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Abstract

Spool valves are subject to a deteriorated performance and noise due to
the occurrence of cavitation phenomena. It is well known that cavitation
effects the performance of the component and causes an unwanted noise.
The noise sound levels are influenced by many parameters like geometries
and opening areas. In this paper a simple valve body made in plexiglass
has been tested analyzing the cavitating area in U-grooves. A dedicated
test rig has been equipped with a high-speed camera to acquire images of
the phenomenon. A numerical three-dimensional CFD model has been built
up using the commercial code. Experimental imagines have been compared
with the numerical results showing a high accuracy on the prediction of
the gaseous cavitation. The numerical results allow separate examination
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of several distinctive flow characteristics, which show favorable consis-
tency with experimental observation and a periodic evolution of cavitation
structure.

Keywords: Gaseous cavitation, spool valve, 3D – CFD numerical approach,
experimental tests.

Nomenclature
Acronym Description
CAD Computer-Aided Design
CFD Computational Fluid Dynamic
EDGM Equilibrium Dissolved Gas Model
EFD Experimental Fluid Dynamics
NCG Noncondensable gas
Symbol Description Unit
Cc Cavitation condensation coefficient [−]
Ce Cavitation evaporation coefficient [−]
Df Diffusivity of the vapor mass fraction [m2/s]
Dfd Diffusivity of the dissolved NCG [m2/s]
fg Mass fraction of free NCG [−]
fd Mass fraction of dissolved NCG [−]
fd,equil Equilibrium gas mass fraction of dissolved NCG [−]
fd ,equil ref Equilibrium mass fraction of the dissolved NCG at

the reference pressure
[−]

fv Mass fraction of the vapor [−]
h Kinematic flow gradient [−]
k Turbulent kinetic energy [J/kg]
~n Surface normal [−]
NCGtot Total noncondensable gas mass fraction [−]
p Pressure [Pa]
pin Inlet Pressure level [Pa]
pfd,equil ref

Reference pressure for the dissolved gas equilibrium
mass fraction.

[Pa]

pout Outlet pressure level [Pa]
pv Phase-change threshold pressure [Pa]
R Radius to pressure relief groove [m]
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Symbol Description Unit
Re Vapor generation rate [−]
Rc Vapor condensation rate [−]
Sfd Source of dissolved NCG [kg/m3]
T Temperature [K]
~v Fluid velocity vector [m/s]
~vσ Fluid velocity vector [m/s]
Greek letter Description Unit
µt Turbulent viscosity [Pa·s]
ρ Density of mixture [kg/m3]
ρg Density of gas [kg/m3]
ρl Density of liquid [kg/m3]
ρv Density of vapor [kg/m3]
σ Surface of control volume [m2]
Ω Control volume [m3]
σf Turbulent Schmidt number [−]

1 Introduction

It is known that the fluid control is one of the most important function of
the hydraulic system and the hydraulic valves are the preset elements to set
pressure, regulate or direct a flow [1].

Nowadays, spool valves are the most common valves to direct a flow;
directional control valves are utilized in many applications and fields (indus-
trial, mobile, marine, etc.) and their performance are, usually, evaluated in
terms of pressure drop, operating limits, switching times, power consump-
tion, etc. However, in some particular application the noise generated by
those components becomes crucial. Gaseous cavitation (aeration or pseudo-
cavitation) is in fact a source of noise.

Many studies have been focused on the improvement of the propor-
tional valve performance focusing the attention on the fluid bourse noise.
Cavitation areas are usually located in the grooves (U-grooves, V-grooves)
that connects the ports each other’s. As said, there are two major problems
accompanied with occurrence of cavitation one is related to the noise one to
the deterioration of the component’s performance.

Analysis on the sound levels and the noise spectrums helps on the
investigation on the cavitation beginning [1].
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Martin et al. [2] presented a study on spool valves with an experimental
investigation to look at the cavitation in aircraft hydraulic systems. The pur-
pose of the investigation was to identify mechanisms which lead to damage.
The test facility, used by authors, allowed the measurement of parameters in
order to identify non-cavitating and cavitating conditions.

Oshima et al. [3–6] studied experimentally the cavitation phenomenon in
two poppet valves. Authors demonstrated that the geometry mostly effects on
the cavitation onset, noise and induced choking phenomenon in the flow rate
characteristics.

In this paper the cavitation in a spool valve is analyzed using experimental
tests, the results of numerical simulations obtained using a 3D CFD method-
ology will be shown in the next paragraphs. The comparison between data
will be presented with a high accuracy of the numerical model that could
help for the understanding of the cavitation location and for supporting the
designer to avoid this phenomenon.

2 Experimental Setup

An open center directional valve (shown in Figure 1a) has been analyzed in
this paper. The valve body of a geometry already on the market has been
redesigned in plexiglass to be easily accessible via highspeed-camera. The
areas of interest are located in the spool grooves and will be later described.

The dedicated test rig has been used for this research; the layout is
shown in Figure 2. Two pressure transducers (AVL LP11DA) to measure
the upstream/downstream pressure of the valve have been placed in the
manifold clearly shown in Figure 1b. The transducer located at the inlet
port has a measuring range of 0–30 bar while the second (outlet port) has
a measuring range 0–5 bar. The spool position has been manually controlled
by a micrometer, also shown in Figure 1b.

The plexiglass model in Figure 1b consists of two ports, a body and
a spool (in Figure 3a). The spool is moved inside the valve body thought
the micrometer in Figure 3b; in this way it is possible to measure with a
good accuracy its position and, consequently, act on the metering area. The
generation of a gaseous cavitation has been observed for spool stroke of 2 mm
therefore, for this spool position, experiment have been done using a high-
speed camera. The high-speed camera is a FastCam Mini AX100 and has
been placed in front of the valve, looking at the area of interest, shown in
Figure 3a. The camera delivers 1-megapixel image resolution (1024 × 1024
pixels) at frame rates up to 4,000 fps.
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Figure 1 Valve under investigation.
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Figure 2 Test ring layout.

A first pictures is shown in Figure 4 where, for the same spool opening
stroke of 2 mm, two working condition have been analyzed, one with a delta
pressure between the ports of 2 bar (on the left) and 18 bar (on the right)
respectively. Looking at Figure 4b the bubbles are clear and defined while
when the delta pressure is low, like in Figure 4a, there is a complete absence
of the cavitation phenomenon.
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Figure 3 Spool valve – Area of interest.

Figure 4 Comparison between two working condition for a spool stroke of 2 mm.
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The next paragraph is dedicated to the description of the numerical
methodology used to study the gaseous cavitation phenomenon.

3 Numerical Model Description

The gaseous cavitation phenomenon in the U-groove of the valve under
investigation has been also investigated using Simerics MP+r (developed
by Simerics Inc.r), a 3D CFD code that solves the fundamental conservation
equations of mass, momentum and energy. The model includes also accurate
physical models for turbulence and cavitation.

The extracted valve fluid volume is shown in Figure 5 where ports T
and P are respectively of the low and high pressure; in figure also the spool
volume and the boundary condition surfaces are highlighted. The extracted
fluid volumes have been meshed using the grid generator of Simerics MP+r

that is based on body-fitted binary tree algorithm. The meshed volume is
shown in Figure 6. while in Figure 7 the refinement zone applied.

A mesh sensitivity analysis has been done increasing and decreasing the
cells number in the area of interest. In Figure 7a comparison between a

Figure 5 Valve extracted fluid volume.
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Figure 6 Valve fluid volume: Mesh.

model of 1.4 million of cells (Figure 7a) and the final model (Figure 7b);
that consists of 3 million of elements. Other models with finer mesh have
been analyzed and compared with the model in Figure 7b; however, those
simulations required supplementary time with almost the same numerical
results. For this reason, the model in Figure 7b has been chosen for this
analysis.

The code includes many cavitation models to predict the cavitation,
aeration and liquid compressibility. In this paper the Equilibrium Dissolved
Gas Model (EDGM) for cavitation has been selected; this model is based on
the work of Singhal [8], based on Navier-Stockes equations for variable fluid
density and the Rayleigh-Plesset equation.

The original cavitation model proposed by Singhal et al. describes the
vapor distribution using the following formulation:

ϑ

ϑt

∫
Ω(t)

ρfvdΩ +

∫
σ
ρ((~v − ~vσ) · ~n)fvdσ

=

∫
σ

(
Df +

µt
σf

)
(∇fv · ~n)dσ +

∫
Ω

(Re −Rc)dΩ (1)
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Figure 7 Mesh refinement in the U-groove: comparison between a model of 1.4M cells and
a model of 3M cells.

Where Df is the diffusivity of the vapor mass fraction and σf is the
turbulent Schmidt number. In the present study, these two numbers are set
equal to the mixture viscosity and unity, respectively. The vapor generation
term, Re, and the condensation rate, Rc, are modeled as:

Re = Ce

√
k

σl
ρlρv

[
2

3

(p− pv)
ρl

] 1
2

(1− fv − fg) (2)

Rc = Cc

√
k

σl
ρlρv

[
2

3

(p− pv)
ρl

] 1
2

fv (3)

The Singhal’s cavitation theory includes the mass fraction of Non-
Condensable Gas (NCG) in the liquid. The variable mixture (liquid, liquid
vapor and NCG) density ρ is calculated in according to the Equation (4):

1

ρ
=
fv
ρv

+
fg
ρg

+
(1− fv − fg)

ρl
(4)

The NCG in the hydraulic fluid can be found as a free and a dissolved
state. The free NCG mass fraction fg has not been considered constant, but
its evaluation has been achieved adding an additional transport equation of
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the gas (5).

ϑ

ϑt

∫
Ω(t)

ρfddΩ +

∫
σ
ρ((~v − ~vσ) · ~n)fgdσ

=

∫
σ

(
Dfd +

µt
σf

)
(∇fd · ~n)dσ +

∫
Ω

ρ(fd − fd,equil)
τ

dΩ

+

∫
Ω

(Sfd)dΩ (5)

Where the equilibrium gas mass fraction fd ,equil depending on the current
cell pressure, has been evaluated by the following equation:

fd ,equil =
p

pfd,equil ref

· fd ,equil ref (6)

Hereby, the NCG tot sum of free gas mass fraction and dissolved gas mass
fraction is constant:

NCG tot = fg + fd = const . (7)

Under these equations, only one equation has been solved for the dis-
solved gas fd; the free gas fg is subsequently solved based on the NCG tot

being constant [9].
Numerical simulations have been run in the same working condition of

the experimental tests. The boundary conditions are listed below:

• Total pressure at inlet that varies in the range [1–18] bar abs;
• Static pressure at outlet of 1 bar abs;
• The fluid is a Hydraulic oil ISO VG46;
• Variable dynamic viscosity;
• Variable liquid bulk modulus (linearly dependent with pressure);
• Dissolved air 4% vol;
• Undissolved air 0.1% vol;
• Temperature 318 K.

The model does not include heat transfer; therefore, the temperature is
assumed to affect the oil viscosity and density. The “standard k-ε” turbulence
module has been used to predict the effective turbulent viscosity [7–10].

Simulations have been run on an Intel(R) Core (TM) i7-7700HQ CPU
2.80 GHz 16 cores, with a computational time of around 20 minutes per
simulation; it is important to underline that the convergence criteria for the
flow is of 10−5 while for the turbulence and cavitation is of 10−4.
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Figure 8 Numerical model results and experimental data comparison.
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4 Results and Discussion

The model, as said, has been run varying the pressure at the inlet side of the
port P. The experimental data and simulated results have been compared and
showed in Figure 8 for each analyzed working condition. Figure 8 shows,
for some working conditions, the experimental pictures on the top and the
modelled ones on the bottom.

Analyzing results in Figure 8, it is clear that the model is able to predict
the cavitation phenomenon with a high accuracy, confirming that the pro-
posed methodology can help the understanding of the cavitation location and
can support the designer to avoid this unwanted phenomenon. The next steps
of this research will explore other valve opening and will regard the post-
processing of the experimental pictures in order to better compare the bubble
contouring.

5 Conclusions and Future Developments

In this paper an open center directional spool valve has been studied using
both a CFD and an EFD approaches with the main proposal of identify
gaseous cavitation for a first reference spool geometry with U-groove. First of
all, a simple valve body, made in plexiglass (PMMA), has been manufactured
and tested using a high-speed camera. The camera delivers 1-megapixel
image resolution (1024 × 1024 pixels) at frame rates up to 4,000fps. Sev-
eral working conditions have been tested by changing the inlet pressure of
the valve in the range [1–18] bar abs. Then, using the commercial code
Simerics MP+, an accurate numerical three-dimensional CFD model of
the valve has been built up. The model includes the Equilibrium Dissolved
Gas Model (EDGM) cavitation model to predict the cavitation, aeration and
liquid compressibility. Experimental imagines have been compared with the
numerical results showing a high accuracy on the prediction of the gaseous
cavitation; therefore, as said, the proposed methodology can help for the
understanding of the cavitation location and can support the designer to avoid
this phenomenon.

Results presented in this paper are only a part of the ongoing research
activity that is focused on the study of the fluid bourn noise due to the
cavitation. Thus, noise and vibration have been acquired as well.
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