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Abstract

This paper presents a method to derive optimised energy management strate-
gies for a hydraulic hybrid wheel loader. Energy efficiency is a key aspect
for the sustainability of off-road mobile machines. Energy management
strategies for on-road hybrid vehicles cannot be directly applied to off-road
hybrid machines. One significant reason is that there are added degrees of
freedom with respect to how power can be recovered, exchanged and reused
in the different functions, such as drivetrain or work functions. This results
in more complex energy management strategies being derived. This paper
presents an analysis and preliminary conclusions for a proposed method
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to derive optimised online energy management strategies for a hydraulic
hybrid wheel loader. Dynamic programming is used to obtain optimal offline
energy management strategies for a series of drive cycles. The results are
used as examples to train a neural network. The trained neural network then
implements the energy management strategy and is used to make optimised
control decisions. Through simulation, the neural network’s ability to learn
the dynamic programming decision-making process is shown, resulting in
the machine operating with fuel consumption similar to that of the offline
optimal energy management strategy. Aspects of simplicity to model these
machines for dynamic programming optimisation, the data necessary to train
the network, the training process, variables used to learn the dynamic pro-
gramming decision-making process and the robustness of the network when
facing unseen operational conditions are discussed. The paper demonstrates
the simplicity of the method for taking into account variables that affect the
control decisions, therefore achieving optimised solutions.

Keywords: Construction machines, hydraulic hybrid, energy management
strategies.

1 Introduction

This paper presents the preliminary results from a research project aiming to
study suitable methods to obtain Energy Management Strategies (EMS) for
complex hybrid constructions machines. This research is motivated by the
fact that construction machines have added degrees of freedom compared to
on-road vehicles when it comes to hybridisation. In on-road vehicles, power is
mainly exchanged between the wheels, engine and/or energy storage system.
In construction machines, power can be exchanged between the wheels,
engine, work functions and/or energy storage system. Therefore, they are
more complex, and the degrees of freedom impose a greater challenge for
the derivation of Energy Management Strategies (EMSs). This highlights the
importance of research on methods to obtain Energy Management Strategies
for construction machines.

The EMS is a controller that defines where, how, how much and when
power from different sources is split or added to provide the power requested
for different functions. There are already several methods used to generate
EMSs for on-road hybrid vehicles ([1–3]), e.g., Dynamic Programming,
Equivalent Consumption Minimisation Strategy, Rule-based EMSs, Fuzzy-
logic Controllers, Model Based EMSs and others.
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The EMSs obtained through each method differ in their capacity for
online implementation, optimality, coverage of operational conditions and
ease of realisation for complex systems. Therefore, not all of them are promis-
ing for construction machines. However, it is expected that the methods
could be adapted and/or combined to generate suitable EMSs for construction
machines. This approach seems to be true, as argued in [3–9].

As an initial study, this paper presents a method to derive optimised
online energy management strategies for a parallel hydraulic hybrid wheel
loader. Online terminology is used to define that the controller does not
have prior knowledge of the complete drive cycle. In Section 2, some of the
methods encountered in the literature are presented and their applicability to
construction machines is discussed. Section 3 describes the method that is
the subject of this paper. Section 4 presents the case study used to evaluate
and discuss the proposed method. Results and discussions are presented in
Sections 5 and 6, followed by the conclusions.

2 Methods to Derive Energy Management Strategies

A few methods to obtain EMSs are described in the sequence, with a focus
on construction machines. Several authors ([1, 4, 7, 10, 11]) divide these
methods into two main categories according to the resultant EMS, depending
on whether they are optimisation-based or rule-based EMSs. On the other
hand, [2] and [3] choose to classify the methods in terms of whether they
result in online or offline EMSs. This classification is adopted in this paper,
and various methods are presented in Figure 1. In this paper, not all the
existing methods are discussed.

 
Figure 1 Classification of methods to obtain Energy Management Strategies, adapted
from [2] and [3].
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Some of the optimisation-based strategies are capable of finding the
global optimal solution but require full a priori knowledge of the drive cycle;
therefore, they cannot be implemented online and are also limited to a specific
drive cycle. However, they usually serve as a benchmark to analyse, tune,
evaluate and/or propose other optimised online EMSs ([1, 2, 6, 11–14]). One
of such methods is Deterministic Dynamic Programming (DP).

A description of DP can be extracted from [15] and [16]. DP is a
mathematical technique used for the optimisation of multi-stage decision-
making processes. Such decisions cannot be viewed in isolation because the
cost of the present decision must consider the cost of future decisions. DP
at each stage ranks decisions based on the sum of the present cost and the
expected future cost. It requires a discrete dynamic model of the system and
a cost function that is additive over time. This dynamic model expresses the
evolution of state variables, under the influence of decisions made at discrete
time instants. It is capable of finding the optimal decision-making policy for
the stages; this policy minimises the total cost function over the stages.

DP is applied to the development of hybrid vehicles to find a global
optimal EMS for a given drive cycle that results in minimum fuel/energy
consumption. The resultant EMS could be, e.g., the law defining how power is
split between the engine and the hybrid system to meet the power requirement
at the wheels along the drive cycle. DP has a high computational cost
and requires a priori knowledge of the power demand; therefore, it is not
implementable online.

A few examples of the application of DP to obtain EMSs for construction
machines are found in the literature. Reference [13] develops an EMS for a
wheel-loader with hybrid power-split transmission. The authors adopted DP
and made comparisons using a Rule-based (RB) approach.

Reference [12] addressed the problem of combined design and EMS
optimisation for a parallel hybrid wheel loader. DP and RB strategies were
formulated to evaluate the combined optimisation approaches in terms of
optimality and computational load.

According to Figure 1, online strategies are further divided into
optimisation-based and rule-based strategies. Examples of methods that
result in optimisation-based online EMSs are: Equivalent Consumption Min-
imisation Strategy (ECMS), Stochastic Dynamic Programming (SDP) and
Artificial Neural Networks (NN).

One way of achieving a close-to-optimal online EMS is by using results
from offline optimisations as inputs for supervised learning algorithms.
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According to [11], algorithms such as Artificial Neural Networks could be
used to learn an EMS.

Reference [17] states that Artificial Neural Networks (NN) provide a
practical method for learning from examples. The author describes their
structure as a densely interconnected set of simple mathematical units (neu-
rons). With a network composed by several layers of parallel units, it is
possible to approximate complex functions, in this case the EMS.

Reference [18] proposed and investigated an EMS based on DP and NN
for a hydraulic series hybrid on-road vehicle. An NN was then trained to
reproduce the DP’s optimal accumulator pressure trajectory based on the
vehicle’s velocity. It demonstrates that, if the optimal accumulator pressure
trajectory is known, then an NN-based control scheme can achieve near
globally optimal fuel efficiency. Similar approaches have been used by other
authors for similar cases ([11, 19–22]).

The most widely used EMSs in hybrid construction machines are the
Rule-based (RB) ones due to their high reliability and easy realisation [5].
They are heuristic strategies implemented as “IF-THEN” rules. Human
expertise, intuition, operational boundaries, mathematical models and safety
considerations determine the rules ([1] and [11]).

Rule-based (RB) strategies are characterised by lower computational
requirements, simplicity and easier applicability online, at the cost of subop-
timality [1]. Another unfavourable characteristic is the required development
effort when using them for complex machines that require many variables to
be monitored and control decisions to be made.

According to [2], there is a possibility that the control rules can be made
detailed and complex enough to take care of any event that may affect the
vehicle’s operation. This may be true for less complex vehicles but could be
a difficult task for complex construction machines.

The literature review showed that Rule-based EMSs have already been
developed for wheel loaders. Reference [23] implemented an RB-EMS for a
parallel hybrid wheel loader. Reference [13] used DP as a benchmark to build
an RB-EMS for a power-split hybrid wheel loader. Similarly, [12] used DP to
derive an RB-EMS strategy for a hybrid wheel loader.

For a parallel hydraulic hybrid wheel loader, reference [24] developed an
RB-EMSs and an Equivalent Fuel Consumption Minimisation (ECMS) EMS.
The author compared the fuel consumption for each strategy for different
drive cycles. Results highlighted the simplicity of RB-EMSs compared to
ECMS and also their smaller cycle-dependency if compared to ECMS.



416 H. Raduenz et al.

Taking into consideration the methods discussed above and the classifi-
cation presented in Figure 1, it is possible to make a comparison between the
different resultant EMSs. Online operation, optimality and required data are
discussed.

Regarding their applicability to online operation, it was seen that NN-
EMSs and RB-EMSs result in EMSs that do not require a priori knowledge
of the drive cycle during operation, and therefore can be applied online. On
the other hand, an EMS is only obtained through DP if there is full a priori
knowledge of the drive cycle and thus this method cannot be applied online.

Despite it not being possible to use DP online, EMSs generated using
this method are globally optimal. NN and RB can be designed and optimised
with prior information of drive cycles, but these drive cycles will probably
not occur online. Therefore, EMSs generated with these methods will not
operate in a globally optimum way online because the drive cycles will not
match exactly.

Regarding the data necessary for each method, it is seen that DP requires a
system model that is correct enough to determine accurate control decisions,
but not over-detailed in terms of state and control variables, in order not to
demand excessive computational power to run the optimisation. NN requires
a fair number of training examples and can quite easily have additional
variables included as inputs to improve the accuracy of the network. EMSs
of RB type can be made simple, but in a reasonable amount of time they
cannot be made as specific as possible to grasp all the nuances or consider all
the variables to produce correct control decisions. At the same time, results
from DP optimisation are not easy to interpret. Therefore, to use them as a
benchmark for the development of RB strategies might require a significant
development time.

3 The Proposed Method

In this paper, two methods are combined to generate optimised online energy
management strategies for construction machines. Due to its capacity to
determine globally optimal policies for multi-stage decision-making pro-
cesses, Dynamic Programming (DP) is used as the optimisation technique.
The Neural Network (NN) is the mathematical technique chosen to learn the
decision-making process from DP and to implement it in online operation as
an EMS. Figure 2 presents the process used to obtain EMSs from DP and NN.

With the suitable machine model to hand, several distinct machine drive
cycles are simulated using DP. The optimisation results will contain the
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Figure 2 Representation of the process to obtain EMSs from DP and NN.

variables of the machine model plus the optimal control decisions, e.g.
defining whether energy is used from a main source or from a secondary one.
The optimal control decision is the target function that the neural network is
expected to learn.

Not every variable in the model has an influence on or directly affects
the decision-making process. It is necessary to evaluate and select the ones
that might affect the control decisions. A set of variables is selected to be the
attributes, also called features, which are the inputs provided to the network,
from which it will approximate the target function.

Once the attributes are defined, they are used for the neural network
training. During the training process, neuron weights and biases are adjusted
based on errors that are backpropagated from the network output. The error
is a result of the comparison between the network’s output and the desired
target function. After the training process, it is expected that the network will
be capable of taking control decisions based on online measurements, leading
to increased machine efficiency.

4 The Case Study

A parallel hydraulic hybrid wheel loader is used to implement, test and
evaluate the proposed method. The machine concept is presented in Figure 3.
It is expected that the machine will have higher efficiency by recovering and
reusing braking energy.

The goal of using this concept is to reduce the torque converter energy
losses that mainly occur due to the high converter slip during the bucket-
filling operation.

A quasi-static, backwards-facing model of the machine is used for the
optimisations and simulation. The model includes the combustion engine
(ICE), work functions as a pump (P1) supplying hydraulic power, the torque
converter (TC), the transmission, the drivetrain and the parallel hybrid system
as secondary energy source. This contains the hydraulic pump-motor (PM),
the accumulator and valves. The model is the same as the one presented
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Figure 3 Parallel hydraulic hybrid wheel loader concept (adapted from [12]).

by [12]. Its inputs are the torque and speed at the wheels and the power
consumed by the work functions and auxiliary functions. It has two state
variables, the accumulator State of Charge (SOC) and the displacement of
the PM.

By controlling the PM displacement setting as the control variable, the
energy recuperation or reutilisation is performed. The objective is to deter-
mine, first through optimisation and then through the neural network in online
operation, the displacement setting that leads to optimal fuel consumption.
This is the resultant EMS.

A fuel consumption optimisation problem is formulated as shown by
the authors in [12]. Due to the discrete nature of DP, it outputs the optimal
displacement setting as discrete values for the whole drive cycle; this is the
optimal EMS. The optimisation problem is implemented in a DP tool in
Matlab, which can be found at [25].

A framework that implements the process illustrated in Figure 2 was
developed in Matlab. Functions available in Matlab for designing, training
and evaluating neural networks were used. The machine’s operation with the
trained neural network as the controller for the PM displacement setting was
simulated for the reference drive cycle.

4.1 Data, Network and Training

The supervised training of the network requires a large number of examples,
also called instances. This is to increase their ability to find generalisation
rules that are also stable in unseen cases that were not provided to them during
the training.

According to the process illustrated in Figure 2, the first task is to
have drive cycle data. A drive cycle containing data recorded from three
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Figure 4 Reference and generated drive cycles for the neural network training and evalua-
tion.

short-loading cycles of a wheel loader is used as reference. Randomisation
factors are applied to the reference drive cycle to generate more drive cycles.
This is valid to a certain extent because short-loading cycles of wheel loaders
are repetitive. On the other hand, one could argue that this method is not
suitable to generate sufficient training data because, if a large number of
cycles is used, they would in the end just be averaging around the reference
cycle. The training process outcome would be a network trained for the
reference cycle and not for different scenarios. Therefore, to reduce this
effect, only ten cycles are generated. Machine speed data for a number of
cycles, including the reference cycle, is shown in Figure 4.

In the following task, according to Figure 2, the machine model was
applied, together with the ten cycles in the DP optimisations, to obtain the
optimal control decisions and the variables from which the attributes are
selected.

According to Figure 2, after the optimisations, the task is to select the
attributes that will be inputs for the network. A small number of these avoids
an excessively large network. Consequently, only the variables that seem
to have a direct influence on the control decisions are selected. The target
function and the selected attributes are listed in Table 1.

Tests were carried out using more or fewer attributes than those presented
in Table 1. With fewer attributes, the network could not approximate the target
function in an acceptable manner. With more attributes, the network did not
significantly improve the target function approximation.

The subsequent task is the network training. Here, data from each DP
optimisation provides the attribute values and the respective optimal control
value for each instance. These are the examples for training the network. One
instance is the information from one time-step sample of the optimisations;
there is no time-related information provided to the network. The training



420 H. Raduenz et al.

Table 1 Target function and attributes for the neural network training
Target Function Symbol
Pump/Motor Displacement Setting u

Attributes (Network Inputs)
Pump/Motor Displacement x1

Accumulator SOC x2

Machine Speed vwheel

Machine Traction Force Fwheel

Kick-Down Signal KD

Transmission Gear Ratio itra
Work Functions Power PWH

Engine Speed nICE

Engine Torque TICE

process is carried out in Matlab using the available training functions. The
reference cycle is not used for training, but is used for evaluation of the
training.

In this study, a feedforward network was used. To increase its accuracy,
instead of designing it to predict a continuous value for the control signal,
the same discretisation from the DP control variable is applied to its output.
This means that there is the same number of output neurons as discretised
control values. It is a classification network in which the output neuron with
the highest value determines the control signal value, u. Several tests were
carried out with a continuous value output network; however, they were not
able to achieve a target function approximation as good as that of a discretised
output network.

Regarding the size of the network, reference [25] mentions that a large
network, with many neurons and layers, might reproduce noise contained in
the data and move away from generalisation. The selected neural network
contains 9 inputs, 31 neurons at the hidden layer and 21 neurons at the output
layer. The network training process initialise with random initial values for
the weights and biases. Several trainings are made until a satisfactory and
acceptable result is achieved.

Once the trained network is selected, it is used to control the wheel
loader hybrid system in a forward-facing simulation. Figure 5 presents the
model simulation process using the neural network as the energy management
strategy.

During simulation, drive cycle data (~ci), state variables from the previous
time-step (~xi−1) and control signals (~ui) are provided as inputs. The model
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Figure 5 Model simulation.

computes the new state variables (~xi) and dependent variables (~yi). From the
cycle data, new states and dependent variables, the attributes are calculated
for the neural network (NN), which then calculates the new control signal
that is used in the next time-step.

4.2 Comparison with a Rule-based EMS

In order to compare the network’s performance, a Rule-based EMS was also
implemented. It is the same as the one presented in [12]. The objective is
to have an EMS that is as simple as possible. Therefore, the following three
rules are defined:

• Charge energy storage with braking energy;
• Discharge energy storage when KD active;
• Discharge energy storage for high-traction torque.

Charging the energy storage with engine power is not allowed. Rules
are also added to stop the discharge when pressure is approaching the
accumulator’s pre-charge pressure and to stop charging when approaching
the maximum pressure. The discharging and charging rates are set to max-
imum by controlling the PM’s displacement setting (x1) to 1 or −1. This
corresponds to the idea of fully using the stored energy for the bucket filling.

5 Results

The output of the trained neural network (u) is used to control the displace-
ment setting of the parallel pump/motor (x1) in a simulation framework, as
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Figure 6 DP-EMS – Machine Speed vs. SOC.

shown in Figure 5. The network’s output control actions result in the energy
management.

Results from the Neural Network Energy Management Strategy (NN-
EMS) are compared with the Dynamic Programming Energy Management
Strategy (DP-EMS) and the Rule-based Energy Management Strategy (RB-
EMS). The reference drive cycle, which was not used for training the
network, is used for evaluation.

First, the presented results are used to show that DP-EMS is consistent
and can be used as a reference for training and evaluation of the network
performance. Figure 6 presents a comparison of the machine speed and
accumulator SOC.

When the machine is reversing and brakes, at around 60 to 64 seconds,
the accumulator is charged. Between 70 and 75 seconds, the machine is in
bucket-filling phase during which the accumulator is discharged. These two
main events exemplify the consistency of the optimal EMS from DP.

The first comparison between the DP-EMS and the NN-EMS is related
to the capacity of the network to learn the DP decision-making process. The
results are show in Figure 7.

For this setup, the NN-EMS was able to accurately predict the DP control
decisions during around 85% of the drive cycle. This shows that the network
was able to generalise the target function and learn how to control the
machine for unseen cases, since the reference cycle was not used for training.
This can be seen either in Figure 7a, where the control signals are equal
for most of the drive cycle, or in Figure 7c, where the resultant SOC either
increases or decreases around the same time in both EMSs. It becomes clear
in Figure 7c that there is room for improvement in terms of the intensity of
charges and discharges of the secondary energy source for certain parts of the
cycle.
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Figure 7 Comparison between DP-EMS and NN-EMS.

From Figure 7 it can be affirmed that the proposed process resulted in
a neural network that learned the DP decision-making process with a high
degree of accuracy for most of the drive cycle. This can be translated for this
specific case study as: the NN-EMS learned when to recover or reuse braking
energy.

Figure 8 presents a comparison between the PM displacement setting (x1)
and SOC (x2) for the DP-EMS, the RB-EMS and the NN-EMS.

Both the NN-EMS and the RB-EMS are capable of controlling the
secondary energy source similarly to the DP-EMS. At certain moments, the
NN-EMS shows a behaviour more similar to the DP-EMS, at others the
RB-EMS shows a more similar behaviour. This is observed in Figure 8.

Between 15 and 20 seconds in Figure 8a, it is seen that the DP and RB
control actions make the displacement of the PM go to zero and back to
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Figure 8 Simulation results for EMS comparisons with respect to: Pump/motor displace-
ment and accumulator state of charge.

Table 2 Fuel consumption reduction compared to DP-EMS
NN-EMS RB-EMS

Fuel consumption reduction [%] −2.0 −3.5

maximum. At the same time, the NN control action maintains maximum
displacement. The outcome of the NN-EMS different control action is a
higher accumulator charge, as observed in Figure 8b during the same interval.
Despite the following NN-EMS control actions, between 20 and 35 seconds,
being basically the same as the DP-EMS, the deviation in SOC is still present.
This shows that even when the SOC is not the same, the NN learned when
and how much of the stored energy to recover or reuse for most of the drive
cycle.

The results for volume of consumed fuel are presented in Table 2. They
are relative to the optimal fuel consumption from DP-EMS. The negative
value means that they had higher fuel consumption when compared with the
optimal DP-EMS. The NN-EMS resulted in lower fuel consumption than the
RB-EMS.

The objective of this case study was to demonstrate the implementa-
tion of an optimised online energy management strategy based on neural
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networks and dynamic programming. It was demonstrated that a similar
energy management capacity can be achieved, resulting in lower fuel con-
sumption reduction, when compared to an RB-EMS. However, there are still
a few considerations that must be mentioned regarding the NN-EMS and its
implementation.

6 Discussion

For this case study, both the RB-EMS and the NN-EMS structures are
very simple and therefore easy to implement. Each strategy can be further
developed to yield even better results.

Considering an even more complex construction machine, it might
become significantly more complex to derive and implement the RB-EMS
strategy, because more rules must be formulated to cover additional scenarios.
On the other hand, NN-EMS would handle more control variables in an easier
way. It is basically necessary to change the number of neurons and adapt the
respective output neurons for the extra control variables. This would allow
the NN-EMS to still perform closer to optimality.

It is expected that the NN-based method can be applied to different
machine concepts. The requirement is to build consistent machine models for
DP optimisation, to have enough drive cycles to cover different operational
conditions and to design and train an NN by providing the necessary variables
to allow it to learn the DP optimal decision-making process.

One downside is that, even if the NN learns the DP decision-making
process, it is still difficult to interpret the EMS and the decisions made.
According to [17], the weights learned by the network are often difficult for
humans to interpret; learned neural networks are less easily communicated to
humans than learned rules.

Another point to be discussed is the representativeness of the model used
for DP. Due to the required computational power, models for DP optimi-
sations cannot account for many state variables. However, they can capture
important dynamic effects that directly affect the operation of the hybrid
system.

When it comes to the selection of variables to be provided as inputs for
the NN learning, it is desirable to use as few as possible to reduce the required
computation effort. Therefore, it is necessary to identify which have greater
influence on the control decision. This requires knowledge about the machine
and its behaviour. Such knowledge could be retrieved and identified from the
DP optimisation results as well.
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In order to apply the proposed method to generate an EMS for real-life
operation, a few aspects must be taken in account. The first concerns the
variables used for the training; it is possible to measure all of them from the
machine, and none of them is a control command from the driver. The second
concerns the data used for training and, clearly, more data is necessary to train
a network for real application. A final aspect is that such networks should be
accompanied by a safety structure that prevents incorrect outputs from being
applied to the system.

7 Conclusions

This paper presents a method to derive optimised online energy management
strategies for construction machines. Despite presenting a case study for
a parallel hydraulic hybrid wheel loader, the method seems to suit other
machines as well. This is because it depends on a model for Dynamic
Programming optimisations which can be made for different machines, and
also because different signals that are relevant for other machines can easily
be used as inputs for a neural network.

It was shown that a simple neural network is able to reproduce in online
operation the decision-making process of dynamic programming with high
accuracy. The results from the Neural Network Energy Management Strategy
were closer to optimal and better than those from the Rule-based Energy
Management Strategy. This is also because it takes into account more vari-
ables and scenarios as inputs; therefore, it can generalise the target function
with greater accuracy than Rule-based Energy Management Strategies.
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Linköping University (LiU), Linköping, Sweden, in 2006. In 2008, he joined
Volvo Construction Equipment in Eskilstuna, where he is currently working
as a Research Engineer and has a Specialist role in the field of hydraulics. In
2017, he received the Ph.D. degree in hydraulics at the Department of Fluid
Power and Mechatronic Systems (FluMeS) at LiU.



Energy Management Based on Neural Networks 431

Petter Krus is a professor and head of division of Fluid and Mechatronic
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