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Abstract

Deep reinforcement learning (RL) control is an emerging branch of machine
learning focusing on data-driven solutions to complex nonlinear optimal
control problems by trial-and-error learning. This study aims to apply deep
reinforcement learning control to a hydromechanical system. The investi-
gated system is an inverted pendulum on a cart with a hydraulic drive. The
focus lies on implementing a comprehensive framework for the deep RL
controller, which allows for training a control strategy in simulation and
solving the tasks of swinging the pendulum up and balancing it. The RL
controller can solve these challenges successfully; therefore, reinforcement
learning presents a possibility for novel data-driven control approaches for
hydromechanical systems.
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1 Introduction

1.1 Motivation

Fluid-powered plants are typically operated with a linear or optimal con-
troller [1]. Linear controllers are tuned for a fixed operating range. Both
types of control require a profound system understanding and exact physical
models. Especially the modeling of nonlinearities in the hydraulic system due
to effects like fluid compressibility poses a challenge in the process of imple-
menting an optimal controller. Furthermore, multi-task control problems
often need to be divided into individual subproblems. Moreover, apart from
the complex characterization, most optimal control methods lack flexibility
regarding the adjustment of the control structure. Therefore, the maintenance
of an optimal controller usually yields a high workload.

Reinforcement learning provides a more flexible approach to the prob-
lem. Instead of providing a detailed mathematical characterization of the
investigated system, the RL controller aims to grasp the system’s behavior by
trial and error. Reinforcement learning is simultaneously a class of problems
and solution methods for these problems [2]. The problems of RL involve
learning a behavior, i.e., how to map states to actions, such that a numerical
reward signal is maximized. In comparison to the other machine learning
branches, RL is highly focused on goal-directed learning from interaction.
The challenges RL is applied to are closed-loop since the learning algorithm’s
actions influence its further inputs. From a control systems perspective, RL
is a class of direct adaptive optimal controllers [3] since the control is
determined directly by estimating a real-valued function by maximizing an
obtained reward and learning by the resulting system’s reaction.

An inverted pendulum with a hydraulic drive was chosen as an exemplary
system for this study. Swinging up and balancing such an inverted pendulum
pole is a classical demonstration example in control theory, due to its simple
set-up but intriguing properties of being highly non-linear and noisy [4]. The
system consists of a cart with pivoted pole, with the cart being attached to a
hydraulic cylinder, which is actuated by a servo valve. The RL control loop
is displayed in Figure 1 and shows the RL controller and the investigated
system. The controller sets the valve position yt and obtains, in comparison
to a conventional control loop, not an error signal, instead, it is provided with
the current states st. Moreover, the plant is computing a reward signal rt in
addition to the next system states s(t+1).

This paper aims to develop a control methodology based on an RL con-
troller, which is trained and eventually validated in a simulation. The focus
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RL controller

Figure 1 Control loop with RL controller and the investigated system.

of this paper lies in the whole process of developing an RL control for the
inverted pendulum. Especially, the reward system of the environment and the
parts of the control algorithm are investigated. In the following subsections,
the challenges of RL and the state-of-the-art of RL in fluid power systems are
introduced. Afterward, the implementation of the control loop is presented,
and eventually, the results are discussed.

This paper was originally published in the Proceedings of the 13th
International Fluid Power Conference [5] and is now extended with novel
implementations and results.

1.2 Challenges

Reinforcement learning faces several challenges. Firstly, in contrast to other
machine learning branches the agent needs to be trained with an interactive
system instead of just a collected data set. Secondly, the goal is to act such
that not only the immediate reward but also the subsequent reward is maxi-
mized. Finally, yet importantly, deep reinforcement learning (DRL) contains
neural network architectures, thus the algorithm cannot give insight into
the discovered understanding of how to behave for improved performance
(e.g. DeepMind’s AlphaZero chess algorithm [6]). Reinforcement learning
has proven its potential as an optimal controller in a series of artificial
domains [7–10].

The domain of RL control is relatively new, which results in a lack of rules
and regulations for implementation. Especially, finding the optimal several
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parameters defined in the RL controller and the reward function represent
a challenge in the development of the control algorithm. Furthermore, the
optimizer is a crucial part of the controller, since it needs to be stable and
able to obtain an optimum quickly.

1.3 Reinforcement Learning Control in Fluid Power

In the following, a short survey of related and promising works in the field of
RL control in fluid power, both hydraulics, and pneumatics is given.

Generally, most research has been conducted in simulation environments.
Usually, RL algorithms are black box models, therefore an investigation
and validation of the RL controller in a simulation is the first step for a
successful application to the real world. Egli et al. implemented an RL
controller for trajectory tracking of highly nonlinear hydraulic excavator
arms with proximal policy optimization (PPO) in simulation [11]. Andersson
et al. applied deep RL with PPO to hydraulically actuated crane manipu-
lators of forestry machines in a simulated environment. The results yield
successful log grasping in an energy-efficient manner, which was achieved
by the energy-optimization goal in the reward function, resulting in smoother
motion and acceleration profiles [12]. Karpenko et al. coordinate a pair
of hydraulic manipulators with RL aiming to reduce the interaction forces
during the positioning of an object along a trajectory [13]. Karpenko and
Anderson build up on this multi-agent learning system for the same task
and investigate it in both simulation and real-world experiment [14]. Wang
et. al extend a PD controller with RL of a simulated biped robot with
pneumatic actuators to improve robustness against ground disturbances [15].
Satheeshbabu et al. train a position controller of a pneumatic soft continuum
robot arm with deep Q-learning in simulation, and directly transfer it to the
real system for validation, with a natural loss of robustness [16].

2 Simulation-Based Training

2.1 The Inverted Hydraulic Pendulum

The inverted pendulum is a benchmark problem in control theory. In this
paper, a hydraulic double-rod cylinder is connected to a cart and moves
horizontally on a rail. Attached to the cart is a pivoted pole, constituting
the inverted pendulum. Contrary to ordinary inverted pendulum plants in
automatic control, the cart is not actuated with a direct current step motor, but
with a hydraulic cylinder and a servo valve. More precisely, the double-acting
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Figure 2 Illustration of the hydraulic-mechanical inverted pendulum.

hydraulic cylinder is steered with a zero overlapped 4/3-way valve. The
valve is provided with constant pressure from the source. Figure 2 shows
the schematic diagram of the hydraulic-mechanical part that is relevant for
controlling. The control task is to swing up and balance the pendulum pole in
an upright position by actuating the cylinder position via the valve position
y of the servo valve. Thus, the valve position is the RL agent’s action that it
must infer based on the environmental state in every interaction step.

In order to train the agent in a simulated environment, a mathematical
model of the hydraulic-mechanical system in Figure 2 is modeled. The
system is simulated in terms of a mathematical white-box model, i.e., a
system of algebraic and ordinary differential equations describing the phys-
ical relationships. The simulation model is implemented directly in Python
by setting up the mathematical equations and solving these numerically
with a fourth-order Runge-Kutta algorithm. The RL algorithm, which is
introduced in the subsequent subsection, is also developed in Python. This
allows for fast training without additional overhead due to communication
with an external simulation model. Furthermore, the complete Python pro-
gram including simulation and controller can be debugged and executed
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Table 1 List of the model input and outputs with regard to the RL agent, i.e. what the
RL agent actuates (model input or action), based on what it senses (model outputs or
environmental state)

Model Variable Unit Description

Input y – relative valve position [−1, 1]

Outputs θ rad pole angle

θ̇ rad/s angular velocity of the pole

ẋ m/s cart velocity

x m cart position

quickly on different systems without additional setup requirements, e.g.,
high-performance computing clusters.

In the following, the constructed mathematical model is explained by
means of its parameters, variables, in-, and outputs as well as the hydraulic
and mechanical equations. Table 1 summarizes the model’s parameters with
regard to the RL agent.

The parameter values are determined according to data sheets of the
machine components, measurements, and parameter identifications carried
out in preliminary works, as well as simple heuristics. For further informa-
tion, the reader is advised to cover the prior work [5].

First, the hydraulic part is presented. The zero overlapped 4/3-way valve
is modeled via orifice formulas for the volume flow into the left cylinder
chamber QA and the volume flow out of the right cylinder chamber QB ,
depending on the valve position y:

QA =

sign(pS − pA)y Cv
√
|pS − pA| if y > 0

− sign(pA − pT )y Cv
√
|pA − pT | if y < 0

0 else

QB =

sign(pB − pT )y Cv
√
|pB − pT | if y > 0

− sign(pS − pB)y Cv
√
|pS − pB| if y < 0

0 else

(1)

Here, pS and pT are the source and tank pressures ( S© and T© in Figure 2)
and pA and pB are the pressures in the left and right cylinder chambers ( A©
and B© in Figure 2). Cv is the flow coefficient and defined as Cv = QN√

∆pN
=

Ao,maxαd

√
2
ρ with the volumetric flow rate, QN , per control edge at a given
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pressure difference
√

∆pN , the maximum valve orifice opening area Ao,max,
the discharge coefficient αd and the fluid density ρ. The pressure build-up in
the left and right cylinder chambers is modeled with the following ODEs:

ṗA =
K(pA)

(VA,0 +Acx)
(QA −Acẋ)

ṗB =
K(pB)

(VB,0 −Acx)
(−QB +Acẋ)

(2)

Here, K(p) is the pressure-dependent equivalent bulk modulus for an
HLP 46 hydraulic oil [17].

VA,0 and VB,0 are the initial chamber volumes and Ac is the effective
piston area of the cylinder. The pressure difference between both cylinder
chambers translates into the pressure force:

Fp = (pA − pB)Ac (3)

which actuates the cylinder piston and the attached mechanical cart and pole
system. At the same time, the force of the attached mechanical system Flink

acts against the cylinder piston. Thus it links the hydraulic and mechanical
systems. Furthermore, a friction force Fr acts against the cylinder piston.
The equation used to model this friction force combines Stribeck, Coulomb,
and viscous components and is given by [18]:

Fr = Cviscẋ+
√

2 exp(1)(Fbrkwy − Fcol)

(
ẋ√

2vbrkwy

)

exp

−( ẋ√
2vbrkwy

)2
+ Fcol tanh

(
ẋ

vbrkwy

10

) (4)

where ẋ is the piston (and cart) velocity and Cvisc, Fbrkwy, Fcol and vbrkwy are
the viscous friction coefficient, the breakaway friction force, the Coulomb
friction force and the breakaway friction force, respectively.

With the pressure force Fp, connecting force Flink and friction force Fr,
the equation of motion for the piston is given by:

mpistonẍ = Fp − Flink − Fr, (5)
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where ẍ is the acceleration of the piston (and cart) and mpiston is the piston
mass. From this equation, together with the equation of motion for the cart
position of the mechanical cart and pole system, the connecting force Flink

can be deduced, as shown below.
The following equations of the mechanical part are gathered from

Green [19] and adjusted to the present needs. The acceleration of the cart
is given by:

ẍ =
1

(mpole l̂ cos θ)2 − (mpole l̂2 + J)(mcart +mpole)[(
mpole l̂

)2
g sin θ cos θ −

(
mpole l̂

2 + J
)

(
Flink +mpole l̂θ̇

2 sin θ
)
−mpole l̂Mf cos θ

]
(6)

where g is the gravitational acceleration, mpole and mcart are the pole and
cart mass respectively, l̂ is the half pole length, J is the moment of inertia of
the pole, Mf is the moment of friction of the joint, and θ and θ̇ are the pole
angle and its angular velocity. The moment of friction consists of two parts
to model the joint friction of the pivoted pole precisely:

Mf = µpθ̇ + µ̃p
mpoleg

2
sign(θ̇) (7)

If viewed individually, the connecting force Flink in Equation (6) and
Equation (5) is still unknown, but by plugging Equation (6) into Equation (5)
and rearranging the equation, the connecting force Flink is given by:

Flink =
1

(mpole l̂2 + J)(mpiston +mcart +mpole)− (mpole l̂ cos θ)2

·

(
mpiston

[(
mpole l̂

)2
g sin θ cos θ −

(
mpole l̂

2 + J
)

·mpole l̂θ̇
2 sin θ −mpole l̂Mf cos θ

])
+

[(
mpole l̂ cos θ

)2

−
(
mpole l̂

2 + J
) (
mcart +mpole

)]]
(Fr − Fp)

)
(8)
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Knowing Flink, the equation of motion for the angular acceleration of the
pole can be evaluated as:

θ̈ =
1

(mcart +mpole)(mpole l̂2 + J)− (mpole l̂ cos θ)2

·
((
mcart +mpole

)
mpolegl̂ sin θ −

(
mpole l̂ cos θ

)
·
(
Flink +mpole l̂θ̇

2 sin θ
)
−
(
mcart +mpole

)
Mf

) (9)

With Flink and θ̈, the equation of motion for the acceleration of the cart
can be evaluated as

ẍ =
Flink −mpole l̂θ̈ cos θ +mpole l̂θ̇

2 sin θ

mcart +mpole
(10)

The result is a set of equations in state-space representation, where the
derivative of the state vector is defined as

ṡ(t) =
[
ṗA(t) ṗB(t) ẋ(t) ẍ(t) θ̇(t) θ̈(t)

]T
In order to obtain s(t), the system is integrated with a classical, 4th order,

Runge–Kutta method.

2.2 The Control Agent

2.2.1 The reinforcement learning framework – state, action and
reward

In reinforcement learning an agent aims to learn a behavior, or policy,
such that the decisions made in a dynamic environment are maximizing
a collectible reward signal provided by the environment. Mathematically,
the agent remembers which actions result in a high reward in the past and
further executes these actions with a higher probability. Due to the game-
like approach of RL, these methods are much closer to human learning than
the other algorithms of machine learning. The performance of an agent is
measured for one episode, with an episode being a predetermined amount
of time steps or interactions N . Furthermore, the environment can have
constraints, which when violated by the agent, terminate an episode. The
initial starting point of the RL agent in an episode is s0 and in every discrete
time step t, the agent resides in an environmental state st out of the set of
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possible states S. Receiving an observation of the current state st, the agent
chooses an action at ∈ A either from a discrete and finite action set or
from a set of continuous-valued actions. After taking the action at, the agent
receives a scalar reward signal rt ∈ R, which determines the action the agent
took has been good (positive reward value) or bad (negative reward value
i.e. punishment), while the absolute value of rt indicates to what extent the
chosen action was good or bad. The interaction of the environment of the
agent can be represented by the tuple (st, at, rt, s(t+1)), with t ∈ (0, N − 1).

2.2.2 Actor and critic network architectures
The mathematical foundation of RL is often represented in the form of
Markov decision processes (MDP) [2]. MDPs model the dynamics between
the states of a finite state space. The recent state traverses to another state or
back to itself, depending on the chosen action. Everything that is beyond the
selection of an action is modeled as a part of the environment in an MDP.
The agent maneuvers in a dynamic environment; therefore, a selected action
in a particular state does not only affect the immediate reward but also the
subsequent states and eventually, the following rewards received. Therefore,
strictly learning from the immediate reward, it is unlikely that the agent
maximizes its total reward in the end. The return function Rt summarizes
the future rewards when progressing from a certain state st. The discount
factor γ ∈ (0, 1) is tuned to set the importance of later rewards, resulting in
the following equation of the return function:

Rt = rt + γ r(t+1) + γ2 r(t+2) + · · ·+ γn r(t+n) =
∑

γi r(t+i) (11)

A greater value for γ results in more value for rewards lying further in the
future. The policy of the agent π(s) provides a probability for every possible
action with at being sampled according to:

a ∼ π(s) (12)

The policy is determined by the value function Vπ(s). The value function
provides a value of a state, which is defined as the expected future return
when starting from the state following a certain policy.

Vπ(s) = Eπ[Rt|π, st = s] = Eπ

[
n∑
i=0

γir(t+1)|π, st = s

]
∀ s ∈ S (13)

Reinforcement learning faces two fundamental problems. Firstly, the
prediction problem, which aims to evaluate the value function for a given
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policy, and secondly the control problem, which deals with finding an optimal
policy for the given environment and the current estimation of its value
function. The differences in solving the prediction problem result in the
approach to estimating the value function. Regarding the control problem,
a big challenge is called the exploration-exploitation problem. The agent
always aims to behave in such a way that the obtained return is maximal.
However, the agent needs advisement to choose an unknown path to get
a better understanding of the environment and to find other ways of gain-
ing rewards. Furthermore, to adapt to changing environmental conditions,
an exploring agent is a requirement, since deviations in the environment
can cause alternative actions to become the best choice in a certain state.
However, too much exploration on the other hand can cause the agent to
collect low rewards as the trained knowledge of rewards in the environment
is never used, and states far away from the initial state are rarely reached
causing a lack of exploration in these situations. In this paper, the actor-critic
algorithm is implemented, because it deals with the prediction and control
problem separately, thus poor performance can be tracked back and assigned
to one of them. The method consists of two parts. Firstly, the actor selects and
executes actions in the environment. Thus, the actor represents the policy or
agent of this algorithm. Secondly, the critic estimates the value function of the
current state, in which the actor resides. The actor uses the critic as a baseline
for its suggested actions, i.e. the policy of the actor is tuned to the relative
returns of taking a certain action in a state, instead of tuning in response to the
total returns. For example, a certain action results in a negative reward of−50,
however, the critic estimated the state to have a value of−80, thus the relative
return is +30. The critic tunes its parameters depending on the error of the
estimation of the state value. In this paper, a one-step temporal difference
error is used, which estimates the value of a state by calculating the mean of
different one-step returns obtained from this particular state. The complete
control loop is displayed in Figure 3.

The actor π(s) determines the valve position in percentage depending on
the current state st. The state-space consists of a tuplet (x, ẋ, θ, θ̇), with the
normalized cart position x, the angle of the pendulum θ, which is provided
as cos(θ) and sin(θ), the velocity of cart ẋ and angle θ̇. The critic estimates
the state value Vπ(s) based on the current state and passes it to the actor as
a baseline for its parameter tuning. Both models receive the reward, which
contributes to the loss functions of the model’s parameters.

Artificial neural networks approximate the actor and critic. Figure 4
shows the implemented network architectures.
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Critic

Actor

Figure 3 Control loop with actor and critic.

Actor: Critic:

Figure 4 The neural network architectures of the RL agent’s actor and critic, with a five
dimensional state observation vector as inputs.

In a heuristic approach, the best configuration was the actor consisting of
four layers, with the last two outputting the mean µ and the standard deviation
σ. These create a probability distribution, which is sampled to generate the
current action yt. The critic consists of three hidden layers following the input
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layer. The size of each layer of the actor and critic is 64, roughly following the
results of Henderson et al. regarding what worked best for the same algorithm
in their study [20]. The hyperbolic tangents (tanh) is used as an activation
function for all layers except the actor’s output layer for the variance σ2

and the critic’s output layer. The tanh activation outputs values in the range
[−1, 1]. Since the variance is non-negative (σ2 ≥ 0), it cannot be used in
this case. Instead, the softplus activation with range (0,∞) is a reasonable
choice. In the case of the critic’s output layer, no activation function is present
because the state values are not supposed to be bound.

2.2.3 Proximal policy optimization
The neural network parameter optimization is done with the Proximal Policy
Optimization [21]. PPO is a stochastic policy gradient (PG) method, meaning
that a stochastic policy, πθ, e.g. a neural network, is parametrized based on
an estimated gradient of a performance objective function, the loss, w.r.t to
the policy parameters [2]. PPO is an actor-critic-style policy optimization
algorithm that aims to tackle some crucial challenges inherent in previous
policy gradient methods [21]. It is more sample efficient, less sensitive to
hyperparameter choices, and thus easier to tune than default PG methods [22].
The actor approximates the policy and its parameters are tuned to maximize
an expected reward sum. It takes observed states of the environment as input
and suggests actions to take as an output [22]. The parameters of a network,
either actor or critic, are updated by the gradient of a specific loss, with the
network’s parameters θ ∈ Rd′ , where d′ is the dimension of the network’s
weight matrix.

Each part of the whole loss is presented below, starting with the actor
loss:

LCLIP (θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
(14)

with ε being a hyperparameter to control how much the new policy is allowed
to differ from the old. It is usually set to ε = 0.2. The clip-function clips the
value of the reward rt(θ) to the interval [1 − ε, 1 + ε]. Ât is the so-called
advantage estimate at time step t [21]. The advantage estimate indicates how
much better or worse the selected action is compared to a randomly selected
action [22,23]. It is computed by calculating the difference between the actual
return Gt and a so-called baseline b(St):

Ât = Gt − b(St). (15)
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Usually, an estimate of the state value v̂w(St) is chosen as the baseline,
which is learned by the critic. Equation 14 unites following purposes [22]:

• It pushes the policy towards actions that yield a high positive advantage
over the baseline.

• It prevents too large gradient updates, which otherwise might ruin the
policy, in case of positive advantage, or cause the action probabilities to
become zero, in case of negative advantage.

• It reverts an update which makes an action with negative advantage a lot
more likely.

Regarding the critic loss, the network is updated based on the value
function (VF) in a classical supervised learning fishing, by minimizing the
following mean squared error loss with gradient descent [23]:

LV F (w) = Êt[(Gt − v̂w(St))
2] (16)

The critic estimates the baseline for the advantage calculation, therefore
it qualifies the actor’s choices: If the actual return is higher than the critic’s
estimated return, the advantage is positive, and vice versa. The advantage,
therefore, indicates the relative value of an action in a particular state and
reinforces this action according to its value.

The final loss function of PPO consists of the clipped objective LCLIP

for the policy network (actor), the MSE objective LV F for the value function
network (critic) and a third term, namely the entropy S[πθ](s):

LPPO(θ,w) = Êt[L
CLIP (θ)− c1L

V F (w) + c2S[πθ](s)] (17)

Entropy is a measure of how unpredictable the actions of the policy are.
It ensures sufficient exploration during the training process by making the
policy behave more randomly, until the other terms of the objective start
dominating. c1 and c2 are hyperparameters to weight the terms and are
determined in a heuristic approach to be 0.5 and 0.01, respectively.

2.3 The Control Loop

The complete control with deep RL controller and simulation model is
illustrated in Figure 5. Since both the RL agent and the simulation are
implemented in Python, there is no need for communication between the
RL controller and the environment, allowing for more efficient training.
Furthermore, the framework can be deployed on a high-performance cluster
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Figure 5 For the simulation-based training, the Python-based RL agent interacts with the
Python-based simulated environment internally.

in order to decrease the necessary time for the parametrization of the neural
networks.

The communication between RL agent and simulation is instant, however,
in a real-world application, the sending, receiving of data, and calculation of
the next valve position consume a significant amount of time. It is therefore
crucial to include the communication delay in the training model. In order
to achieve this the communication process, which is illustrated in Figure 6,
is implemented. The interaction process begins with the RL agent sending
an initial action a0 to the plant controller. As soon as the plant controller
receives the initial action a0, it starts to pass on the latest received action to
the valve in a fixed execution interval of length tsample . Within this execution
interval of length tsample , the RL agent has to receive the current state, e.g.
the initial state s0, determine an action from it, and send this new action a1 to
the simulation model. Compared to instant communication, actions are now
applied for more than one time step.

Algorithm 1 shows the procedure of the interaction process. The
Environment refers to the simulation model. Apart from that, the interaction
always starts in line 2 with receiving a state from, and afterwards sending
an action to the environment. It is important to note that the returned state
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RL Agent
(Python)

Plant Controller
(Simulink-based)

Simulation 

RL Agent

Figure 6 The communication between the RL agent and the simulation.

Algorithm 1 The interaction process of the actor-critic style PPO algorithm during training
Require: initialized agent and environment, initial action a = 0, episode counter Nep = 0.

1: while Nep < Nep,max do . every iteration tsample (2 ms) elapse

2: s← actInEnvironment(a)
3: r ← receiveReward(s, a)
4: a, log πθ(a | s)← inferAction(s) . agent infers action based on current policy
5: agent← collectExperience(s, a, r, log πθ(a | s))
6: if enough experience collected then . experience worth of e.g. 80 s
7: agent← updatePolicy . the agent learns from the collected experience
8: agent← deleteExperience . the collected experience is discarded
9: end if

10: if episode finished then . after 20 s of if constraints violated
11: Environment← reset
12: Nep ← Nep + 1
13: end if
14: end while

is not the consequence of the currently sent action, but instead of the prior
action. Accordingly, the remaining commands of the current loop iteration
have to take place within a specified time tsample, in which the environment
executes the action that it just received. A reward is calculated in line 3 based
on the current state and action, according to the reward model described in
subsection 2.4. Next, a new action is inferred, together with its log probability,
by randomly sampling from the probability distribution that is constructed
with the mean and variance that were output by the actor network based on
the current state. In line 5, which is the last step in a normal interaction, the
agent collects the state, action, reward, and log probability in a memory buffer
for future usage, i.e. to update its policy and thus learns. A policy update
according to algorithm 2 is executed in line 7, as soon as enough experience



Application of Deep RL Control of an Inverted Hydraulic Pendulum 409

is collected in terms of a hyperparameter called update interval Iupdate, which
is determined to be 80.

This parameter specifies the number of interactions the agent uses to
improve its policy. After the policy update, which is examined in more detail
below, the collected experience is discarded by emptying the memory buffer
in line 8. The current episode finishes either in terms of the number of
interactions reaching the maximum episode length Lep,max, or if constraints
are violated, e.g. when moving the piston too close to the end position. In this
case, the Environment is reset in line 11 so that the next episode can start
from a defined initial position. The whole interaction sequence from line 2 to
line 13 is repeated Nep,max many times, controlled by the while loop in line 1.
When training the agent, the maximum number of episodes is usually set to
Nep,max = ∞. The interaction process is then manually stopped depending
on the learning progress.

In the following, the policy update function called in line 7 of Algorithm 1
is regarded in more detail. As shown in Algorithm 2, it requires the vectors of
collected experience from the preceding interactions. In line 2 of Algorithm 2,
the discounted returns are estimated in Monte Carlo fashion based on the
collected rewards. In line 3, the returns are normalized to have zero mean
and standard deviation of 1, in order to improve stability during the gradient
updates. In the subsequent for loop starting in line 4, the actor’s and critic’s
network weights are repeatedly adjusted in line 10 according to the PPO loss

Algorithm 2 The PPO update procedure

Require: Collected experience vectors S, A, R and log πθold (A | S).
1: function UPDATEPOLICY

2: G← CALCULATERETURNS(R) . Monte Carlo estimates of discounted returns
3: G← NORMALIZERETURNS(G) . normalize to zero mean and standard deviation of 1

4: for k = 0, . . . , Nepochs do

5: log πθ (A | S) ,Entropy, V̂ ← EVALUATEPOLICY(S,A)

6: Â← COMPUTEADVANTAGES(G, V̂ ) . see Eq. 15

7: LCLIP (θ)← COMPUTEACTORLOSS(log πθ (A | S) , log πθold (A | S) , Â) . see
Eq. 14

8: LV F (θ)← COMPUTECRITICLOSS(G, V̂ ) . see Eq. 16

9: LPPO(θ)← COMPUTEAGENTLOSS(LCLIP , LV F ,Entropy) . see Eq. 17

10: Agent← ADJUSTWEIGHTS . optimize actor and critic
11: end for
12: end function
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constructed prior to this, in line 9. The function EVALUATEPOLICY(S,A) in
line 5 basically does the same as INFERACTION(s) in line 4 of Algorithm 1,
but instead the log probabilities are computed according to the probability
distribution constructed from the outputs of the iteratively updating actor
network with the batch of experienced states as inputs. Moreover, the proba-
bility distribution’s entropy is computed and the estimated state values V̂ are
inferred from the critic network. The other parts of the PPO loss are computed
in lines 6 to 8 according to the equations given in the respective comments.

2.4 Reward Shaping

The initial reward model is explained in prior work [5]. In this work the
reward function is modified by punishing the valve position difference from
the current and prior time step, instead of punishing the magnitude of
the valve position. The reward provides the RL agent with the necessary
information on what is good and bad in terms of fulfilling a task. In the case
of swinging up an inverted pendulum, reaching a zero-degree angle of the
pole is good and has to be rewarded, whereas driving the cylinder piston into
the end positions is bad and has to be punished. However, a reward function
should not show the agent how to fulfill a task. Otherwise, the agent is not
properly learning by exploring the environment but is guided to the right
decisions. This objects to the idea of a self-learning RL controller and perhaps
reduces robustness and the possibility of the agent finding unexpected but
better solutions. On the other hand, giving too little information may render
learning progress impossible. If the obtained reward would only be positive
at an upright position and zero for the remaining positions of the pole, the
agent starting with the pole upside down would have no chance to learn what
to do, as randomly swinging up to find out about the high reward at the top
is highly unlikely. Therefore, the difficulty of designing a reward function is
giving just enough information to allow for efficient training. The following
reward function inspired by [24] is set up for training the RL agent to swing
up the inverted pendulum:

r(t) =

{
cos θ − cω θ̇2 − cy (y − yprev)2 if |x| ≤ xbound

cos θ − cω θ̇2 − cy (y − yprev)2 − cx else
(18)

The four terms of the reward function are displayed in Figure 7. If the
pole dangles upside down, the pole angle reward will be around −1, whereas
a balanced upright pole will give a reward of up to 1. The remaining terms
are punishments to improve the agent’s performance: High angular velocities,
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Figure 7 Illustration of the reward function terms.

big valve position differences, and a high punishment for moving the cylinder
position too far toward the end position.

3 Training & Results

3.1 Rules and Conditions of the Training

The goal of the agent is to obtain the highest reward, which results in the pole
being swung up quickly and balanced in a vertical position with as little valve
actuation as possible. The cart starts in the middle of the slide with a hanging
pole. In addition to the reward and the state space, the environment has certain
termination conditions, which once met, immediately stop the episode. These
conditions are application-specific and are listed below:

• An episode is played for more than 20 s.
• The cart position is over ±0.2 m.

The second condition results from the out-of-bound punishment of the
reward function. Because of safety concerns with regard to the application
of the trained agent to the real plant, the valve position is set to a maximum
value of |ymax| = 20 % as a precaution. Accordingly, the agent’s actions are
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scaled and clipped to [−20 %, 20 %]. The action sampling time tsample is set
to 2 ms, to account for the communication delay. The 20 s time duration for
one episode is selected by a heuristic approach. The simulation time needs
to have a sufficient length in order for the actor to be able to solve the task.
Furthermore, the longer an episode, the more information is collected in the
episode, which is used for the subsequent optimization and eventually results
in a shorter training time.

3.2 Training & Testing

The performance of the agent is validated during the training and eventually
during testing. The training performance is investigated in Figure 8 by means
of the running reward over the episodes. The running reward stagnates at
around 740 after roughly 3000 episodes. The best-performing agent in terms
of mean reward and swing-up speed is identified in episode 3929 after 892
optimization runs. This corresponds to roughly 19.82 h of interaction with
the simulation.

Figure 9 shows the test results of the agent. It can be seen that the inferred
actions or valve positions shown in the upper left plot successfully swing up
the pole from its initial angle of 180° ≈ 3.14 rad to the upright position
of 360° ≈ 6.28 rad in around 5 s, while the cart position remains within
the allowed bounds of xbound = 0.2 m to either side. For the swing-up, the
actor infers the allowed valve opening of 20%. However, after successfully
swinging the pole up, the actuation remains in a narrow band switching the
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Figure 8 Illustration of the reward function terms.
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valve opening direction. The agent does not aim to move the cart back to
the middle of the slide since this behavior is not considered in the reward
function. Figure 10 shows the reward signal during the course of the test
application. Once the pendulum is in the upright balancing position, the
reward signal remains almost 1, showing that the agent successfully learned
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how to obtain the maximum reward and is able to keep the pole in a stable
position.

4 Summary & Conclusion

RL presents a class of novel control algorithms for hydromechanical systems,
which have a more flexible and adaptive structure compared to conven-
tional controllers. In this paper, the possibilities offered by RL control
of a hydromechanical system were demonstrated by solving the inverted
pendulum-on-a-cart problem. The control algorithm was implemented based
on the actor-critic approach and the sample efficient Proximal Policy Opti-
mization. The controller was tested on a simulation model, which has a
hydraulic drive and a mechanical part, consisting of a cart and pendulum.
The agent was able to solve the inverted pendulum challenge. Compared to
conventional control algorithms, which normally require two controllers for
the swing up and pole balancing respectively, the same actor was able to solve
both tasks.

Moreover, a flexible structure is implemented, which can be adjusted
to changes in the model through further training. Further research can be
conducted on the robustness of the agent, as disturbance and noise can be
added to the environment. Eventually, the trained agent will be validated on
a real-life test rig, which is available at the institute.
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