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Abstract

The paper considers the proposed method for the camera-less remote surveil-
lance on hydraulically actuated heavy equipment. The method uses the data
about the pressure and position of hydraulic actuators as an input. These data
are transmitted over the internet in the Internet of Things (IoT) environment
to the IoT cloud computing platform. A simulation model consisting of
hydraulic and multibody dynamics submodels composes the digital twin of
the machine under surveillance. This digital twin is maintained and calculated
in the cloud. It reproduces the movements of the machine and calculates the
forces acting in it. Together with the GPS coordinates, these data provide the
full information on the machine operation. As a result, the productivity of the
machine can be estimated, the misuse can be detected, and the load history
can be gathered in order to estimate the remaining life of the machine or to
plan the maintenance activities. The influence of the sensor accuracy on the
simulation results is evaluated. The experimental results are presented that
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verify the feasibility of the proposed method on the example case of hydraulic
mobile crane.

Keywords: Simulation, dynamic model, hydraulic model, heavy equipment,
mobile working machines, Digital Twin, Internet of Things, IoT.

1 Introduction

Heavy equipment used in construction, mining and agriculture segments
(such as the cranes, the excavators, the loaders, the tractors, the dozers) is
an expensive asset. In order to decrease the cost of ownership, the users and
owners of the machines usually make efforts to maximize their usage [1].
Equipment monitoring helps to solve this task by providing the information
about the state of the machine and in some cases about its productivity.
With the expansion of Internet of Things (IoT), many remote monitoring
solutions have been created as the components of the fleet management
systems. Currently available solutions gather primarily the sensor data about
the condition of the machine, such as its GPS coordinates, the level of fuel,
the speed of motors and pumps rotation, the temperature of the engine, the
voltage supplied by the battery, the position of some parts. The description
of several fleet management systems which are utilized by the companies
in the mining industry is given in [2]. The tasks being solved by the fleet
management systems in the maritime transport sector are described in [3].

The systems mentioned above use the so-called data-driven approach [4].
They monitor the data to be within predefined bounds and discover the
trends and correlations in the sensor data that produce new information. This
approach usually does not require the knowledge about the physical laws that
govern data dependencies. It allows to use the same data processing methods
in different domains, but the capabilities of data analysis are usually limited
with the methods of statistics and approximation. In contrast, the model-
driven approach uses the sensor data as an input to the simulation model of the
object. An ability to gather sensor data from the remote objects and to process
them in real time provided by the modern IoT environments, has led to the
emergence of the Digital Twin concept. Many definitions of the term “Digital
Twin” exist [5], but the common idea is to use some simulation model
simultaneously with a real object to get the information about the object from
the sensor data. The digital twin can also be limited to statistical processing
of data, but the model-based digital twins are expected to become the main
consumers of IoT data [4]. The model accounts for data interdependencies
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governed by the physical laws and thus can provide the results unavailable
with data-driven approach.

Some applications use kinematic models of the machines to control the
work at the worksite and to monitor the productivity of the machines [6, 7].
Dynamic models are extensively used in control tasks within the state
observers [8].

This work considers the use of kinematic and dynamic models of heavy
equipment for remote monitoring of these machines. Unlike on-board real-
time controllers, the proposed method uses a limited set of sensors, par-
ticularily the pressure and position sensors in hydraulic cylinders of heavy
machines actuated by fluid power, to monitor the motion and the load of
these machines remotely through the internet. The use of the simulation
models allows to reduce the volume of data transmitted over the network in
comparison with the video surveillance. It avoids the problems related to the
working environment, like rain, snow, fog, dust, darkness, that influence the
quality of video. The advantage of using dynamic models is the opportunity
to get the forces acting in the machine and to estimate its load.

The following section introduces the proposed method. Section III
describes the simulation environment developed to evaluate the proposed
method. The experimental results are presented in section IV. Section V
concludes the paper and discusses the directions for future research.

2 Description of the Method for Remote Surveillance on
Hydraulically Actuated Heavy Equipment

This work considers the task of remote monitoring of the hydraulically
actuated machines with the use of their models – digital twins. The monitored
parameters are the position of the machine components at each time point and
the forces acting in the machine. Similar to the video surveillance systems
that provide information about the motion of the objects, the proposed method
for obtaining information about the machine motion, using its digital twin, is
called here the method for remote surveillance.

For the hydraulically actuated heavy equipment the easily accessible data
are available for dynamic simulation. The data from the position sensors of
hydraulic cylinders, which provide the extension length for the cylinder, give
information about the motion of these actuators. For many types of heavy
equipment, the motion of the actuators fully defines the motion of other parts
of the machine. The data from the pressure sensors in hydraulic cylinders
provide information about the forces acting in them. Thus, gathering the data
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about the pressure and the position of hydraulic actuators, it is possible to
monitor the machine operation and to calculate the loads that the machine
undergoes. The position of the machine components can be easily calculated
from the actuators position using the kinematic model of the machine. To
calculate the forces acting in different joints of the machine mechanical
structure, the dynamic model of the machine should be used.

Nowadays, the pressure gauges are widely used in heavy equipment.
Modern digital pressure gauges can take several thousand measurements
per second. Since the natural frequency of many hydraulically actuated
mechanisms used in heavy equipment does not exceed several hertz [9, 10],
the sampling rate of the digital pressure gauges is sufficient for capturing
dynamics of these machines.

The magnitude of the force produced by a commonly used double-acting
hydraulic cylinder can be calculated with the following equation [11]:

Fs = (pAA1 − pBA2)− Ffr (1)

where pA is the pressure in the piston-side chamber; pB is the pressure in the
rod-side chamber of the cylinder; A1 and A2 are the piston side and rod side
areas; Ffr is the cylinder friction force. The cylinder friction depends on the
velocity of the rod. Different formulations exit for the friction force. One of
the commonly used expressions is the following [12]:

Ffr = FCtanh(v/vC) + bv (2)

where FC is a Coulomb friction; v is the rod velocity; vC is a Coulomb
velocity threshold; b is a viscous friction coefficient.

The cylinder forces produce torques in the joints of the machine’s
mechanical structure. The data about the forces and the torques allows calcu-
lation of the machine’s dynamics. Thus, the pressure and position of hydraulic
cylinders, and the inertia properties of the structural components of the
machine can be used to get full information about the motion of the machine.
The proposed method for remote surveillance solves this task by supplying
the position and pressure measured in the cylinders to the kinematic and
dynamic models of the machine. The software implementing these models
can be run onboard the machine with the use of some EDGE device [13], or
it can be run remotely in some datacenter using cloud computing. The sensor
data should be transmitted to the cloud over the IoT environment. Local
execution has an advantage of faster processing and using the simulation
results for solving the tasks of machine operation. The calculated data needed
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for remote monitoring can be sent to the user in convenient form. The volume
of transmitted data can be lower than in the case of raw sensor data transmis-
sion. The network requirements can also be lower. Execution in the cloud
provides an opportunity of gathering the sensor data from many machines
and processing them to get new information with Big Data techniques. The
disadvantage of this approach is high network bandwidth needed to transmit
the raw sensor data.

The dynamic model of the machine can be created using different formu-
lations [14]. For the remote surveillance applications, the formulations with
the lowest computational complexity should be considered. Minimization of
the time needed for the simulation run is important for several reasons. First,
it allows to increase the number of models processed in each period of time.
This is meaningful for the cloud-based fleet management systems. Second, it
provides an opportunity to reduce requirements on computing power of the
on-board computer. Several dynamic formulations exist with near to O(N)
complexity [15]. Since the mechanical structure of heavy equipment can
often be represented by a tree or a chain of links connected by different types
of joints, the Iterative Newton-Euler Formulation (INEF) [16] is suitable in
many cases.

The equation of motion of a multibody system can be written in the
Newton-Euler formulation as follows [14]:

MẌ = Qe +Qc (3)

where M is the mass matrix of the system; X is the vector of generalized
coordinates; Qe is the vector of generalized external forces; Qc is the vector
of generalized constraint forces of the system. Qc can be eliminated if the
components of X consist of the independent coordinates only. M is a constant
matrix in many cases. X can be calculated from Qe and Qc by solving (3) with
the initial conditions: Qe(0) = Qe0, Qc(0) = Qc0, X(0) = X0, Ẋ(0) = Ẋ0.

For the hydraulically actuated machines the vector Qe is composed of the
actuator forces and the external forces, such as the gravity force and the forces
coming from external objects which are usually represented by the material
processed by the machine, such as ground, soil, or stones. This work does
not consider the collisions of the machine mechanical components with the
external objects. The external forces considered in this work are represented
by the gravity force only. This is a typical case for the load-handling machines
like cranes and loaders. The inertia properties of the multibody systems
describing such machines depend on the mass of the load. This work assumes
that the mass is known, e.g. it is measured by a load sensor.
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In theory, to simulate the motion of the system one should define the
initial conditions and solve the Equation (3). In practice, the use of dig-
ital computing devices requires discretization of the problem. Continuous
functions that constitute the components of the vectors X and Qe should be
replaced by their discrete representations. If these functions are discretized
with sufficiently small time step, it is possible to solve Equation (3) numer-
ically with some predefined accuracy. Dynamic models of the machines are
widely used in this way for solving the tasks of automatic control. If the
data from the machine are obtained remotely, which is the case in the remote
surveillance task, the sampling interval of the obtained values is usually larger
than the time step required for solving Equation (3) numerically.

In many cases the integration time step for the systems that include
hydraulic and mechanical parts is 10−4..10−3 s depending on the hydraulic
circuit of the system [17]. The data transmission rate required for sending
the measurement data obtained from the machine with some sampling rate
depends on the number of parameters describing the state of the machine,
the data format, the telecommunication technology and the data transmis-
sion protocol. It can be shown that using 4G cellular network and User
Datagram Protocol (UDP) connection secured by Virtual Private Network
(VPN) technology requires the data transmission rate more than 4 Mbits/s
for sending the data from a mobile machine with the sampling rate more
than 8000 measurements per second. Such rate is usually unavailable for the
applications dealing with heavy equipment, because the equipment is often
operated in the areas with poor network coverage. This leads to the task of
estimating the values of the measured parameters laying between the received
samples.

Natural splines were used in this work for the interpolation of position
and pressure data. To calculate the cylinder force using the Equation (1),
the velocity of the rod should be known. It can be calculated on-board the
machine and transmitted together with the position and pressure data, or it
can be calculated from the received data using numerical differentiation. In
this work the rod velocity is calculated from the position data with the Newton
formula [18].

The data about the position of hydraulic actuators allow to calculate the
position of any point of the machine mechanical structure using its kinematic
model. The dynamic model provides accelerations of different parts of the
machine and allows to calculate the forces acting in the joints. The data about
the position of machine components and the forces acting on them gives more
information about the machine operation than just video data from the video
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surveillance system. The proposed approach was tested in the simulation
environment described in the following section.

3 The Simulation Environment Used to Test the Feasibility
of the Proposed Method

In order to evaluate the proposed approach, a proof of concept system was
implemented using the simulation model of the mobile log crane PATU655
(Figure 1). This work uses the CAD drawings of the crane developed in [19].

The simulated crane consists of the pillar and three booms. The pillar
rotates around the vertical axis, the lift boom and the jib boom are actuated
by hydraulic cylinders. The extension boom is located inside the jib boom
together with hydraulic cylinder that provides extension.

The test environment used in the experiments is shown in Figure 2.
The real-time sensor data were generated by the simulation program. It used

Figure 1 The kinematic model of the simulated mobile log crane.

Figure 2 The test environment for the experiments.
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the dynamic model of the crane augmented with the model of the hydraulic
circuit of the crane. The description of the model can be found in [20].
The time step used in dynamic simulation was 10−4 s.

The simulation program calculated the values of the pressure in the piston
side (Pa[i]) and in the blind side (Pb[i]) of each cylinder (indexed by i).
It also calculated the position of each cylinder (s[i]) and the value of the
torque applied to the pillar. These data together with the timestamp for each
data sample were sent by UDP protocol to the server side. The sampling
rate used in the experiments was 100 measurements per second. The task
of the server program was to receive the data and to save them to the
database. The received values were used as input data to the digital twin.
This was another simulation program that utilized the same dynamic model
to reproduce the movements of the crane. The crane motion calculated by the
digital twin was visually presented to the user as animated CAD drawings
through the web-interface.

Using INEF, the equations of motion were obtained that could be
presented in a matrix form the following way:

Ẍ = Φ(X, Ẋ,F) (4)

In Equation (4) X = [θ0, θ1, θ2, L]
T is the vector of independent coor-

dinates: θ0 is the angle of rotation of the pillar; θ1 is the angle of the lift
boom; θ2 is the angle of the jib boom; L is the length of the extension boom
(see Figure 1). F = [τ0, τ1, τ2, τ3]

T is the vector of torques produced by the
hydraulic cylinders.

The control signal causing the movement of the crane was represented by
a sequence of input voltage values for the control valves. An example of the
control signal is shown in Figure 3, where U lift, U jib, and U slewing are
the values of input voltage for the control valves of the cylinders operating
the lift boom, the jib boom, and the slewing mechanism accordingly.

The sequence of values of the input voltage depicted in Figure 3 causes
the movement of each boom actuated by the corresponding cylinder. Figure 4
shows the calculated position of the lifting cylinder. The dashed line in
Figure 4 (denoted as Xc sim) represents the cylinder position calculated by
the digital twin with the use of received data. The solid line (denoted as Xc)
is the position calculated by the simulation program on the client side.

The position of each cylinder calculated by the digital twin is the
interpolation of the sampled values produced by the simulation model and
transmitted over the network. The accuracy of these calculations depends on
the discretization error caused by low sampling rate.
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Figure 3 Input voltage of the control valves used in the experiments.

Figure 4 Position of the lifting cylinder as a result of motion produced by the control signal.

The cylinder forces were not transmitted from the client to the server
side. They were calculated by the digital twin using the hydraulic model of
the crane. The force produced by the lifting cylinder that was calculated by
the simulation model at the client side (denoted as Fc 0), and the value of
this force obtained by the digital twin (denoted as Fc sim) are presented in
Figure 5.

The cylinder forces depend on the values of pressure and velocity
according to Equation (1). The values of pressure were calculated by inter-
polating the received data. The velocity of the cylinder rod was calculated by
numerically differentiating the position data.

The kinematic model of the crane presented in Figure 1 allows calculating
the position of any part of the crane in any moment of time using the position
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Figure 5 The force produced by the cylinder of the lifting boom.

of each cylinder. The kinematic model used in the experiments is described
in [21]. The sequence of calculated position values forms the position history
of the crane components. The forces acting in the crane form the load history
of the machine. It can be produced by the dynamic model of the crane using
the position data and the values of the forces calculated from the pressure
data. The position history and the load history are useful for solving the tasks
of remote monitoring.

4 Experimental Results

The accuracy of the results produced by the digital twin depends on the accu-
racy of the model and on the measurement errors introduced by the sensors.
These are the main components of the total error, since the contribution of the
analog to digital conversion and data transmission over the network is much
less. The influence of the measurement errors on the accuracy of simulation
results was tested by adding an artificial error to the input data of the model.
This error was represented by the pseudo-random real numbers uniformly
distributed in the predefined range. The artificial error was added to the sensor
data received on the server side (see Figure 2). Figure 6 shows an example
of the sensor data about the position of the lift cylinder with an artificially
generated 10% measurement error. In order to minimize the influence of
the sensor errors on the simulation results, the input data were smoothed by
Savitzky-Golay filter [22].

The total error of position and force calculation for each cylinder as a
function of the maximum error added to the pressure and position sensor data
is presented in Figure 7.
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Figure 6 An example of the sensor data with the artificially added measurement errors.

(a)

(b)
Figure 7 The total error of position and force calculation for each cylinder as a function of
the maximum error added to the pressure and position sensor data.
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The points in Figure 7(a) denoted as Xc1 and Xc2 present the normalized
root mean square error (NRMSE) of calculation of the lift cylinder position
and the jib cylinder position accordingly. The points in Figure 7(b) denoted
as Fc1 and Fc2 present NRMSE of calculation of the force produced by
the lift cylinder and by the jib cylinder accordingly. The solid lines in
Figure 7 represent the curves fitting the points with third degree polynomials.
The experimental data show a close to linear dependence of the total error
of position and force calculation on the maximum measurement error for
the range of accuracy common for commercially available sensors (input
NRMSE less than 5%). Smoothing the sensor data by Savitzky-Golay filter
allowed obtaining the total error of force calculation that did not exceed the
error of position and pressure measurement more than twice. Interpolation
of the sensor data needed to restore the measured values at each time step
within the sampling interval introduces additional error. This error can be
seen in Figure 7 at the points with zero input NRMSE. The maximum values
of this error did not exceed 1% for the case of forces calculation.

5 Conclusions And Future Research Directions

The paper presented a method of using the physics-based simulation models
(digital twins) for the camera-less remote surveillance on heavy equipment.
The method provides information about the movements of the machine and
about the forces acting in it from position and pressure sensor data obtained
remotely from hydraulic actuators. No external cameras or other additional
devices are needed to get the comprehension of the work performed by the
machine and the loads that it undergoes.

The proof of concept software system was developed to test the feasibility
of the approach. The influence of the sensor accuracy on the simulation
results was evaluated. The computational experiments show that the proposed
method allows to estimate remotely the position of the hydraulic cylinders
with the error not exceeding the measurement error of position sensors
and to estimate the cylinder forces with the error less than 8% using the
commercially available pressure sensors with NRMSE less than 5%.

The influence of the model accuracy was not evaluated in the cur-
rent work. It is obvious that every real machine differs from other similar
machines. Even a very accurate model created for the particular machine
can be unsuitable for another machine of the same kind. That is why model
validation is an important phase in the implementation of digital twins.
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This work used INEF to obtain the dynamic model of the machine.
Though being a powerful technique for the mechanisms that have a chain
structure, this approach cannot be applied to any machine. Finding the ways
of building the parametrized models for different types of machines that
are able to suit every real machine by adjusting parameters of the model
is another important direction of future research. Experiments with the real
machines should be made in order to validate the proposed approach using
commercially available sensors, telecommunication networks, computing
hardware and IoT platforms.
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