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Abstract

In many exoskeleton applications where heavy lifting is involved (e.g. in
military or industrial applications) hydraulic actuators are used because of
their high power density. For such applications it is necessary to develop
compact and light hydraulic components so that the exoskeleton’s mass and
size are low and, therefore, wearing comfort is high and power consumption
is reduced to a minimum. Crucial components of hydraulic exoskeletons
concerning this weight aspect are hydraulic valves and particularly their actu-
ators, since conventional solenoids contribute the lion share of valve size and
weight. As one option to solve this weight and size problem the application
of smart materials such as piezo-ceramics to electrically actuate hydraulic
valves are seen. The contribution at hand deals with the systematic design of
a piezo-actuator which shall be used to switch a hydraulic valve. To overcome
the problem of very low strain of the piezo a mechanism for amplification
via a bistable buckling beam is analyzed analytically and numerically and
an actuator prototype is designed and manufactured. This paper intends to
carve out crucial challenges such as the requirements for snapping through of
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the buckling beam, the bearings of the beam and the integration of the piezo
stack.

Keywords: Piezoelectric actuator, Buckling beam, bistable, hydraulics,
exoskeleton.

1 Introduction

There is a great demand for compact and light-weight hydraulic actuators
which are used for example in exoskeletons (medical, military, etc.) [1].
By using smart materials such as magnetostrictive [2] or piezoelectric [3]
actuators one can increase the power density of the switching circuit of a
hydraulic valve thereby overcoming the need for heavy and highly dissi-
pative external electromagnetic actuators. The problem which arises when
using such actuator principles is especially the small displacement and the
nonlinear and hysteretic character of the active material. In literature there
are several solutions for these challenges. Hysteretic compensation is e.g.
done by introducing the well-known preisach model and generalizations
od it [4]. Problems that arise from the the small strain in piezo electric
actuators are typically solved by using mechanical or hydraulic amplification
mechanisms [5].

This paper discusses the design of a prototype for a piezoelectric actuator
used for a hydraulic seat valve. It tackles the displacement issue by intro-
ducing an amplification mechanism which is based on a buckling beam and
shows how to systematically design such actuators.

2 Specification

As described in the Introduction hydraulic actuators are used in many
exoskeleton applications. Some typical applications of exoskeletons are the
support of elevating and manipulating heavy loads or the enhancement of the
gait of a person. The human body is capable of applying several hundred
watts of mechanical power, hence, the exoskeleton, a device which acts as
a makeshift for natural movements, must be able to continuously provide
power of such order. In this work the starting point for deriving a reason-
able specification is to demand for the hydraulic power of the actuator to
be P = 800 W and for the system pressure to be p = 200 bar. The actuator
should act upon a 2/2 directional control poppet valve which is operated via
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pulse width modulation. Hydraulic power and system pressure given above
result in a flow rate of q = P/p of 2,4 liters per minute. Using the rule of
thumb 1 l/min ≈ 1 mm2 at 5 bar this results in an cross sectional area A
of 2,4 square millimeters. Given an assumed diameter d of 4 millimeters the
poppet’s stroke must be

hv = Av/(dvπ)1/cos(α), (1)

hence, approximately 200 micro meters. As the valve should be actuated
using pulse width modulation there is the necessity for the actuator to lift and
lower the poppet reasonably fast. Therefore, the switching force F is specified
as a typical value of 10 newtons.

Besides the quantitative specifications above also some qualitative con-
strains were introduced. Firstly, the mass and the size should be kept low
because of the mobile nature and of the exoskeleton. Secondly, the valve
should be bistable so that only the switching process and not the hold phase
in the end positions need energy. The following table shows all specified
parameters which represent the starting point of the actuator design.

Table 1 Parameters for specification
Quantitative Specifications

Description Symbol Value

Hydraulic power P 800 W
System pressure p 200 bar
Actuation force F 10 N
Flow rate q 2,4 l/min
Switching time t <5 ms

Qualitative Specifications

Bistabel end points (on/off) of hydraulic valve
Small mass, e.g. 200 g
Small size, e.g. 50 mm × 30 mm × 20 mm

The above mentioned specifications – especially the demand for a com-
pact and light-weight hydraulic valve – suggests not to use an electromagnetic
actuator, as the power density of such actuators is low compared to e.g. mag-
netostrictive or piezoelectric actuators. Therefore, a piezoelectric actuator
was chosen to be integrated into the hydraulic valve.
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3 Design

3.1 Buckling Beam

Typical piezo actuators change length in the order of approximately 1000
ppm of their initial length by applying the maximum voltage (e.g. 100 volts
for low-voltage piezo stacks). This small change of size demands for ampli-
fication mechanisms in most applications which translates small amplitude
and high force into large amplitude and moderate force. Typical displacement
amplification principles are based on hydraulic or mechanical transmissions.
Latter have the advantage to keep design simple but show high sensitivity to
temperature as the piezo’s strain due to the electric field is only one order
higher than differences in thermal expansion between the piezo material
and a mechanical transmission made of steel. In this paper a mechanical
amplifying mechanism based on buckling of a beam is presented. Although it
also exhibits thermal expansion problems this will not further be addressed.
One way to compensate the thermal expansion effect is described e.g. in [6].

A mechanical mechanism based on a buckling beam was chosen for
amplification. Its transmission ratio is almost as high as for a toggle joint
but there is no need for a bearing at the joint in the center. In Figure 1 the two
principles are depict.

A buckling beam mechanism has two symmetrical buckling modes in
the positive and negative y2-direction which coincides with the design
specification which demands a bistable hydraulic valve.

The buckling beam can be modelled using a one-dimensional approxima-
tion and the relationship

M = E J κ(s) with κ(s) = d/ds(θ(s)). (2)

M is the bending moment, E and J the elasticity modulus and the geomet-
rical moment of inertia respectively. k(s) is the beams curvature at position s,
θ(s) is the angle between the deformed beam and the beam in initial position
and s is the coordinate of the arc length of the beam. By determining the
internal force variables (shear force and bending moment) of an infinitesimal
piece of beam and by setting the resultant to zero the following differential
equation can be derived.

EJ d2/ds2(θ(s)) +N sinθ(s) −Q cosθ(s) = 0 (3)

Note that the model derived in Equation (3) neglects the longitudi-
nal elasticity of the beam. In linear beam theory the harmonic functions
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Figure 1 Toggle joint and buckling beam with their transmission ratio ∆y2/∆x2 at a given
normal force N and a lateral force Q.

(sin and cos) are approximated by their first-order representatives. This leads
to a linear ordinary differential equation which is easy to solve but which
does not incorporate the bifurcation properties resulting in buckling solutions.
The nonlinear differential equation cannot be solved in closed form but can
be approximated by a third-order Ritz-Ansatz function for θ(s):

θ(s) = α(s3b3 + s2b2 + 1). (4)

The coefficients b2 and b3 are calculated to −6/L2 and 4/L3 respec-
tively by inserting proper boundary conditions of the differential equation
Equation (3). These conditions are 1. d/ds(q(s)) = 0 for s = L, i.e., the
curvature of the beam is zero at the end points (for s = 0 this is trivially
satisfied) and 2. q(s) = 0 for s = L/2, i.e., the beam’s tangent in the
center is parallel to its initial position before buckling which must be fulfilled
due to symmetry arguments. Therefore, α in Equation (4) is the angle of the
deformed beam at the end points and the only independent parameter of the
ansatz function. The energy of the complete (static) system can be represented
by three potentials: the potential of the normal force N (ΠN), the potential of
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the lateral force Q (ΠQ) and the potential of elastic deformation (ΠE).

Πtotal = ΠE + ΠN + ΠQ (5)

ΠE = E J/2
∫

[d/ds(θ(s))]2ds (6)

ΠN = N

∫
cos(θ(s))ds (7)

ΠQ = Q

∫
sin(θ(s))ds (8)

Approximating the sine function by its third-order polynomial series for
small angels and neglecting the lateral force Q(ΠQ = 0) two nontrivial
approximate solutions for the nonlinear differential equation can be found by
finding values of α for which the total potential energy (Πtotal) is extremal.
Both values for α have the same magnitude but different sign which cor-
responds to the two stable post-buckling solutions in positive and negative
y2-direction. They are a function of the applied forces (N, Q) and are real
and, therefore, physically valid in certain regions. For given lateral force Q,
the value for N at which the angle of the endpoints α gets real is the critical
normal force at which the beam starts buckling.

Figure 2 shows the numerical solution of the nonlinear differential equa-
tion at normal forces greater than the critical buckling force (solid lines) and
compares it to the approximate solutions obtained by the Ritz-ansatz (shown
as dotted lines). The values for the actual displacement ∆y2 is calculated
through scaling the value ∆y2 by the initial length of the buckling beam, L.
The diagram below in Figure 2, shows the transmission ratio of numerical
solution of the buckling beam γ = ∆y2/∆x2 for a scenario were no lateral
force is exhibited. Especially in the center where the highest displacement in
the y-direction takes place when buckled the transmission ratio is dependent
from the lateral force. This increases the compliance of the actuator, thereby,
resulting in a pressure dependence of the switching characteristics of the
hydraulic valve.

Following values were chosen for the buckling beam to fulfill all
requirements from the previous section:

The critical normal force, Ncrit, of the buckling beam in Figure 4 (with
parameters shown in Table 2) is approximately 55 newtons. In a quasi-static
scenario every newton exceeding the critical normal force is converted in a
lateral force scaled by 1/γ (the inverse transmission ratio). When the buckling
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Figure 2 Force versus displacement for a piezo stack at zero and maximum voltage which
is preloaded by a spring.

Table 2 Parameters for buckling beam
Quantitative Specifications

Description Symbol Value
Young’s modulus E 210 GPa
Length L 26 mm
Width B 10 mm
Thickness H 0.3 mm

begins (if the beam is infinitesimal perturbed in let’s say the positive y-
direction) the transmission ratio goes to infinity. For simplicity, this can be
shown for the transmission ratio of the toggle joint (compare to Figure 1 on
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the left hand side):

γ = L/2 sinθ/(1 − cosθ) ≈ L/θ for θ � 1. (9)

Therefore, the question on the dynamics of the actuator, i.e. how a mass
which is coupled to the buckling beam is accelerating under a certain normal
force acting on the buckling beam is non-trivial. It cannot be answered with
the insights gained above and demands for numerically solving the coupled
nonlinear dynamical system.

3.2 Piezoactuator

A simple standard model for a piezo stack is defined by the American national
standard IEEE Std 176-1987 [7]. It is based on linear piezoelectricity and lin-
ear elasticity theory, both coupled by their corresponding static coefficients.
In the one-dimensional case the state equations of the piezo stack can be
described by the equations

D = εE + cP σ (10)

S = cPE + cE σ (11)

where D is the electric displacement, E is the electric field, S is the strain
of the piezo, σ is the mechanical stress, cp is the piezoelectric coefficient,
cE is the elastic compliance coefficient and ε is the permittivity of the piezo
material. In one dimension the electric displacement, the electric field, the
mechanical stress and the strain can be described as

D = Q/(NA), E = U/h (12a)

σ = F/A S = X/(N h) − 1. (12b)

In Equation (12a) Q is the total electric charge on the piezo’s electrodes
stack, A is the area of one electrode, N is the number of piezo slices which are
stacked, U is the applied voltage to the piezo stack and h is the thickness of
one piezo slice in the stack. These simplified relations model the electrostatic
field only in the normal direction without considering stray effects at the
edges. Equation (12b) describe the mechanical relations where F is the
normal force which acts on the piezo and X is the length of the piezo at a
given voltage and stress. Inserting Equations (12) in (10) and (11) and solving
for X shows that the change in length vs. voltage and normal force is a family
of straight lines (Equation 13).

X −N h = UκP − F κE , κP = NAcP , κE = NhcE/A (13)
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Figure 3 Force versus displacement for a piezo stack at zero and maximum voltage which
is preloaded by a spring.

This simple model does not consider nonlinearities which arise from the
hysteretic nature of all piezo ceramics or from dissipative effects but is well-
suited for calculating the major properties of a piezo actuator during design
phase.

IEEE-Std model suggests a force characteristic of the piezo which is
shown as the blue lines in Figure 3 for zero and maximum voltage. In dynamic
applications the piezo stack has to be preloaded. This is because the laminated
ceramic material is sensitive when tensile stress acts upon it e.g. when the
stack is contracted. The preload can be established by a spring with a spring
constant which is at least one or two orders lower than the spring constant of
the piezo stack itself. This arises from the fact that a stiff spring would reduce
the effective displacement of the piezo stack (∆x1 in Figure 3) severely. From
this argument it follows that the lower the stiffness of the preload spring
the better the design. Of course there are natural constraints which shall be
discussed in the next few lines. To keep the design of the prototype simple
the preload spring was realized as a U-part in Figure 4. This implies that the
U-part not only has to act on the buckling beam but also has to make sure
that the piezo stack is preloaded properly. For the beam to buckle a force of
approx. 55 newtons has to be applied (see subsection A) and, therefore, with
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Figure 4 Piezo actuator prototype.

 
Figure 5 Piezo actuator prototype.

the gear transmission ratio of five the spring has to be preloaded at least with
425 newtons (150 newtons for preloading and 275 newtons for buckling).

3.3 Spring Element

The buckling beam is clamped in a U-shaped steel part. It not only holds
the beam in place but also has the function of, firstly, transforming the
displacement and force by a factor of approximately 5 and, secondly, acting
as a spring which preloads the piezo stack (see previous section) as well as
applying the normal force to the buckling beam. Figure 4 shows a photograph
of the manufactured device and a CAD model of the piezo actuator prototype.

The U-shaped part is designed to show a spring constant of 2 newtons per
micrometer which is approximately one percent of the stiffness of the piezo
stack itself (the necessity of which was described in the previous section).
Due to the fact that the piezo stiffness is much greater than the stiffness of the
preload spring the small displacement of the piezo stack will not significantly
change the preload force. Additionally, the preload force acting on the piezo
stack which results in a diminished displacement (see Equation 13) can also
be neglected.
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In Figure 5 on the right hand side the force diagram of the construction
is shown. Using the equilibrium of moments in the bearing it becomes clear
that

Fpreload = Fpiezo +N l2/l1 (14)

Therefore, for the buckling to be fulfilled (N > Ncritical) and the piezo
to be preloaded with approximately 150 newtons minimum the preload force
Fpreload was chosen to be 450 newtons with l2/l1 = 5.

As mentioned above the curved part of the U-shape was designed to act
as the preload spring. Considering the desired spring constant the parameter
b seen in Figure 6 of the part was calculated using the simple relation

∆φ/Lspring = Mb/EI, with E = B b3/12. (15)

Using the relations ∆φ = atan(∆x1/s) = ∆x1/s for small angels and
Mb = F s the spring stiffness can be calculated by taking the derivative dF/dx.
This value was set to 2 newtons per micrometer to get the value for parameter

b = 3
√

(12s2LκB/(EB)), (16)

where κB is the preload spring constant. This gives the value b = 2,9 mm.
The optimization procedure for b in SolidWorks aiming the spring constant
value of 2 newtons per micrometer results in a value for b of 2,8 millimeters
which was chosen for the final design of the prototype.

Figure 6 Piezo actuator prototype.
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For the design of the spring element not only the theoretical spring
constant but also the maximum stress in the material was considered. For
this reason the edges of the U-shape were designed bevel-edged.

3.4 Bearing

The buckling beam is mounted between the upper and lower part of the U-
shape and is pivoted to sliding contact bearings. Three different bearings
where manufactured: a steel bearing with V- and a U-shaped cross section
and a V-shaped jewel bearing made out of rubies. The latter one are typically
used in high precision micro-mechanical parts such as watches, compasses
or gyroscopes. In these applications – where normal forces are low - they
exceed other materials when it comes to static friction as well as wear [8–11].
However, to the best of the author’s knowledge there exist no published stud-
ies about friction coefficients in V-shaped jewel bearings with high normal
stresses in literature. Therefore, this concept was incorporated in the piezo
actuator prototype.

The massless buckling beam pinned at both ends with a valve poppet
(modelled as a point mass) in the center of the beam has a linearized
resonance frequency of approximately

fres = 1/(2π)
√

(k/m), with k = EJ6/(L/2)3 (17)

For a mass m of 10 gramms the resonance frequency fres yields approxi-
mately one-hundred Hertz. For a theoretical periodic behavior (buckling from
one stable position to the other stable position and back again) the amplitude
∆ of the angle would be approximately two degrees. Introducing the the
friction coefficient µr the dissipated energy in the bearing in one cycle can
be estimated:

Πfrict = 2Mr∆ = N µrH ∆ (18)

The stored energy in the system in the buckling position (at the beginning
of an aforementioned cycle) is approximately

ΠE = 12 E J ∆2/(5L) (19)

This leads to a quality factor of

Q = 2πΠE/Πfrict = 2π EBH 2∆/(5 L N µ) (20)

It lays between 3,6 (for high µr of 0,5) and 18,3 (for low µr of 0,1). The
result of this severely simplified approximation highlights the necessity of
low-friction bearings in this prototype.
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Figure 7 Jewel bearing assembled in prototype (left) and mounted on the sapphire chip view
from top and from the front (right).

The jewel bearing was manufactured by gluing two rubies on a sapphire
chip and assembling it to the bottom and top part of the end pieces of the
U-shaped part. In Figure 7 the mounted bearing as well as the top and side-
view of a jewel bearing is shown.

4 Conclusions

The paper at hand show a systematic way how to design a piezo actuator for
hydraulic valves which uses a bistable buckling beam as displacement ampli-
fication mechanism. It shows how to model and approximate the solution of
the buckling beam, introduces a piezo standard model to describe the piezo
stack and provides a possibility to overcome friction in the pinning beam
bearing.
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