-out bearings and
valve plate using an ANN that was trained on purely experimental data [6].
These tests were conducted under a single operating condition running at
steady state.

In 2005, Li used various condition monitoring algorithms to detect faulty
pistons in an axial piston pump [9]. The faulty piston/cylinder interface
was artificially induced to simulate the leakage of a worn piston/cylinder
interface. This was done by implementing a pressure control servo valve that
diverted flow from the pump outlet to the drain with a waveform simulating
different degrees of piston wear.

An ANN trained to detect the valve plate and slipper/swashplate wear was
implemented in 2011. This work was interesting as it implemented neural
networks in conjunction with chaos theory [10]. The actual condition of the
valve plate and slipper/swashplate were not quantified to show the degree of
wear.

In 2013 Du, Wang, and Zhang used a layered clustering algorithm to
detect multiple faults on an aerospace axial piston pump by measuring drain
flow, outlet pressure, radial vibrations, and axial vibrations [11].

In 2018, Lan et al. implemented a pattern recognition ANN in conjunction
with spectral analyses of pump vibrations and outlet flow to detect slipper
wear on an axial piston pump. The results were comparable to other machine
learning algorithms used [12].

Each of the previously mentioned work concerning machine learning
algorithms has been completed under steady-state conditions in stationary
test-rigs. They also do not give a detailed account of the degree of damage
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on the components, if faults were not artificially generated by using some
modification to the hydraulic system or by simulation.

3 Component Selection

This section briefly introduces the reference pump utilized for this condition
monitoring study on a mini excavator. The main wear interfaces of the pump
will be lightly touched upon to give the motivation and reasoning behind
selecting the valve plate for this case study. The physical wear and damage of
the valve plates are briefly presented in this section. For more details, please
refer to [13].

Finally, volumetric efficiency measurements of each of the valve plate
cases is shown. It should be also noted that a more detailed description of
the testing procedure was made and presented in [13]. All pumps with the
damages where first run-in and tested in a stationary test rig and were then
installed on the mini excavator.

3.1 Reference Pump

A swashplate type axial piston pump is selected for this condition monitoring
investigation. The reference unit is a Parker P1 18 cc/rev pump. Table 1 shows
the general specifications of the selected component.

Through extensive literature review and Failure Modes and Effects Anal-
ysis (FMEA), the researcher settled on the three main lubricating interfaces
of an axial piston pump, as these are the main sources of energy dissipation
in axial piston pumps, see Figure 1 [14–16]. These three interfaces are
the cylinder block/valve plate, piston/cylinder, and the slipper/swashplate
interfaces.

Table 1 Parker P1 pump general specifications

Max. Displacement 18 cc/rev

Pressure Range 0 to 350 bar

Speed Range 600 to 3600 rpm

Temperature Range −40 to +95◦C

Rated Fluid Viscosity 6 to 160 cst

Pistons 9

Overcenter Capable Yes

Closed-Circuit Yes
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Figure 1 Main lubricating interfacing on a swashplate type axial piston pump.

The valve plate is selected because of its tendency to experience large
amounts of wear and damage. Moreover, the investigation presented in [11],
shows that valve plates contributes up to 38% of pump failures in some
aerospace pumps. The roller bearings are neglected in this study because
of the inability to obtain worn bearings or to induce reliable and repeatable
artificial damage.

3.2 Valve Plate Wear

Five valve plates with varying degrees of wear and damage have been
obtained to perform the necessary condition monitoring experiments on the
mini excavator. It is important to note that the effects on the performance
of the pump with the various states of valve plate health cannot be exactly
known and is difficult to predict because of the high nonlinearity of these
interfaces [17]. The selected valve plates can be seen in the list below.

1. No Wear with No Damage (Healthy)
2. Severe Wear with No Damage (SW ND)
3. Minor Wear with Severe Damage (MinW SD)
4. Moderate Wear with Minor Damage (ModW MinD)
5. Extreme Damage (ED)

Each of the different degrees of wear on the valve plates occurred
naturally while the pump was mounted on a mini excavator on the suction-
delivery transition. The wear profile is measured using a ZeGageTM optical
profilometer. The valve plate that appears to have negligible wear, shown in
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Figure 2 Profilometer measurements of valve plate with no wear or damage.

 
Figure 3 Profilometer measurements of valve plate with minor wear.

Figure 2, is considered the healthy valve plate and will serve as the basis for
all measurements that will be classified as healthy.

The black plot in Figure 2 is the zoomed green profile that can be seen in
the surface image of the valve plate.

Although the valve plate illustrated in Figure 3 has only minor wear, about
four micrometers, it is reasonable to expect some impact on performance and
efficiency since the film thickness is within the same order of magnitude as
the wear depth.

Figure 4 shows wear that is an order of magnitude greater than
the “healthy” valve plate, approximately ten micrometers. Therefore,
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Figure 4 Profilometer measurements of valve plate with moderate wear.

 
Figure 5 Profilometer measurements of valve plate with severe wear.

performance is more likely to be affected by the amount of wear observed
in Figure 4.

Severe wear on a valve plate can be seen in Figure 5. The variation in
the wear profile is about 20 micrometers. An interesting phenomenon can be
observed where a ridge with a height of about 20 micrometers is present. This
ridge is likely caused by the contact from the cylinder block and caused the
material to deform into a ridge, approximately 40 micrometers. Observable
performance differences are more likely to be detected with the severely worn
valve place when compared to the healthy valve plate. A ridge of smaller
height can be observed in the moderately worn valve plate in Figure 4, likely
due to less wear.
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3.3 Valve Plate Damage

To observe the affects that a damaged valve plate would have on the per-
formance of the pump, some valve plates have been artificially damaged at
the relief groove on the suction side of the valve plate, between the low and
high pressure ports. The artificial damage is used to approximate damage
from debris particles gouging and removing material at the suction side of
the pump. Four levels of damage are measured: No damage, minor damage,
severe damage, and extreme damage.

The healthy valve plate does not contain any artificial damage, as can be
seen in Figure 2. This valve plate serves as a no wear and no damage case
to determine the performance of a healthy pump. However, there is also no
damage on the valve plate with severe wear. This allows for a comparison of
wear versus damage. The severe wear and healthy case can be compared, and
the minor wear and severe damage case can be compared to the healthy case
to observe differences in performance.

Figure 6 shows the minor damage that is induced on the suction relief
groove on the valve plate. The scratch was placed in a radial pattern as
to follow the motion of the cylinder block relative to the valve plate. The
scratch is deep but narrow. It goes down approximately 30 micrometers but
is less than 0.5 micrometers in width. This damage is classified as minor in
comparison to the other selected valve plates.

Figure 7 shows the damage done to the relief groove on the suction
side of the valve plate. Damage varies from 20 to 80 micrometers in depth
while spanning almost 800 micrometers. Figure 7 is a result of a spring-
loaded automatic steel center hole punch being used to create a more severe

 

Figure 6 Profilometer measurements of valve plate with minor damage.
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Figure 7 Profilometer measurements of valve plate with severe damage.

 

Figure 8 Optical profilometer measurements of valve plate with extreme damage (ED).

dent. This valve plate could simulate a severe case of cavitation and abrasion
damage.

A valve plate with extreme damage is used to help ensure a difference
can be observed and detected. Figure 8 shows measurements from a Brukerr

optical profilometer of an extremely damaged valve plate. The Brukerr

optical profilometer is used to measure the depth of damage that exists on
the extreme damage valve plate.

Figure 8 shows that the width of the damage is approximately 2 mm while
the depth of the damage groove is about 350 µm. This type and severity of
damage would increase the leakage to the case of the pump, thus increasing
case drain flow.
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3.4 Valve Plate Volumetric Efficiencies

The wear and damage on the valve plates should result in lower volumetric
efficiencies than the pump equipped with a healthy valve plate. Figure 9
shows outlet flow and differential pressure measurements under steady-state
operating conditions on a stationary test-rig. Figure 9 shows the outlet flow
of the healthy pump is slightly greater than the faulty valve plates under
identical operating conditions, suggesting less leakage. Figure 10 shows the
significant difference in the outlet flow of the Extreme Damage (ED) valve
plate compared to the other valve plate conditions. The outlet flow is lower
because the ED valve plate exhibits higher case drain flows.

Next, the measured volumetric efficiency of each state of health on the
pump can be seen in Figure 11, which were taken under steady-state operating
conditions on a stationary test-rig. Again, the pump with the undamaged and
healthy valve plate is more efficient than the faulty valve plates. The change

Figure 9 Outlet flow with respect to differential pressure at a fixed speed and displacement.

Figure 10 Outlet flow with respect to differential pressure at a fixed speed and displacement,
including extreme damage.
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Figure 11 Volumetric efficiency comparison between healthy and unhealthy valve plates.

Figure 12 Volumetric efficiency comparison between healthy and unhealthy valve plates,
including extreme damage.

in volumetric efficiency is approximately 1%, which is within the limit of
experimental error. This slight decrease in efficiency may not be noticeable
to the operator or detrimental to the functioning of the machine, but it could
indicate wear is occurring.

Figure 12 compares the volumetric efficiencies of the healthy and each
unhealthy valve plate, including the Extreme Damage (ED) case. The volu-
metric efficiency of the pump with the extreme damage valve plate is 84%,
which corresponds to an 11% drop in volumetric efficiency compared to the
healthy valve plate. This difference is obvious to the naked eye and does not
require a machine learning algorithm to determine if a fault is present in a
stationary test-rig setting under steady-state operating conditions. However,
it may be more difficult to detect faults on a mobile application. Therefore,
the extreme damage case will be used on the mini excavator for condition
monitoring purposes.
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4 Experimental Setup

A discussion on the goals of the experimental test-rig will be discussed in
this section. Additionally, this section will show the mini excavator, and the
hydraulic schematic that is used in this study. The data acquisition system will
briefly be discussed before the duty cycles used in the measurement process
are introduced.

The goal of instrumenting the mini excavator is to demonstrate a pro-
cess for implementing a condition monitoring algorithm for an axial piston
pump mounted on a mobile machine. Additional goals are to perform a
fault detectability analysis, a sensor or dimensionality reduction study, and
determine which machine learning algorithms are effective at detecting the
valve plate faults.

Fault detectability is the ability of a machine learning algorithm to suc-
cessfully detect a faulty component in the system under investigation. Sensor
reduction, also known as dimensionality reduction, is a study to determine the
minimum number of sensors required to adequately detect faulty conditions.
Finally, a machine learning algorithm selection is an investigation as to which
machine learning algorithm is best suited for the application.

A Bobcat 435 mini excavator is selected for this condition monitoring
study because it has already been heavily instrumented for previous research
endeavors at the Maha Research Lab at Purdue University, see Figure 13.

Figure 13 Maha Bobcat 435 DC prototype mini excavator.
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This excavator is a prototype displacement controlled (DC) machine. The DC
concept was originally conceived by [18]. Specific work on the formulation
and development of the DC system for the reference excavator can be found
in [19–21]. This past work details the machine fuel economy, performance,
and controllability of the excavator, in comparison with the commercial
version based on a centralized hydraulic system.

4.1 Schematics and Sensor Hardware

The mini excavator had already been instrumented with a data acquisition
system from the works previously mentioned and contains the Parker P1 18
cc/rev pumps that are being used as the reference pumps in this work. Only
minor additions, such as an accelerometer and drain line pressure, needed to
be made to equip this test-rig for a condition monitoring investigation.

Figure 14 shows the current hydraulic schematic of the prototype DC
mini excavator. This architecture is the novel pump switching design for DC
systems. For more information, reference [21]. Only one of the pumps will be
used for this investigation, Unit 3. Unit 3 provides flow to the swing and right
track motors. The pumps in this excavator are 18cc Parker P1 units equipped
with MOOG servo valves for the accurate control of their instantaneous
displacement.

It should be noted that the hydraulic circuits presented in Figure 14 are
independent from one another and isolated from other excavator functions.
The exception is how the Units are mechanically linked to the engine. Single
input, double output gearbox is used to connect the Units to the engine shaft.
Units 1, 2, and 4 are mechanically coupled to each other through the same
gearbox output shaft, while Unit 3 is mounted on an its own gearbox output
shaft. It is possible that unexpected engine activity may be reflected in some
sensor measurements, resulting in false positives, i.e. accelerations or outlet
flow rate. However, these tests were performed at the same engine rpm with
little variation, which eliminated the majority of the probable interactions
between the pump shafts. Possible interactions from the circuits associated
with Units 1, 2 and 4 might affect the dynamics of the engine regulator for
limited times during the engine speed transients.

It is important to briefly describe the function of Unit 3 as it pertains to
whether the machine is using the right track or utilizing the swing function
to rotate the cab. If the right track is operating, then Unit 3 controls the speed
of the right track motor through Displacement Control (DC) and behaves as
a hydrostatic transmission. However, if the swing motor is activated to rotate
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Figure 14 Hydraulic schematic of excavator [21].

the cabin of the machine, then the circuit incorporating Unit 3 changes from
a DC circuit to a secondary controlled system. This means Unit 3 is no longer
flow controlled but, instead, is pressure controlled. Unit 3’s task is to maintain
a pressure setting in the hydraulic hybrid accumulator. The duty cycles where
measurements are made on this machine will be discussed later in this section,
but Unit 3 will only be used for the swing function and will not be used to
operate the right track motor. Therefore, Unit 3 will be exclusively used to
maintain a consistent pressure in the hybrid swing drive system.

Therefore, the pump under investigation, Unit 3, is equipped with several
sensors. Pressure sensors are mounted on both pressure ports and the drain
port of the pump. A Hall effect sensor measures the swashplate angle, which
is directly related to the pump displacement. A single axis accelerometer is
mounted on the case of Unit 3 to measure vibrations. Both pressure ports and
the drain ports have thermocouples installed to measure the oil temperature.
Additional parameters such as engine speed are also measured and recorded.
The sensors mounted on the reference pump can be seen in Table 2.

In total, 15 parameters are measured with respect to time on the excavator
test-rig. It is noted that flow, torque, and pressure ripple are not parameters
that are being measured. Reasons for this are for feasibility of implementation
on a mobile machine. If a condition monitoring system were to be installed
on a machine by an Original Equipment Manufacturer (OEM), then it would
be unrealistic to include torque and flow meters. These are cost prohibitive
and lack the robustness required for mobile equipment. The intent of this
investigation is to reduce the cost and complexity for the OEMs of mobile
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Table 2 Sensors equip on reference pump
Company Model Type Full Scale Accuracy
Parker IQAN-SP500 Diaphragm

Strain Gauge
0–500 bar ±2.5 bar

Hydac HAD 4475-B-0150 Diaphragm
Strain Gauge

−1–10 bar ±0.005 bar

PCB Piezotronics 352C03 Piezoelectric
Accelerometer

±50 g 1 mV/g or ±1%

Parker RS60 Hall Effect 47◦ 1.4◦

Omega KMQSS-062G-6 Thermocouple 0–220◦C 2.2◦C or 0.75%

equipment. Other parameters such as joystick commands are for the use of
the operator and are not used in this study.

4.2 Duty Cycles

Machine learning algorithms are only reliable within the operating conditions
they are trained, which makes defining repetitive and representative duty
cycles to train condition monitoring systems essential. As an example, folding
cranes must unfold each time they are used. This unfolding operation would
be an ideal sequence to run diagnostics with a condition monitoring system
since the loads and motion are consistent.

Finding these consistently repetitive cycles is more difficult for other
mobile machines, such as an excavator. In fact, some machines do not have as
repetitive and consistent cycles as when a crane truck is unfolding. Therefore,
a cycle that is easily repeated must be created, or large sums of data must be
used to train the algorithms.

This section discusses the duty cycles of the excavator that are employed
for the training and testing of the machine learning algorithms. A controlled
cycle is developed to check for algorithm efficacy under repeatable condi-
tions, while a digging cycle is used to capture the working conditions of the
machine more accurately. Finally, the digging cycle is repeated but with a
different operator to test the robustness of the condition monitoring system
when another operator is controlling the machine.

The controlled cycle is perhaps the most repeatable cycle for the excavator
and is a great candidate to determine if the valve plate vaults are detectable
on the mobile machine. The controlled cycle is an artificial cycle where only
the cabin of the machine is rotated left approximately 90 degrees from center,
swings back to the starting position, and then repeated. Figure 15 shows a
simple illustration of the motion of the controlled cycle, and Figure 16 shows
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Figure 15 Controlled duty cycle illustration.

Figure 16 Cabin speed for the controlled duty cycle.

the speed of the cab during the progression of the cycle. No other functions
(i.e. arm, boom, tracks, blade, bucket, etc.) are used throughout this controlled
duty cycle, and the machine is placed in the same orientation and location for
each test. The machine is running at a constant engine speed of approximately
2670 rpm.

This cycle eliminates operator variability by implementing a simple pro-
portional controller to command a predetermined displacement setting for
the swing motor, thus consistently rotating the cab of the swing in a repeat-
able and cyclical manner. Therefore, this cycle is automated. As mentioned
previously, Unit 3 is used to maintain a set pressure level in the hybrid
accumulator when the swing is under operation. As the swing rotates, Unit
3’s displacement varies to attempt to maintain a set pressure setting for the
swing drive. This pressure setting is about 225 bar.

The next chosen duty cycle is that of an excavator digging in a pile of dirt
and rotating approximately 180 degrees to unload the bucket, see Figure 17.
This cycle introduces a real operator in realistic working conditions. The
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Figure 17 Digging cycle illustration.

pile of soil has a consistency of loose and dry clay for better repeatability
among measurements. The reason a pile of loose soil is selected is to avoid
the variability that is inherent when actively digging into compacted soil.

It may be possible to detect damaged valve plates using a condition
monitoring system that is trained under the controlled duty cycle. However,
if this is not the case, then a machine learning algorithm will be trained using
the data collected from the digging cycle to determine faults.

The final duty cycle is the same as the digging cycle, Figure 17, but
implements a different operator. The purpose of this cycle is to determine
if operator variability influences the validity of the condition monitoring
system. It is possible that a condition monitoring system that is trained under
one operator will give different results with another operator. This duty cycle
is for comparison purposes, and the data obtained in this cycle will not be
used to train any machine learning model. However, the data will be used to
test and compare results from models trained under the controlled and digging
duty cycles.

5 Measurement Observations

It is important to observe the data to ensure data fed into the machine
learning algorithms is acceptable. To ensure acceptability, one must observe
the repeatability of the and if trends exist between the different levels of
pump health. The data for this investigation was collected multiple times on
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different days to ensure a large and realistic sample size. The data from the
different days was added together to produce an overall testing duration of
about 3 hours for each valve plate under consideration.

This section will focus on the data observations from the controlled
cycle on the excavator. First, repeatability of the healthy measurements will
be observed, and then the healthy measurements will be compared to the
different states of pump health. Signals such as the cab speed, engine speed,
and port pressures are examined.

A few important caveats need to be addressed at this time. First, the
observations plots shown in this chapter show filtered data only for the
purpose to examine trends within the data. The filtered or smoothed data is
not used in the algorithm training because of the inherent information lost in
the filtering. Second, the mini excavator is a functioning mobile machine with
an internal combustion diesel engine. Some variation in operating conditions
and parameters are to be expected as it is a real-world experimental setup.

5.1 Repeatability Observations

It is important to examine the data for repeatability. If repeatability is
achieved, then the data is considered valid and will be used for machine
learning purposes with higher levels of confidence. The first parameter to
observe is the rotational speed of the cabin. Only slight deviations between
the five separate healthy measurements can be seen in Figure 18, and this
deviation is caused by the proportional controller that controls the hybrid
swing motor. Figure 19 shows only a single cycle of the cab rotation and
slight deviations can be observed. However, repeatability of the cab speed is
achieved.

Figure 18 Excavator cab rotation speed of repeatability analysis of the controlled cycle.
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Figure 19 Zoomed view of cab speed rotation repeatability.

Figure 20 Engine speed of repeatability analysis of the controlled cycle.

The engine speed of the different healthy measurements can be seen in
Figure 20. The most the engine speed varies from one measurement to the
next is approximately 15 RPM. The engine is set to maintain a constant
maximum speed, and the controller produces acceptable repeatability for
maintaining a constant engine speed.

Since only the swing drive is operating, Unit 3 is tasked with maintaining
a set pressure in the hybrid swing accumulator, as discussed previously. This
means the pressure port, Port A, is always the low-pressure port when the
swing is under operation. Here, Figure 21, the low-pressure in the system is
consistent and repeatable. The low-pressure is maintained around 29 bar, and
the drain pressures also show repeatability with little variation.

The pressure port, Port B, is the outlet to Unit 3 and is connected to
the hybrid accumulator and swing motor. The controller of Unit 3 is set to
maintain a pressure around 225 bar. A variation in the outlet pressure port of
about 15 bar exists. This variation comes from the gains used in the controller.
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Figure 21 Port A pressure of repeatability analysis of the controlled cycle.

Figure 22 Comparison of cab speed between healthy and unhealthy pump states.

This variation will be addressed later in this paper but is not considered
significant enough to affect the repeatability of the measurement cycles.

5.2 Observable Wear/Damage

In addition to repeatability, it is important to examine the differences between
the different states of pump health. This section will show the healthy pump
measurements in black and the unhealthy measurement in color.

As shown in Figure 22, the cab speed for the healthy and unhealthy
pumps are nearly identical. Only a single healthy measurement is used to
compare the various unhealthy pump conditions, since it has been previ-
ously established that the cab speed under the different healthy conditions
is repeatable. The engine speed is similar to the repeatability measurements
seen in Figure 20, and the low pressure is nearly identical between healthy
and unhealthy pump conditions. The pump outlet pressure is within the range
taken during the repeatability measurements.
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Figure 23 Comparison of drain pressures between healthy and unhealthy pump states.

Perhaps the clearest differences between the unhealthy and healthy valve
plates can be observed in the drain pressure, Figure 23. The Minor Wear
Severe Damage (MinW SD) case has very similar drain pressure as the
healthy cases. However, more pressure oscillations are present. The Moderate
Wear Minor Damage (ModW MinD) and Severe Wear No Damage (SW ND)
cases have noticeably higher drain pressure levels than the healthy condition.
Finally, the Extreme Damage (ED) valve plate case exhibits the highest drain
pressure with a pressure near 1.4 bar. The drain pressure seems to be a good
indicator of valve plate condition and pump health.

6 Feature Selection/Sensor Reduction

While some trends can be observed by the human eye, others need to be
interpreted by machine learning algorithms. This section focuses on the
results from implementing the data gathered from the different duty cycles
previously mentioned into several machine learning algorithms and selecting
which sensors contribute the most to a successful condition monitoring sys-
tem. First, the feature selection results will be discussed with models trained
using the controlled and digging duty cycles. Next, the results from the
investigation on algorithm selection will be discussed. Finally, it is necessary
to see how a model trained from a certain duty cycle behaves when the model
is fed with data from another cycle.

The purpose of the feature selection is to determine the minimum number
of sensors required to accurately and effectively detect valve plate faults for
condition monitoring systems. The feature selection method employed on the
excavator is different than what was used on the stationary test-rig. First, each
of the features under investigation is used singly to determine the magnitude
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that feature contributes to the accuracy of the machine learning algorithm.
Next, a forward selection process is used because of the few numbers of fea-
tures/sensors under consideration. The features under investigation are inlet
pressure (pA), outlet pressure (pB), drain pressure (pD), pump displacement
(Beta), pump case vibrations (Accel), and engine speed (N). Feature selection
results will be shared of both the controlled and digging cycles.

6.1 Controlled Cycle

First, each of the six features is used as the sole input to the Fine Decision
Tree machine learning algorithm to examine how each feature influences the
algorithm training time, accuracy, and prediction speed. Next, features are
combined to observe how the different combinations affect the algorithm
result.

Table 3 shows the entirety of the feature selection results for the con-
trolled cycle. It can be observed that the engine speed (N) does indeed
give the highest accuracy of determining if the data is classified as healthy
or unhealthy, 96.8%. As noted in the observations of the excavator mea-
surements, the engine speed could provide a false accuracy number due to
the stratification of the data seen in Figure 20. While it may be possible
the machine learning algorithm is using this stratified data to make its
predictions, the engine speed may still be necessary to define the operating
conditions for the condition monitoring system to best classify the data as
healthy or unhealthy.

Other parameters, such as the case accelerations (Accel), 58.1%, and the
pump inlet pressure (pA), 64% show to produce the least accurate results

Table 3 Feature selection results of the controlled cycle using a fine decision tree algorithm
Training Accuracy Prediction Speed

Features Time [sec] [%] [M obs/sec] Selected Features
1/6 83.578 64 3.6 pA
1/6 49.786 73.3 3.7 pB
1/6 63.51 83.2 3.8 pD
1/6 46.475 72.7 3.8 Beta
1/6 36.516 96.8 3.7 N
1/6 137.93 58.1 3.2 Accel
2/6 66.216 89.5 3.7 PB, pD
3/6 64.545 99.8 3.6 pB, pD, N
2/6 55.889 99.3 3.7 pD, N
2/6 62.362 88.4 3.7 pD, Beta
6/6 118 99.9 3.7 pA, pB, pD, Beta, N, Accel
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of the six features that have been evaluated individually. Pump displace-
ment (Beta) and outlet pressure (pB) give comparable accuracies of 72.7%
and 73.3%, respectively. The drain pressure (pD) shows to be a promising
parameter to monitor for the detection of valve plate wear with an accuracy
of 83.2%.

When combining features together the accuracy greatly increases. For
example, combining outlet pressure (pB) and drain pressure (pD) the accu-
racy increases to nearly 90%. Engine speed (N), outlet pressure (pB) and
drain pressure (pD) give an accuracy of 99.8%, while using all six features
give a marginal improved accuracy of 99.9%. The controlled cycle indicates
that drain pressure, outlet pressure, and engine speed are among the most
important signals for determining valve plate fault. The case accelerations
do not seem to contribute additional information that the other signals do not
contain. Therefore, it can be determined that accelerometers are not necessary
to detect valve plate wear.

6.2 Digging Cycle

Unsurprisingly, the accuracies from the feature selection process using the
digging cycle data are significantly lower than those from the controlled
cycle.

Table 4 shows the results from the feature selection process utilizing
data from the digging cycle. It is to be noted that accelerations are not
included with this data because they were deemed negligible under controlled
conditions. It is interesting to see the engine speed (N) does not contribute

Table 4 Feature selection results of the digging cycle using a fine decision tree algorithm
Training Accuracy Prediction Speed

Features Time [sec] [%] [M obs/sec] Selected Features
1/5 2.3211 53.1 3 pA
1/5 1.8833 61.7 3.2 pB
1/5 1.8675 60.9 3.6 pD
1/5 1.8899 62.9 3.7 Beta
1/5 1.9358 55.8 3.6 N
2/5 2.2774 66.9 3.6 pB,pD
3/5 2.5882 67.6 3.3 PB, pD, N
2/5 2.2801 63 3.7 pD, N
2/5 2.2574 67.7 3.6 pD, Beta
3/5 2.4922 69.6 3.6 pB, pD, Beta
5/5 3.4512 71.8 3.5 pA, pB, pD, Beta, N
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nearly as significantly to the accuracy of the classification algorithm as it does
with the controlled cycle, 55.8% to 96.8%. This discrepancy in accuracy is
likely because the stratification of the engine speed for the controlled cycle.
The engine speed is not stratified in the digging cycle, which is more realistic.
This confirms that the engine speed does not significantly contribute to the
identification of valve plate fault on the excavator pump. However, it could
still be useful in defining the operating conditions of the pump.

Outlet pressure (pB), drain pressure (pD) and pump displacement (Beta)
give a result of 69.6%, which is second best to using all five features that give
an accuracy of 71.8%. This shows that it would be best to include all five
sensors when running a condition monitoring system on an excavator during
a digging cycle.

7 Algorithm Selection

The feature selection process gives the condition monitoring system designer
an idea of which sensors contribute the most to accurately detecting faults,
and the algorithm selection process takes those key features and selects
machine learning algorithms that are best suited for the application. The
algorithms investigated have already been discussed in [13]. However, the
two primary algorithms used are decision trees and K-Nearest Neighbors
(KNNs). Variations of these two primary algorithms will be used in this
work. The results from the algorithm selection will be discussed from both
the controlled and digging duty cycles.

It’s worth noting that detecting the faults on the axial piston pump takes
less than a minute. This is primarily due to the fact that the developed CM
algorithms were executed on an external programmable machine. Further-
more, the relevant features and sensors chosen to identify the pump’s health
status have a significant impact on the time required for the algorithm to
detect defective conditions.

7.1 Condition Monitoring Algorithms

For the current study, two different algorithms, KNN and the decision tree,
were chosen based on the results obtained in [13]. KNN is a non-parametric
machine learning technique that is used for classification and regression
[22, 23]. The essential premise of KNN is that an unclassified data point
is assigned to the classification of the closest set of previously classified
points. Therefore, the unclassified data point adopts its “nearest neighbor’s”
classification.
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Another typical form of classification techniques for nonlinear mappings
of input variables to a collection of output variables is decision trees. The
complex decision-making process is broken down into multiple simpler and
smaller decisions using decision trees. Trees are simple to interpret, provide
critical data insight, and frequently create models with fast prediction speeds.

7.2 Controlled Cycle

A summary of the best results from the algorithm selection for the controlled
data can be seen in Figure 24. Several combinations of features work well for
the accurate detection of valve plate faults, but only two algorithms give the
best results, Fine Tree and Fine KNN. Notice that any feature combination
that contains engine speed gives near perfect accuracies, but this could be
due to the stratification of the engine speeds. However, looking at the two
feature combinations of outlet pressure with drain pressure and drain pressure
with pump displacement, they give high accuracies of 96.2% and 96.3%,
respectively. These two could potentially be more reliable than the feature
combinations with engine speed. Between the two, the outlet pressure and
drain pressure feature combination could be the better option as the outlet
pressure helps define the operating condition of the pump.

 
Figure 24 Algorithm selection summary for controlled cycle.
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Figure 25 Algorithm selection summary for digging cycle.

7.3 Digging Cycle

The Fine Decision Tree is not the best algorithm for the digging cycle, but it is
the KNN algorithms that prove to be acceptable at classifying the healthy and
unhealthy pump conditions. Figure 25 shows the summary of the algorithm
selection for the digging duty cycle. As discussed in the feature selection
section, all five features give the best results. The best algorithm with the
combined five features is the Fine KNN algorithm and gives an accuracy of
93.6%. If only the outlet pressure (pB), drain pressure (pD), and the engine
speed (N) are used, then the best algorithm to use is the Weighted KNN.
However, this only gives an accuracy of 75%, which is not reliable enough to
detect valve plate faults. It is, therefore, recommended to use the five features
and a Fine KNN algorithm for the digging cycle

8 Trained Model Cross-Compatibility

While observing how different features and algorithms behave under a sin-
gle operating condition is important, it is also critical to see how using
a model trained under the controlled duty cycle behaves using data from
the digging and different operator cycles. The objective is to test cross-
compatibility between different duty cycles. The Fine KNN algorithm proved
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Table 5 Trained Fine KNN model of controlled cycle using data from different operating
conditions

Features Cycle Accuracy [%]

pB, pD Digging 54.4

Different Operator 58.9

pB, pD, N Digging 56.5

Different Operator 66.5

pD, N Digging 59.2

Different Operator 54.6

Table 6 Trained Fine KNN model of digging cycle using data from different operating
conditions

Features Cycle Accuracy [%]
pA, pB, pD, Controlled 62.2
Beta, N Different Operator 58.0

to be best suited for the controlled duty cycle and is, therefore, selected as the
algorithm to use for the remainder of this study. However, different feature
combinations are still used for comparison.

Table 5 shows the results from using data from the digging and different
operator cycles that have been entered a classification model that has been
trained using a Fine KNN algorithm under the controlled cycle. Using data
from either of the other two cycles does not give strong accuracy results when
using a model trained on the controlled cycle data. At best, the digging cycle
has an accuracy of 59.2% to detect valve plate faults.

The controlled cycle is quite different from the digging and different
operator cycles. Therefore, this leads to the investigation of the cross-
compatibility between the digging and different operator cycles, since these
two cycles are very similar. Table 6 shows the results from data of the
controlled and different operator cycles and entered into a classification
model that has been trained using a Fine KNN algorithm under the digging
duty cycle. Notice the lack of detectability in the different operator cycle,
58%, even though the two cycles are very similar. These results glaringly tell
of the importance of a repeatable cycle to accurately and reliable perform a
condition monitoring function for the system.

At this point it has become apparent to see how each of the levels of
valve plate faults influenced the detection accuracy using data from a different
cycle. The different levels of valve plate fault have been discussed in previous
chapters, but as a review they are: Healthy, Minor Wear Severe Damage
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Figure 26 Breakdown of each valve plate condition under the digging operation using a
trained Fine KNN model of the controlled cycle.

(MinW SD), Moderate Wear Minor Damage (ModW MinD), Severe Wear
No Damage (SW ND), and Extreme Damage (ED). It is interesting how
well the model can detect the various levels of valve plate health. The model
trained with outlet pressure (pB), drain pressure (pD), and engine speed (N)
under the controlled cycle is used for this investigation.

Figure 26 gives the breakdown of each valve plate condition under the
digging operation using a trained Fine KNN model of the controlled cycle,
a cross-compatibility condition. All conditions combined give an accuracy
of 56.5%, which can also be seen in Table 5. A likely reason as to why the
accuracy for the healthy condition is so low is because most the faulty valve
plate conditions are too similar to one another. Meaning, the Minor Wear
Severe Damage, Moderate Wear Minor Damage, and Severe Wear No Dam-
age cases have similar pump performance characteristics that the machine
learning algorithm has difficulty detecting the faults on a mobile machine
under cross-compatibility conditions. However, the algorithm can more accu-
rately classify the Extreme Damage (ED) case with an accuracy of 86.1%
than the other cases. Although the accuracy of 86.1% is not exceptional, it
does suggest that the more severe the damage or wear of the valve plate
becomes then the detectability accuracy increases for cross-compatibility
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scenarios. Therefore, cross-compatibility of condition monitoring model may
be possible if only extreme cases are to be detected.

Although cross-compatibility does not give significantly positive results
in this work, it does not mean condition monitoring cannot be implemented
on a machine like an excavator. These results glaringly illustrate the impor-
tance of a repeatable cycle to accurately and reliable perform a condition
monitoring function for the system. Therefore, repeatable and controlled
conditions must be used for condition monitoring of incremental faults on
a mobile machine. However, if only severe damage cases where pump per-
formance is severely impacted, then cross-compatibility between different
operating conditions may be possible.

9 Conclusion

In summary, a feature selection process was performed for both the controlled
and digging duty cycles to determine the most critical sensors needed for
faulty valve plate detection. This process discovered that accelerometers
are not necessary for valve plate fault detection, but other signals such as
drain pressure, outlet pressure, and engine speed are important to achieve
higher fault detectability. A potential issue with using the engine speed
was addressed for the controlled condition because of obvious stratifications
found in the measurements. However, it was determined that keeping engine
speed would be beneficial to defining the pump operating condition that the
machine learning algorithm can then use. The feature selection process for
the digging duty cycle showed that using outlet pressure, inlet pressure, drain
pressure, engine speed, and pump displacement are useful for detecting valve
plate fault.

Next, the algorithm selection was discussed and showed that the Fine K-
Nearest Neighbor (KNN) seems to give the best results for both the controlled
and digging duty cycles. Using the Fine KNN algorithm results in detection
accuracies near 100% in the controlled cycle if engine speed is included.
Without engine speed, fault detection accuracy falls slightly to about 96%,
which could still be acceptable for a condition monitoring system. Fault
detection accuracy during the digging cycle significantly increased using
a Fine KNN algorithm that includes inlet pressure, outlet pressure, drain
pressure, engine speed, and pump displacement. The fault detection accuracy
increased from 71.8% using a Fine Decision Tree to 93.6% implementing the
Fine KNN machine learning algorithm.



202 N. Keller et al.

Finally, an investigation was completed which explored the cross-
compatibility between a model trained under one cycle and using data from
another cycle as an input to the model. This study showed that a model
trained under the controlled duty cycle does not give reliable and accurate
fault detectability for data run in a digging cycle, accuracies below 60%.
The same is true for a model trained using the digging cycle with data from
a controlled cycle, even if the machine is in similar operating conditions but
with a different operator.

The investigation in this work has shown the importance of controlled
and repeatable conditions for a successful and effective condition monitoring
system on mobile hydraulics. It is unrealistic to design a condition monitoring
system that can successfully detect incremental faults for every conceivable
operating condition for mobile machines. For this reason, it is recommended
to have a program built into the machine to perform a diagnostic check or
only be interested in faults where pump performance is severely impacted,
i.e. pump drain pressure increases significantly to 3 bar. An example of a
diagnostic check on a mobile machine is when an operator would press
a button to perform a series of motions on an excavator to do a system
check. The data collected in this system check would then be fed into an
algorithm that has been trained on that exact cycle, such as the controlled
cycle performed in this work.

Moreover, to make the fault detection more reliable, other low-cost sig-
nals from the system can be used to train and monitor the health conditions
of the pump. This solution will be the subject of future research.
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